JPH04206536A - Probe driving mechanism, tunnel current detector and record reproducer fitted with the mechanism - Google Patents

Probe driving mechanism, tunnel current detector and record reproducer fitted with the mechanism

Info

Publication number
JPH04206536A
JPH04206536A JP32963190A JP32963190A JPH04206536A JP H04206536 A JPH04206536 A JP H04206536A JP 32963190 A JP32963190 A JP 32963190A JP 32963190 A JP32963190 A JP 32963190A JP H04206536 A JPH04206536 A JP H04206536A
Authority
JP
Japan
Prior art keywords
recording
probes
probe
tunnel current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32963190A
Other languages
Japanese (ja)
Inventor
Masaru Nakayama
中山 優
Takayuki Yagi
隆行 八木
Osamu Takamatsu
修 高松
Yasuhiro Shimada
康弘 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP32963190A priority Critical patent/JPH04206536A/en
Publication of JPH04206536A publication Critical patent/JPH04206536A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the recording signals to be recorded and reproduced along the data rows using the whole probes even if individual probe is respectively and independently subjected to the deformation such as thermal expansion etc., of the medium by a method wherein cantilevers are assembled by the forces given by static electricity and the deformation of piezoelectric elements. CONSTITUTION:In order to perform the recording step, Z directional coarse piezoelectric elements 105 and probe driving mechanisms 102 are shifted to recording positions so as to be impressed with a voltage exceeding a specific threshold value of a record medium 103. At this time, the record medium 103 is impressed with a bias voltage by a bias circuit 106 while the probes are kept at the distance capable of feeding the tunnel current to the record medium 103. The probes attracted to the nearby positions by the piezoelectric elements 105 are respectively led in the tunnel regions by multiple driving mechanisms 102. The probes are led-in by feeding back the tunnel current detected by a tunnel current detecting circuit 107 corresponding to recpective probes. Finally, during the recording time, the recording signals are transmitted from a control circuit 112 to a pulse impressing circuit 108 so as to make record using respective probes.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は探針駆動機構及び該機構を備えたトンネル電流
検出装置及び記録・再生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a probe drive mechanism, a tunnel current detection device, and a recording/reproducing device equipped with the mechanism.

[従来の技術] 現在、STMの手法を用いて、半導体あるいは高分子材
料等の原子オーダー、分子オーダーの観察評価、微細加
工(E、E、Ehr i chs。
[Prior Art] Currently, STM techniques are used to observe and evaluate semiconductors, polymer materials, etc. on the atomic order and molecular order, as well as microfabrication (E, E, Ehr i chs).

4th  International  Co  n
ference  on  ScanningTunn
ering  Microscopy/5pectos
copy、’  89.S13−3)、及び記録装置等
の様々な分野への応用が研究されている。
4th International Con
ference on ScanningTunn
ering Microscopy/5pectos
copy,' 89. Applications to various fields such as S13-3) and recording devices are being studied.

なかでも、コンピューターの計算情報や映像情報等では
大容量を有する記録装置の要求に対してますます高まっ
ており、半導体プロセス技術の進展により、マイクロプ
ロセッサが小型化し、計算能力が向上した為に記録装置
の小型化が望まれている。これらの要求を満たす目的で
、記録媒体との間隔が微調整可能な駆動手段上に存在す
るトンネル電流発生用プローブからなる変換器から電圧
印加することによって記録媒体表面の仕事関数を変化さ
せる事により記録書き込みし、仕事関数の変化によるト
ンネル電流の変化を検知することにより情報の読み出し
を行い最小記録面積が10nm平方となる記録再生装置
が提案されている。
In particular, the demand for large-capacity recording devices is increasing for computer calculation information and video information, etc. Due to advances in semiconductor process technology, microprocessors have become smaller and computing power has improved, so recording It is desired that the device be made smaller. In order to meet these requirements, the work function of the surface of the recording medium is changed by applying voltage from a converter consisting of a tunneling current generating probe located on a driving means whose distance from the recording medium can be finely adjusted. A recording and reproducing apparatus has been proposed that performs recording and writing and reads information by detecting changes in tunnel current due to changes in work function, and has a minimum recording area of 10 nm square.

データ転送速度、及びデータ記録速度を向上させるため
にはプローブの数を増やす必要がある。
In order to improve the data transfer rate and data recording rate, it is necessary to increase the number of probes.

この際、上述した様な装置においては1例としてプロー
ブと媒体との間隔を調整しつつ、記録データ列上をプロ
ーブが走行する必要がある。しかしながら、記録したデ
ータ列の幅が非常に細く、装置の温度変化によるドリフ
ト、外部からの振動などの影響によりプローブがデータ
列からはずれて安定した記録再生ができなくなる。更に
、1プローブをデータ列に添って走査させると他のプロ
ーブがデータ列からはずれてしまうことこととなる。
At this time, in the above-mentioned apparatus, for example, it is necessary for the probe to travel over the recording data string while adjusting the distance between the probe and the medium. However, the width of the recorded data string is very narrow, and due to drift due to changes in the temperature of the device, vibrations from the outside, etc., the probe may deviate from the data string, making stable recording and reproduction impossible. Furthermore, if one probe is scanned along a data string, other probes will be deviated from the data string.

これを解決するために第4図の様な圧電体21と電極2
0を積層し圧電体を4ブロツクに分け3軸駆動が可能な
自由端側にトンネル電流を検知するティップ22を要す
る片持ち梁が提案されている。(a)は自由端方向の断
面図であり、(b)は幅方向の断面図である。
In order to solve this problem, a piezoelectric body 21 and an electrode 2 as shown in FIG.
A cantilever beam has been proposed in which the piezoelectric material is divided into four blocks and requires a tip 22 on the free end side for detecting tunnel current, which can be driven in three axes. (a) is a sectional view in the free end direction, and (b) is a sectional view in the width direction.

[発明が解決しようとする課題] しかしながら、第5図の(a)’、(b)。[Problem to be solved by the invention] However, (a)' and (b) in FIG.

(C)で示される様に各電極間に適当なバイアスをかけ
る事によりX、Y、Zの各々単独での駆動は可能ではあ
るが、(b)、(c)の合成で同時に駆動しようとする
と梁がねじれる。実際に要求されるのは、(b)、(c
)のベクトル的な変位であるが、従来の構成では、ベク
トル的合成変位は不可能である。従ってプローブがデー
タ列からはずれてしまっても多数個のプローブを別個に
動かす事が出来なく正確な読み取り、書き込みが出来な
い。
As shown in (C), it is possible to drive each of X, Y, and Z independently by applying an appropriate bias between each electrode, but it is possible to drive them simultaneously by combining (b) and (c). The beam then twists. What is actually required is (b), (c
), but in the conventional configuration, vector-like composite displacement is not possible. Therefore, even if a probe deviates from the data string, a large number of probes cannot be moved individually, making accurate reading and writing impossible.

本発明は上述の従来例の欠点に鑑みてなされたものであ
って、個々のプローブが夫々独立に媒体の熱膨張等の変
形があってもすべてのプローブでデータ列に添って記録
再生を可能にすることを目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the conventional example, and allows all probes to record and reproduce data along the data sequence even if each probe is independently deformed by thermal expansion of the medium. The purpose is to

[課題を解決するための手段] 上述の目的を達成するためにその片持梁を静電力と圧電
素子の変形による力を組み合わせる事によって、従来技
術による梁のゆがみ等をなくしベクトル合成的な変位を
可能にし情報の読み取り、書き込み等が正確に実行され
る。
[Means for solving the problem] In order to achieve the above-mentioned purpose, by combining the electrostatic force and the force caused by the deformation of the piezoelectric element on the cantilever beam, distortion of the beam caused by the conventional technology can be eliminated, and vector composite displacement can be achieved. This makes it possible to read and write information accurately.

即ち、本発明は、支持体、トンネル電流を検知するティ
ップ、該トンネル電流を取り出す電極、該支持体を駆動
する圧電体及び該支持体を2軸方向に独立に駆動する電
極を有する片持ち梁を備えたことを特徴とする探針駆動
機構に係るものである。
That is, the present invention provides a cantilever beam having a support, a tip for detecting tunnel current, an electrode for extracting the tunnel current, a piezoelectric body for driving the support, and an electrode for independently driving the support in two axial directions. The present invention relates to a probe drive mechanism characterized by comprising:

更に、前記の支持体を駆動する電極が、各々圧電体の変
位による駆動と静電力により駆動させるものであること
を特徴とする探針駆動機構に係るものである。
Furthermore, the present invention relates to a probe driving mechanism characterized in that the electrodes for driving the support are driven by displacement of a piezoelectric body and by electrostatic force, respectively.

更に上記の探針駆動機構を備えたことを特徴とするトン
ネル電流検出装置及び記録再生装置に係るものである。
Furthermore, the present invention relates to a tunnel current detection device and a recording/reproducing device characterized by being equipped with the above-mentioned probe driving mechanism.

[実施例J 以下、実施例により本発明を具体的に説明する。[Example J Hereinafter, the present invention will be specifically explained with reference to Examples.

犬11肌土 第1図は本発明による片持ち梁の全体像を示し、このう
ち第1図(a)は自由端方向の断面図、第1図(b)は
幅方向の断面図である。
Figure 1 shows an overall view of the cantilever beam according to the present invention, of which Figure 1(a) is a cross-sectional view in the direction of the free end, and Figure 1(b) is a cross-sectional view in the width direction. .

梁の駆動はZ軸方向に対して電極2と9の間にバイアス
を加える事で静電力により変位する。またX軸方向に対
しては電極2と4,4°に適当なバイアスを与える事に
よって変位する。この際、同時にバイアスを加える事に
よって、梁のねじれ等による異常な変位をする事なく所
望の変位を独立に得る事が可能である。
The beam is driven by applying a bias between electrodes 2 and 9 in the Z-axis direction, thereby causing displacement by electrostatic force. Further, the displacement in the X-axis direction is achieved by applying an appropriate bias between the electrodes 2 and 4.4 degrees. At this time, by applying a bias at the same time, it is possible to independently obtain the desired displacement without causing abnormal displacement due to twisting of the beam or the like.

次にこの構成を得るための工程を図を用いて説明する。Next, the steps for obtaining this configuration will be explained using the drawings.

第2図はそのフローを示す図である。このうち第2図(
a)は2.3の工程を経た図であるが、nタイプのSi
基板lOにBを表面から選択的に拡張しP゛層9形成し
、その上に1100℃で5iCn4を用いPH3をドー
パントとして5μエビ成長させ、nタイプのエビ層7を
得る。選択的にBを拡張しP型化し、静電力を得るため
の下電極の引出用のP°拡散層8を形成して第2図(a
)が得られる。基板とエビ度をn型とするのは他のプロ
ーブと電気的に分離するためである。
FIG. 2 is a diagram showing the flow. Of these, Figure 2 (
a) is a diagram after the process 2.3, but n-type Si
B is selectively expanded from the surface of the substrate 1O to form a P layer 9, and a 5μ layer is grown thereon at 1100° C. using 5iCn4 and PH3 as a dopant to obtain an n-type layer 7. B is selectively expanded to make it P-type, and a P° diffusion layer 8 is formed for drawing out the lower electrode to obtain electrostatic force.
) is obtained. The reason why the substrate and the probe are n-type is to electrically isolate the probe from other probes.

次ニL P CV D !: J:6 N H3トS 
i H4(’)気相成長によりS 13 N41を15
00人成膜し片持ち梁の形を得るためのパターニングを
行う。上面図は第2図(b)の様である。
Next LP CV D! : J:6 N H3toS
i H4(') S 13 N41 by vapor phase growth 15
A film was formed by 00 people and patterned to obtain a cantilever shape. The top view is as shown in FIG. 2(b).

次に金属を例えば、Cr、Auの順に各々30人、20
00人蒸着レバ電極2を形成する。
Next, select metals, for example, Cr and Au, 30 and 20 respectively.
00 people form the evaporation lever electrode 2.

電極材としてはSiの異方性エツチングの際に腐蝕され
ないAg、Pd、Pt等でもよい。次に圧電体例えばA
ρN、ZnO,PZT等をスパッタ法で1μ成膜しパタ
ーニングして圧電層3をパターニングすると第2図(C
)が得られる。
The electrode material may be Ag, Pd, Pt, etc., which are not corroded during anisotropic etching of Si. Next, a piezoelectric material such as A
Figure 2 (C
) is obtained.

次に下電極8,9の引出しのためにSi3N+層1をパ
ターニングしP0拡散層8のコンタクト用窓11を形成
し、上電極4としてAuを2000人蒸着レバターニン
グしSiの異方性エツチング時に圧電体を保護するため
に保護層5としてa−3iNをプラズマ法で5000人
成膜しパターニングすると第2図(d)が得られる。
Next, to draw out the lower electrodes 8 and 9, the Si3N+ layer 1 is patterned to form a contact window 11 for the P0 diffusion layer 8, and as the upper electrode 4, Au is deposited by 2000 layers and revertaned, and during anisotropic etching of Si. In order to protect the piezoelectric body, 5,000 a-3iN films were deposited and patterned by a plasma method as a protective layer 5, and the result shown in FIG. 2(d) was obtained.

この際トンネル電流検知用ティップの引出し電極4“と
下電極の引出し電極4′″も上電極形成を同時に行う。
At this time, the upper electrodes of the tunnel current detection tip extraction electrode 4'' and the lower electrode extraction electrode 4'' are also formed at the same time.

次にトンネル電流検知用ティップ6を形成すると第2図
(e)が得られる。ティップはWあるいはptでもよい
し、これら金属が表面に被覆された非導電物質の結晶体
であってもよい。
Next, when the tunnel current detection tip 6 is formed, the result shown in FIG. 2(e) is obtained. The tip may be made of W or PT, or may be a crystal of a non-conductive substance whose surface is coated with these metals.

最後に5i3N41をマスクとしてSiの異方性エツチ
ングをKOH,NH,OHあるいはエチレンヂアミン、
ピテカテコール系の水溶液で行う。この際、P4埋込層
9がエツチング層のストッパーとなり静電力駆動用の電
極間隔がエビ層7の厚さで決定される。最終的に第1図
の様な片持ち梁が得られる。
Finally, using 5i3N41 as a mask, anisotropic etching of Si is performed using KOH, NH, OH or ethylenediamine.
Perform with an aqueous solution of pitecatechol. At this time, the P4 buried layer 9 serves as a stopper for the etching layer, and the electrode spacing for electrostatic force driving is determined by the thickness of the shrimp layer 7. Finally, a cantilever beam as shown in Figure 1 is obtained.

以上の様にして得られた片持ち梁を、例えば厚さが30
0μ2幅50μエビ層厚5μとするとバイアス5V″C
″X方向の変位として数100人。
The thickness of the cantilever beam obtained in the above manner is, for example, 30 mm.
0μ2 width 50μ shrimp layer thickness 5μ bias 5V''C
``Several 100 people as displacement in the X direction.

2方向の変位として数1000人が得られ十分に使用に
耐える。
Several thousand people can be obtained as displacement in two directions, and it is sufficiently usable.

夫五■ユ 次に、本発明の他の実施例として、前記探針駆動機構を
用いた記録再生装置の説明を行なう。第3図は、本発明
の記録再生装置の概略図である。
Next, as another embodiment of the present invention, a recording/reproducing apparatus using the probe driving mechanism will be explained. FIG. 3 is a schematic diagram of the recording/reproducing apparatus of the present invention.

101は、本発明の探針駆動機構102を複数設けたシ
リコン基板、105は、シリコン基板を2方向に駆動す
る粗動用圧電素子、103は板状の記録媒体、104は
探針駆動機構の走査可能領域で決まる記録エリアを一列
に並べたデータ列である。記録媒体103は、図示せぬ
移動機構により、図中矢印の方向に並進移動され、記録
エリアは列状に記録される。探針駆動機構102と粗動
用圧電素子105は、図示せぬリニアモータなどの移動
機構によりデータ列と直交する方向に移動可能なように
構成され、任意のデータ列にアクセスし、データの記録
再生を行なうことができる。
101 is a silicon substrate provided with a plurality of probe drive mechanisms 102 of the present invention, 105 is a piezoelectric element for coarse movement that drives the silicon substrate in two directions, 103 is a plate-shaped recording medium, and 104 is a scanning probe drive mechanism. This is a data string in which recording areas determined by possible areas are arranged in a line. The recording medium 103 is translated in the direction of the arrow in the figure by a moving mechanism (not shown), and the recording area is recorded in a row. The probe drive mechanism 102 and the coarse movement piezoelectric element 105 are configured to be movable in a direction perpendicular to the data string by a moving mechanism such as a linear motor (not shown), and can access any data string and record/reproduce data. can be done.

その際、目標とするデータ列までのアクセスは、リニア
エンコーダーなどの位置検出装置により行なわれ、その
後、探針駆動機構102の各々の探針は、目標のデータ
列の各々の記録エリア内を走査する。
At this time, access to the target data string is performed by a position detection device such as a linear encoder, and then each probe of the probe drive mechanism 102 scans within each recording area of the target data string. do.

次に記録媒体103は電気メモリー効果を持つ薄膜、例
えば、π電子系有機化合物やカルコゲン化物類からなる
記録層と導電性のある基板からなり、探針と導電性基板
間にあるしきい値以上の電圧を印加することにより、探
針直下の記録層に微小な領域で特性変化を生じさせ記録
を行うことができる。また、再生は、探針と記録層間に
流れるトンネル電流が、記録部と非記録部とで変化する
ことにより行なう。
Next, the recording medium 103 is made of a thin film having an electric memory effect, for example, a recording layer made of a π-electron based organic compound or chalcogenide, and a conductive substrate, and is made of a thin film having an electric memory effect, for example, a recording layer made of a π-electron based organic compound or a chalcogenide, and a conductive substrate. By applying a voltage of , it is possible to cause a characteristic change in a minute area in the recording layer directly under the probe and perform recording. Further, reproduction is performed by changing the tunnel current flowing between the probe and the recording layer between the recorded portion and the non-recorded portion.

また記録媒体103として、あるしきい値以上の電圧を
印加すると表面が局所的に溶融または蒸発して、表面形
状が凹または凸に変化する材料、例えば、Au、Ptな
どの金属薄膜を用いてもよい。
Furthermore, as the recording medium 103, a material such as a metal thin film such as Au or Pt, whose surface locally melts or evaporates to change the surface shape to convex or convex when a voltage of a certain threshold value or more is applied, is used. Good too.

次に、記録再生の方法を説明する。Next, a recording/reproducing method will be explained.

まず、記録方法は、2方向粗動用圧電素子105と探針
駆動機構102は移動機構により、記録位置に移動し、
記録媒体103のあるしきい値を越える電圧を印加する
ことにより行なう。その際、記録媒体103には、バイ
アス回路106によりバイアス電圧が加えられ、探針は
記録媒体103に対してトンネル電流が流れる距離に保
たれている。その接近は、Z方向粗動用圧電素子105
により、近傍まで近づけ、後は、複数ある探針駆動機[
102で各々の探針ごとにトンネル領域に引き込まれる
。その引込みは各探針に対応したトンネル電流検出回路
107により検出されたトンネル電流を各々の探針駆動
機構102のZ方向サーボ回路110を通してフィード
バックすることにより、各探針と記録媒体間を一定距離
に制御している。そのとき、2方向サーボ回路110に
はローパスフィルターが設けられ、そのカットオフ周波
数はデータ信号には追従せず、記録媒体の面振れ、表面
のうねりに追従できるように選ばれ、探針と記録媒体の
平均距離が一定となるように制御される。
First, in the recording method, the piezoelectric element 105 for coarse movement in two directions and the probe drive mechanism 102 are moved to a recording position by a moving mechanism,
This is done by applying a voltage exceeding a certain threshold value to the recording medium 103. At this time, a bias voltage is applied to the recording medium 103 by a bias circuit 106, and the probe is kept at a distance from the recording medium 103 where a tunnel current flows. The approach is caused by the piezoelectric element 105 for coarse movement in the Z direction.
After that, the multiple probe drive machines [
At 102, each probe is drawn into the tunnel region. The retraction is performed by feeding back the tunnel current detected by the tunnel current detection circuit 107 corresponding to each probe through the Z-direction servo circuit 110 of each probe drive mechanism 102, thereby maintaining a certain distance between each probe and the recording medium. is controlled. At this time, the two-way servo circuit 110 is provided with a low-pass filter, whose cutoff frequency is selected so as not to follow the data signal, but to follow the surface waviness and surface waviness of the recording medium. The average distance of the medium is controlled to be constant.

記録時には、制御回路112から記録信号かパルス印加
回路108に送られ、各探針にパルス電圧として印加さ
れ、記録が行なわれる。
During recording, a recording signal is sent from the control circuit 112 to the pulse application circuit 108, and is applied as a pulse voltage to each probe to perform recording.

その際、パルス印加により探針と記録媒体の距離が変化
しないようにZ方向サーボ回路110には、ホールド回
路を設けて、パルス電圧が印加されている探針駆動機構
102の駆動電圧を保持する。
At this time, in order to prevent the distance between the probe and the recording medium from changing due to pulse application, the Z-direction servo circuit 110 is provided with a hold circuit to maintain the drive voltage of the probe drive mechanism 102 to which the pulse voltage is applied. .

そのとき、データ列の記録エリア内には図の拡大図のよ
うに記録ビットがマトリクス状に記録される。各々の記
録ビット列には、アドレス情報が挿入されており、再生
時のデータの識別を行なう。
At this time, recording bits are recorded in a matrix in the recording area of the data string as shown in the enlarged view of the figure. Address information is inserted into each recording bit string to identify data during reproduction.

次に再生方法について説明する。Next, the reproduction method will be explained.

再生時には探針は、移動機構により所望のデータ列の記
録エリア上に移動し、記録媒体103の表面との間のト
ンネル電流の記録部と非記録部の変化分を検出し再生を
行なう。そのとき探針駆動機構102はXY位置制御回
路109により制御され、探針が記録エリアの全域を走
査するように駆動される。1つの記録エリア内の再生信
号は、トンネル電流検出回路107を通し、制御回路1
12で信号処理して一時的に記憶され、その中から所望
のデータのみが再生出力される。
During reproduction, the probe is moved by a moving mechanism onto the recording area of a desired data string, detects the change in the tunnel current between the recorded part and the non-recorded part between the surface of the recording medium 103, and performs reproduction. At this time, the probe drive mechanism 102 is controlled by the XY position control circuit 109, and is driven so that the probe scans the entire recording area. The reproduced signal within one recording area passes through the tunnel current detection circuit 107 and is sent to the control circuit 1.
12, the signal is processed and temporarily stored, and only desired data is reproduced and output.

このような記録再生装置において探針駆動機構を前記実
施例のような構成とすることにより、1つの探針で走査
できる領域が広がり、1つの記録エリアが大きくなり、
全体として記録密度を上げることができる。
By configuring the probe drive mechanism in such a recording/reproducing device as in the above embodiment, the area that can be scanned by one probe increases, and one recording area becomes larger.
Overall recording density can be increased.

[発明の効果] 以上説明した様に本発明によれば片持ち梁の駆動を独立
にしたことによってより精度のよいプローブと媒体の間
隔調整とトラッキングを行える様になったので、装置の
温度変化、外部からの振動、媒体の熱膨張等が発生して
も常に安定して情報の読み出しまたは書き込みを行うこ
とが可能となった。
[Effects of the Invention] As explained above, according to the present invention, by making the cantilever beam independent, it is possible to perform more accurate distance adjustment and tracking between the probe and the medium, so that temperature changes in the device can be avoided. It has become possible to always stably read or write information even when external vibrations, thermal expansion of the medium, etc. occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による探針駆動機構の断面図であり、 第2図は、その作製工程図を示し、 第3図は本発明の記録再生装置の概略図であり、 第4図は、従来の探針駆動機構の断面図であり、 第5図は、従来の探針駆動機構の駆動による変形を示す
図である。 1・・・5L3N<層  2・・・中電極3・・・圧電
層     4・・・上電極5・・・保護層     
6・・・ティップ7・・・エビ層     8・・・下
電極引出し用拡散層9・・・下電極     10・・
・SL基板20・・・電極     21・・・圧電層
22・・・ティップ 102・・・探針駆動機構 103・・・記録媒体 105・・・Z方向粗動用圧電素子 106・・・バイアス回路 107・・・トンネル電流検出回路 108・・・パルス印加回路 109・・・XY位置制御回路 110・・・2方向サーボ回路 112・・・制御回路
FIG. 1 is a cross-sectional view of the probe drive mechanism according to the present invention, FIG. 2 is a diagram showing the manufacturing process thereof, FIG. 3 is a schematic diagram of the recording/reproducing apparatus of the present invention, and FIG. FIG. 5 is a sectional view of a conventional probe drive mechanism, and FIG. 5 is a diagram showing deformation of the conventional probe drive mechanism due to driving. 1...5L3N<layer 2...Middle electrode 3...Piezoelectric layer 4...Upper electrode 5...Protective layer
6...Tip 7...Shrimp layer 8...Diffusion layer for lower electrode extraction 9...Lower electrode 10...
・SL substrate 20... Electrode 21... Piezoelectric layer 22... Tip 102... Probe drive mechanism 103... Recording medium 105... Piezoelectric element for Z direction coarse movement 106... Bias circuit 107 ... Tunnel current detection circuit 108 ... Pulse application circuit 109 ... XY position control circuit 110 ... Two-direction servo circuit 112 ... Control circuit

Claims (3)

【特許請求の範囲】[Claims] (1)支持体、トンネル電流を検知するティップ、該ト
ンネル電流を取り出す電極、該支持体を駆動する圧電体
及び該支持体を2軸方向に独立に駆動する電極を有する
片持ち梁を備えたことを特徴とする探針駆動機構。
(1) A cantilever beam having a support, a tip for detecting tunnel current, an electrode for extracting the tunnel current, a piezoelectric body for driving the support, and an electrode for independently driving the support in two axial directions. A probe drive mechanism characterized by the following.
(2)前記の支持体を駆動する電極が、各々圧電体の変
位による駆動と静電力により駆動させるものであること
を特徴とする請求項(1)に記載の探針駆動機構。
(2) The probe drive mechanism according to claim 1, wherein the electrodes for driving the support are driven by displacement of a piezoelectric body and by electrostatic force, respectively.
(3)請求項(1)に記載の探針駆動機構を備えたこと
を特徴とするトンネル電流検出装置。(4)請求項(1
)に記載の探針駆動機構を備えたことを特徴とする記録
再生装置。
(3) A tunnel current detection device comprising the probe drive mechanism according to claim (1). (4) Claim (1
) A recording/reproducing device comprising the probe driving mechanism according to item 1.
JP32963190A 1990-11-30 1990-11-30 Probe driving mechanism, tunnel current detector and record reproducer fitted with the mechanism Pending JPH04206536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32963190A JPH04206536A (en) 1990-11-30 1990-11-30 Probe driving mechanism, tunnel current detector and record reproducer fitted with the mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32963190A JPH04206536A (en) 1990-11-30 1990-11-30 Probe driving mechanism, tunnel current detector and record reproducer fitted with the mechanism

Publications (1)

Publication Number Publication Date
JPH04206536A true JPH04206536A (en) 1992-07-28

Family

ID=18223505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32963190A Pending JPH04206536A (en) 1990-11-30 1990-11-30 Probe driving mechanism, tunnel current detector and record reproducer fitted with the mechanism

Country Status (1)

Country Link
JP (1) JPH04206536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570336A (en) * 1992-12-08 1996-10-29 Sharp Kabushiki Kaisha Information recording and reproducing apparatus having a slider formal of single crystal silicon body and cantilever
US5581538A (en) * 1993-12-16 1996-12-03 Sharp Kabushiki Kaisha Recording/reproducing apparatus with a probe to detect data recorded in pits and projections of a recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570336A (en) * 1992-12-08 1996-10-29 Sharp Kabushiki Kaisha Information recording and reproducing apparatus having a slider formal of single crystal silicon body and cantilever
US5581538A (en) * 1993-12-16 1996-12-03 Sharp Kabushiki Kaisha Recording/reproducing apparatus with a probe to detect data recorded in pits and projections of a recording medium

Similar Documents

Publication Publication Date Title
JP3450349B2 (en) Cantilever probe
JP3029499B2 (en) Recording and playback device
JP2741629B2 (en) Cantilever probe, scanning tunneling microscope and information processing apparatus using the same
JP3073616B2 (en) Information processing device with multiple probes
JP3060137B2 (en) How to make a cantilever probe
CA2074914C (en) Information processing apparatus, and electrode substrate and information recording medium used in the apparatus
JP3135779B2 (en) Information processing device
JP2783646B2 (en) Information recording / reproducing device
JPH0721598A (en) Probe unit and information processor using the same
US5757760A (en) Information recording and/or reproducing apparatus and method for performing recording and/or reproduction of information by using probe
JPH04206536A (en) Probe driving mechanism, tunnel current detector and record reproducer fitted with the mechanism
JP3095915B2 (en) Information processing device
JP3023728B2 (en) Probe structure, recording device, information detecting device, reproducing device, and recording / reproducing device
JP3234722B2 (en) Arc-shaped warped lever type actuator, method of driving the actuator, and information processing apparatus using information input / output probe
JP3053971B2 (en) Three-dimensional displacement element for generating tunnel current, multi-tip unit using the three-dimensional displacement element for generating tunnel current, and information processing apparatus
JP4079398B2 (en) Probe positioning and tracking mechanism and method thereof
JPH06333276A (en) Recording medium and its production and information processor using this recording medium
JP3056901B2 (en) Recording and playback device
JP3004823B2 (en) Information processing device
JP2942011B2 (en) Information storage device
JPH0540968A (en) Recording and/or reproducing device
JP3118654B2 (en) Information processing device and scanning tunneling electron microscope
JP2872659B2 (en) Information recording / reproducing device
JPH07110969A (en) Face alignment method, position control mechanism and information processor with the mechanism
JP2994833B2 (en) Recording and / or reproducing apparatus, method and information detecting apparatus