JPH04204517A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH04204517A
JPH04204517A JP32968390A JP32968390A JPH04204517A JP H04204517 A JPH04204517 A JP H04204517A JP 32968390 A JP32968390 A JP 32968390A JP 32968390 A JP32968390 A JP 32968390A JP H04204517 A JPH04204517 A JP H04204517A
Authority
JP
Japan
Prior art keywords
liquid crystal
fine particles
display element
particles
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32968390A
Other languages
Japanese (ja)
Inventor
Toyoichi Nakamura
中村 豊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32968390A priority Critical patent/JPH04204517A/en
Publication of JPH04204517A publication Critical patent/JPH04204517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower the driving saturation voltage by setting the particle diameter standard deviation of fine particle to 5% or less. CONSTITUTION:A mixture consisting of liquid crystals and the optically transparent particles having a particle diameter standard deviation of 5% or less, e.g. glass fine particles or high polymeric fine particles is used as the basic material for a liquid crystal element. The glass fine particle or high polymeric fine particle may be horizontal-orientation-processed for the liquid crystal by a silane coupling agent, etc. Further, the composition may contain the bonding agent, e.g. high polymeric binder. The volume ratio between liquid crystal and fine particle is preferably within a range of 2:1-1:2. When the binding agent is used, it is preferable that a volume ratio of binding agent/fine particle is 1/1 or less.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶表示素子に関し、特に液晶と透明微粒子を
混合した組成物を用いた液晶表示素子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid crystal display element, and more particularly to a liquid crystal display element using a composition in which liquid crystal and transparent fine particles are mixed.

[従来の技術およびその課題] 液晶を高分子物質で包み込む、いわゆる液晶をドロプレ
ッ]・化して使用した表示材料についてはいろいろ開示
されている。例えば、特開昭50−101110号公報
、特開昭55−46718号公報、特開昭58−501
63号公報、特開昭59−226322号公報、特開昭
61−187794号公報、米国特許箱3.585.3
81号などかある。これらのドロプレット化液晶の高分
子物質バインダとしては、水不溶性高分子物質か主体と
して使用されているものか多い。
[Prior Art and its Problems] Various display materials have been disclosed in which a liquid crystal is wrapped in a polymeric substance, that is, a so-called liquid crystal is used as a droplet. For example, JP-A-50-101110, JP-A-55-46718, JP-A-58-501.
No. 63, JP-A-59-226322, JP-A-61-187794, U.S. Patent Box 3.585.3
There is something like No. 81. The polymer binder for these droplet-formed liquid crystals is mostly a water-insoluble polymer.

U発明が解決しようとする課題] しかしながら、これらドロプレット化液晶を表示材料と
して使用1−るため2枚の透明電極基板で挟持しようと
する時、液晶を分散した溶液を一方の透明電極基板に塗
布し、他方の透明電極基板をその塗膜上に接着する方法
をとるか、粒子状となる液晶ドロプレットの粒径の標準
偏差(おおよそ30%以上)か大きくなるため、駆動飽
和電圧が高くなり、液晶デイスプレィ等での応用時での
アクチイブ駆動か困難になる問題が生じている。
Problems to be Solved by the Invention] However, when trying to sandwich these droplet liquid crystals between two transparent electrode substrates in order to use them as display materials, it is necessary to apply a solution in which liquid crystals are dispersed to one transparent electrode substrate. However, if a method is adopted in which the other transparent electrode substrate is adhered onto the coating film, the standard deviation of the particle size of the liquid crystal droplets (approximately 30% or more) becomes large, and the drive saturation voltage becomes high. A problem has arisen in which active driving becomes difficult when applied to liquid crystal displays and the like.

一方、カラス微粒子を液晶と混合した組成物を用いたこ
とを特徴とする液晶素子に関する特許として、イギリス
特許第1442360号か公開されている。しかしなが
ら、ガラス微粒子を用いた場合もその粒径の標準偏差に
ついて考慮されておらず、通常はかなり大きな値を有す
るものが用いられていたので、上記と同様の欠点があっ
た。また液晶とガラス微粒子の比重か異なるため、長期
にわたり使用した場合には、ガラス微粒子か片奇ること
により、表示むらが発生するという問題も生じていた。
On the other hand, British Patent No. 1442360 has been published as a patent relating to a liquid crystal element characterized by using a composition in which crow fine particles are mixed with liquid crystal. However, even when glass fine particles are used, the standard deviation of the particle size is not taken into account, and particles having a fairly large value are usually used, resulting in the same drawbacks as above. Furthermore, since the specific gravity of the liquid crystal and the glass particles are different, when used for a long period of time, there is a problem in that the glass particles become uneven and display unevenness occurs.

本発明の目的は、このような従来の問題点を解決して、
駆動飽和電圧が低く、長期にわたって分散状態が安定で
あり、高い表示コントラストを呈するアクティブマトリ
クス駆動に適した液晶分散型電界応答性の液晶表示素子
を提供することである。
The purpose of the present invention is to solve such conventional problems,
It is an object of the present invention to provide a liquid crystal dispersion type electroresponsive liquid crystal display element suitable for active matrix driving, which has a low drive saturation voltage, has a stable dispersion state over a long period of time, and exhibits high display contrast.

[課題を解決するための手段] 本発明は、液晶と、この液晶中に分散された光学的に透
明な微粒子とを少なくとも含有する組成物を用いた液晶
表示素子であって、微粒子の粒径の標準偏差か5%以下
であることを特徴とする液晶表示素子である。
[Means for Solving the Problems] The present invention provides a liquid crystal display element using a composition containing at least a liquid crystal and optically transparent fine particles dispersed in the liquid crystal, wherein the particle size of the fine particles is This is a liquid crystal display element characterized by a standard deviation of 5% or less.

本発明において、組成物中には、微粒子を結合させる結
合剤を含むことを好適とする。また、微粒子は高分子樹
脂で必ること、また液晶に対する配向処理か施されてい
ることを好適とする。
In the present invention, it is preferable that the composition contains a binder for binding the fine particles. Further, it is preferable that the fine particles be made of a polymeric resin and that they have been subjected to alignment treatment for liquid crystal.

本発明では、粒径の標準偏差か5%以下の光学的に透明
な微粒子、例えばガラス微粒子や高分子微粒子を液晶と
混合した組成物を液晶表示素子の基本的材料とする。上
記のカラス微粒子あるいは高分子微粒子は、シランカッ
プリング剤等により液晶に対して水平配向処理されてい
ても良い。また上記の組成物中には結合剤、例えば高分
子バインダを含めても良いとする。液晶と上記微粒子と
の体積比率は2:1から1:2の範囲か好ましい。
In the present invention, a composition in which optically transparent fine particles having a standard deviation of particle size of 5% or less, such as glass fine particles or polymer fine particles, are mixed with liquid crystal is used as the basic material of the liquid crystal display element. The above-mentioned glass fine particles or polymer fine particles may be subjected to horizontal alignment treatment with respect to the liquid crystal using a silane coupling agent or the like. The composition may also include a binder, such as a polymeric binder. The volume ratio of the liquid crystal to the fine particles is preferably in the range of 2:1 to 1:2.

結合剤を用いる場合は、結合剤/微粒子(体積比率)は
1/1以下か望ましい。
When a binder is used, the binder/fine particles (volume ratio) is preferably 1/1 or less.

液晶と上記微粒子d3よび結合剤を混合する際には、液
晶をその等方性液体温度にまで加熱し、スタークによる
攪拌および超音波処理により充分な均一分散を実現する
ようにする。
When mixing the liquid crystal, the fine particles d3, and the binder, the liquid crystal is heated to its isotropic liquid temperature, and sufficiently uniform dispersion is achieved by stirring with a Stark and ultrasonic treatment.

塗布の方法は色々あるが、次の3つの方法が使える。デ
ィッピング塗布法とドクターブレード転写法および圧延
法の各方法である。塗布面積や塗膜の厚みによって使い
分けることができる。基板にはインジュウムースズの酸
化物(ITO>等の透明電極を透明ガラス基板あるいは
透明高分子フィルム等に蒸着したものを用いることがで
きる。
There are various methods of application, but the following three methods can be used. These methods include a dipping coating method, a doctor blade transfer method, and a rolling method. It can be used depending on the area to be applied and the thickness of the coating film. The substrate may be a transparent glass substrate or a transparent polymer film on which a transparent electrode such as indium tin oxide (ITO) is deposited.

上記方法で得た塗膜基板を液晶の等方性液体温度まで加
熱し、真空中に於て、対向基板を静かに重ねることによ
り、気泡かないサンドイッチ構造の分散性液晶表示素子
を形成することができる。
By heating the coated substrate obtained by the above method to the isotropic liquid temperature of the liquid crystal and gently stacking the opposing substrate on top of each other in a vacuum, a dispersive liquid crystal display element with a sandwich structure without air bubbles can be formed. can.

素子のギャップはシリカスペーサを液晶と微粒子の混合
系に混入することによって制御することかできる。一方
、基板と対向基板を透明高分子フィルムとしたときには
、張り合わせ法として、ラミネー1〜法を採用すること
かできる。
The gap of the device can be controlled by incorporating a silica spacer into the mixture of liquid crystal and fine particles. On the other hand, when the substrate and the counter substrate are made of transparent polymer films, lamination methods 1 to 1 can be employed as the lamination method.

微粒子としてはガラスや高分子樹脂か挙げられるが、高
分子微粒子とすると、液晶と微粒子との比重がほぼ等し
くなるので、分散状態の安定したものとなる。
Examples of the fine particles include glass and polymer resin, but when fine polymer particles are used, the specific gravity of the liquid crystal and the fine particles are approximately equal, so that the dispersion state becomes stable.

液晶には、大別して、]コレステリック液晶ネマチック
液晶、スメクチック液晶の3種類に分類されるが、本発
明の場合には、コレステリック液晶またはネマティック
液晶か好ましい。液晶の通常光屈折率と結合剤でおる高
分子物質の屈折率との比を0198から1.02、好ま
しくは0599から1.01の範囲に入るように液晶ま
たは結合剤の高分子物質を選択することによって、透明
度が高い表示材料が得られる。液晶として、例えば、メ
ルク社から市販されている71 1−1563.71 
l−1840、Z I  l−2293など、B D 
l−1社より市販されでいるE−7、F−18,F−4
0,E−43,F−63など、チッソ社から市販されて
いる2010.2020゜2030、2070などが使
用できる。
Liquid crystals are broadly classified into three types: cholesteric liquid crystal, nematic liquid crystal, and smectic liquid crystal, but in the case of the present invention, cholesteric liquid crystal or nematic liquid crystal is preferred. Select the polymer material for the liquid crystal or binder so that the ratio of the normal optical refractive index of the liquid crystal to the refractive index of the polymer material used as the binder falls within the range of 0198 to 1.02, preferably 0599 to 1.01. By doing so, a highly transparent display material can be obtained. As a liquid crystal, for example, 71 1-1563.71 commercially available from Merck & Co.
l-1840, Z I l-2293, etc., B D
E-7, F-18, F-4 commercially available from l-1 company
0, E-43, F-63, 2010, 2020, 2030, 2070, etc. commercially available from Chisso Corporation can be used.

個々の微粒子を結合する高分子物質どしては、単独で塗
膜iしたときに白濁u1に透明で必ることか必要て必る
。また耐湿性の観点からAs丁M−[)−570の方法
で測定した吸水率が5%以下でおることが好ましい。上
記条件を満足する高分子物質としては、例えばポリメチ
ルメタアクリレ−1〜。
The polymeric substance that binds the individual fine particles is necessary so that when it is applied alone as a coating film, it becomes cloudy and transparent. Further, from the viewpoint of moisture resistance, it is preferable that the water absorption rate measured by the method of Ascho M-[)-570 is 5% or less. Examples of polymeric substances that satisfy the above conditions include polymethyl methacrylate-1.

ポリビニルホルマール、エポキシ、ポリブテン。Polyvinyl formal, epoxy, polybutene.

ポリアリールメタアクリレート、ニトロセルロース、ポ
リイソプレン、塩化ビニル−酢酸共重合体。
Polyaryl methacrylate, nitrocellulose, polyisoprene, vinyl chloride-acetic acid copolymer.

ナイロン、ナロピルスチレンーブタジエン共重合体、エ
チルセルロース、セルロースアセテートブチレート、セ
ルロースなどを挙げることができる。
Examples include nylon, nalopyrstyrene-butadiene copolymer, ethyl cellulose, cellulose acetate butyrate, cellulose, and the like.

膜厚は5〜20μmの間が好ましい。この溶液中に必要
なら染料、界面活性剤、可塑剤等の添加物を加えても支
障はない。
The film thickness is preferably between 5 and 20 μm. If necessary, additives such as dyes, surfactants, and plasticizers may be added to this solution without any problem.

透明電極基板としては、カラスのほかに、ポリエチレン
テレフタレート、ポリサルホン、三酢酸セルロース、ポ
リカーボネート、ポリメチルメタアクリレートなどのプ
ラスチックシート等に金属あるいは金属酸化物を、蒸着
、スパッタリング等で導電層を(=J−’−jシたもの
、あるいは導電層とじて導電性高分子物質を付与した通
常の透明電極基板をそのまま使用することかできる。本
発明の素子では、TN型液晶素子の場合と異なり、基板
表面の液晶配向処理は不要である。
In addition to glass, the transparent electrode substrate can be made of plastic sheets such as polyethylene terephthalate, polysulfone, cellulose triacetate, polycarbonate, polymethyl methacrylate, etc., with a conductive layer coated with metal or metal oxide by vapor deposition, sputtering, etc. -'-j type or an ordinary transparent electrode substrate coated with a conductive polymer substance as a conductive layer can be used as is.In the element of the present invention, unlike the case of a TN type liquid crystal element, No liquid crystal alignment treatment on the surface is required.

1作用] 第1図は本発明による素子の模式的断面図であり、これ
を用いて本発明による液晶表示素子の作用を説明する。
1 Effect] FIG. 1 is a schematic cross-sectional view of an element according to the present invention, and the operation of the liquid crystal display element according to the present invention will be explained using this.

第1図(a)に示すように、電圧を印加しない状態では
、透明電極基板1,4間の液晶2は光学的に透明な微粒
子3の回りにおおよそ沿って配向している。配向の向き
は各々の微粒子3の近傍では一つの方向に平均的に向い
ているとすることができる。ただし、各々の微粒子毎に
それぞれの平均的に向いている方向か異なるため、全体
としては液晶の向きが無秩序な方向になっている。その
結果、表示素子面に垂直に入射する光6に対して、液晶
2と微粒子3の間に屈折率の不整合性か生じるために出
射光5は散乱が起き、白濁状態になる。
As shown in FIG. 1(a), when no voltage is applied, the liquid crystal 2 between the transparent electrode substrates 1 and 4 is aligned roughly around the optically transparent fine particles 3. The direction of orientation can be assumed to be averagely oriented in one direction in the vicinity of each fine particle 3. However, since the average direction of each particle is different, the orientation of the liquid crystal as a whole is disordered. As a result, with respect to the light 6 incident perpendicularly to the surface of the display element, a refractive index mismatch occurs between the liquid crystal 2 and the fine particles 3, so that the emitted light 5 is scattered and becomes cloudy.

一方、電圧を印加した場合には、第1図(b)に示すよ
うに、液晶2が電圧印加方向、すなわち光の進行方向に
配向するため、素子面に垂直に入射する光6からみて、
液晶2と微粒子3の屈折率に不整合性か小さくなるため
、光の散乱が小さくなり、透明状態になる。この場合、
上記した液晶2の微粒子3界面上での液晶配向プレチル
ト角が小さいように配向処理されている場合に、不整合
性が小さくなり、透明度が向上する。従って、印加電圧
ON、OFF時の透過光量コントラストか向上する。微
粒子3と液晶2の界面での液晶2の配向プレチルト角は
微粒子の水相や配向処理法によって変えることができる
On the other hand, when a voltage is applied, as shown in FIG. 1(b), the liquid crystal 2 is oriented in the voltage application direction, that is, in the light traveling direction, so that when viewed from the light 6 incident perpendicularly to the element surface,
Since the mismatch between the refractive indexes of the liquid crystal 2 and the fine particles 3 becomes small, the scattering of light becomes small, resulting in a transparent state. in this case,
When the above-mentioned liquid crystal 2 is aligned so that the liquid crystal alignment pretilt angle on the interface of the fine particles 3 is small, misalignment is reduced and transparency is improved. Therefore, the contrast in the amount of transmitted light when the applied voltage is ON and OFF is improved. The orientation pretilt angle of the liquid crystal 2 at the interface between the fine particles 3 and the liquid crystal 2 can be changed by changing the aqueous phase of the fine particles and the alignment treatment method.

透明状態になるのは、微粒子と液晶の通常の屈折率の比
を1に近い値に選んであるからである。
The transparent state is achieved because the ratio of the normal refractive index of the fine particles and the liquid crystal is selected to be close to 1.

結合剤を用いた場合、あるいは、液晶の比重に近い高分
子微粒子を用いた場合には、微粒子の片寄りか起こらす
、長期的に分散状態が安定する。
When a binder is used, or when polymer fine particles having a specific gravity close to that of the liquid crystal are used, the dispersion state is stabilized over a long period of time, even though the fine particles may be shifted to one another.

[実施例] 次に、本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

実施例1 材料の組成は次のよってある。Example 1 The composition of the material is as follows.

体積比 シリカ粒子(粒径−1,23±0.03μm)   2
シリ力粒子(粒径=15μm、セル ギャップ規定用)触媒化成工業(株)0.1液晶 ZL
I−1563メルク礼      3上記材料は次のよ
うに作成する。即ち、シリカ粒子をシランカップリング
剤 5H6020(信越ポリマー社製)(0,5wt%
水溶液)に10分間浸漬させたのち、1時間流水にてリ
ンスすることにより、液晶を水平配向させる特性をシリ
カ粒子表面に持たせる。次いで、液晶と混合し、液晶の
等方性温度でスタイラーによる攪拌、超音波処理にて、
シリカ粒子を液晶中に均一分散させる。
Volume ratio silica particles (particle size -1.23±0.03 μm) 2
Siri force particles (particle size = 15 μm, for cell gap regulation) Catalysts & Chemicals Co., Ltd. 0.1 liquid crystal ZL
I-1563 Courtesy of Merck 3 The above materials are prepared as follows. That is, silica particles were mixed with silane coupling agent 5H6020 (manufactured by Shin-Etsu Polymer Co., Ltd.) (0.5 wt%).
By immersing the particles in an aqueous solution for 10 minutes and rinsing them with running water for 1 hour, the surface of the silica particles is imparted with the property of horizontally aligning the liquid crystal. Next, it is mixed with liquid crystal, stirred with a styler at the isotropic temperature of the liquid crystal, and subjected to ultrasonic treatment.
Uniformly disperse silica particles in liquid crystal.

透明電極基板には、インジュウムースズの酸化 ・物(
JTO)よりなる透明導電膜(表面抵抗率:100Ω/
口)層および保護層としてポリイミド薄膜(約1000
オンゲス1〜ローム)を設け1ニガラス板を用いる。上
記の組成よりなる溶液を液晶の等方性温度状態に保ちな
がらドクターブレード法にて上記透明電極基板上に塗布
することにより、膜厚20μmの膜を得る。次に、対向
基板を上記基板に重ね合わせて、液晶の等方性温度で圧
延することにより、セルギャップ厚か15μmの素子を
形成することができる。この素子に電圧を印加したとき
の透過率の変化を第2図に示す。飽和電界が20ボルト
と低くなっていることと、しきい値特性が向上している
とともにコントラスト60か得られていることか分かる
The transparent electrode substrate contains indium tin oxide (
JTO) transparent conductive film (surface resistivity: 100Ω/
A polyimide thin film (approximately 1000
Onges 1~Roam) is provided and 1 Ni glass plate is used. A film having a thickness of 20 μm is obtained by applying a solution having the above composition onto the transparent electrode substrate using a doctor blade method while maintaining the liquid crystal isotropic temperature state. Next, a counter substrate is superimposed on the above substrate and rolled at an isotropic temperature of liquid crystal, thereby forming an element with a cell gap thickness of about 15 μm. FIG. 2 shows the change in transmittance when a voltage is applied to this element. It can be seen that the saturation electric field is as low as 20 volts, the threshold characteristics are improved, and a contrast of 60 is obtained.

実施例2 材料の組成は次のようである。Example 2 The composition of the material is as follows.

体積比 メタクリル酸メチルポリマー(PMMA)1シリ力粒子
(粒径=1.23±0.03μm)   4シリ力粒子
(粒径−15μm、セル ギャップ規定用)触媒化成工業(株)0,1液晶 ZL
I 1563  メルク社      6上記材料の混
合は次のように行う。即ち、シリ力粒子をシランカップ
リング剤 5H6020(信越ポリマー社製)(0,5
wt%水溶液)に10分間浸漬させたのち、1時間流水
にてリンスすることにより液晶を水平配向させる特性を
シリカ粒子表面に持たせる。次いて、液晶と混合し、さ
らに、メタクリル酸メチルポリマーを混ぜ、液晶の等方
性温度でスタイラーによる攪拌、超音波処理を行い、シ
リカ粒子を液晶中に均一分散させる。このようにして、
液晶中に分散したシリカ粒子かメタクリル酸メチルポリ
マーで連結されることにより、シリカ粒子の分散状態か
安定化され、片寄りが起こりにくくなる。従って、表示
不良か起こりにくくなる。
Volume ratio methyl methacrylate polymer (PMMA) 1 silica particle (particle size = 1.23 ± 0.03 μm) 4 silica particle (particle size -15 μm, for cell gap regulation) Catalysts & Chemicals Co., Ltd. 0.1 liquid crystal ZL
I 1563 Merck & Co. 6 The above materials are mixed as follows. That is, the silane coupling agent 5H6020 (manufactured by Shin-Etsu Polymer Co., Ltd.) (0.5
By immersing the particles in a wt% aqueous solution for 10 minutes and rinsing with running water for 1 hour, the surface of the silica particles is imparted with the property of horizontally aligning the liquid crystal. Next, the silica particles are mixed with liquid crystal, and further mixed with methyl methacrylate polymer, and stirred with a styler and subjected to ultrasonic treatment at the isotropic temperature of the liquid crystal to uniformly disperse the silica particles in the liquid crystal. In this way,
By linking the silica particles dispersed in the liquid crystal with the methyl methacrylate polymer, the dispersion state of the silica particles is stabilized, making it difficult for them to become lopsided. Therefore, display defects are less likely to occur.

透明電極基板には、インジュウムースズの酸化物(IT
O)よりなる透明導電膜(表面抵抗率:100Ω/口)
層および保護層としてポリイミド薄膜(約1000オン
グストローム)を設けたガラス板を用いる。上記の組成
よりなる溶液を液晶の等方性温度状態に保ちなからドク
ターブレード法にて上記透明電極基板上に塗布すること
により、膜厚20μmの膜を得る。次に、対向基板を上
記基板に重ね合わせて、液晶の等方性温度で圧延するこ
とにより、セルギャップ厚が15μmの素子を形成する
ことかできる。このセルに電圧を印加したとぎ、飽和電
界が22ボルトと低くなっていることと、しきい値特性
か向上するとともにコントラスト60か得られた。この
セルを立てた状態で、100時間通電試験を行っても、
シリカ粒子の片寄りに基づく表示不良か発生しなかった
The transparent electrode substrate contains indium tin oxide (IT
O) transparent conductive film (surface resistivity: 100Ω/mouth)
A glass plate provided with a polyimide thin film (approximately 1000 angstroms) is used as a layer and a protective layer. A film having a thickness of 20 μm is obtained by applying a solution having the above composition onto the transparent electrode substrate using a doctor blade method while maintaining the solution at an isotropic temperature state of the liquid crystal. Next, a counter substrate is superimposed on the above substrate and rolled at an isotropic temperature of liquid crystal, thereby forming an element with a cell gap thickness of 15 μm. When a voltage was applied to this cell, the saturation electric field was as low as 22 volts, the threshold characteristics were improved, and a contrast of 60 was obtained. Even if you conduct a 100-hour energization test with this cell upright,
There were no display defects caused by uneven silica particles.

実施例3 材料の組成は次のようである。Example 3 The composition of the material is as follows.

体積比 ポリメチルメタクリレート ポリマー微粒子(粒径−約2μm)   2液晶 ZL
I−1563メルク社      3上記材料の混合は
次のように行う。即ち、懸濁法、放剣線照射法、相分離
法などで作成した上記の光学的に透明なポリメチルメタ
クリレートポリマー微粒子をシランカップリング剤 3
88020 (信越ボリマー社製)(0,5wt%水溶
液)に10分間浸漬させたのち、1時間流水にてリンス
することにより液晶を水平配向させる特性をポリマー微
粒子表面に持たせる。次いで、液晶と混合し、液晶の等
方性温度でスタイラーによる攪拌、超音波処理を行い、
ポリマー微粒子を液晶中に均一分散させる。このように
すると、液晶中に分散したポリマー微粒子は液晶とほぼ
同じ比重を持っているため、分散状態か安定化され、片
寄りが起こりにくくなっていた。
Volume ratio polymethyl methacrylate polymer fine particles (particle size - approx. 2 μm) 2 liquid crystal ZL
I-1563 Merck & Co. 3 The above materials are mixed as follows. That is, the above-mentioned optically transparent polymethyl methacrylate polymer fine particles prepared by a suspension method, an irradiation method, a phase separation method, etc. are mixed with a silane coupling agent 3.
88020 (manufactured by Shin-Etsu Bolimer Co., Ltd.) (0.5 wt % aqueous solution) for 10 minutes, and then rinsed with running water for 1 hour to give the surface of the polymer fine particles the property of horizontally aligning the liquid crystal. Next, it is mixed with liquid crystal, stirred with a styler at the isotropic temperature of the liquid crystal, and subjected to ultrasonic treatment.
Uniformly disperse polymer particles in liquid crystal. In this way, since the polymer fine particles dispersed in the liquid crystal have approximately the same specific gravity as the liquid crystal, the dispersed state is stabilized, and it becomes difficult for deviation to occur.

透明電極基板には、インジュウムースズの酸化物(IT
O)よりなる透明導電膜(表面抵抗率:100Ω/口)
層および保護層としてポリイミド薄膜(約1000オン
グストローム)を設(ブたカラス板を用いる。上記の組
成よりなる溶液を液晶の等方性温度状態に保ちながらド
クターブレード法にて上記透明電極基板上に塗布するこ
とにより、・膜厚20μmの膜を得る。次に、対向基板
を上記基板に重ね合わけて、液晶の等方性温度で圧延す
ることにより、セルキャップ厚か15μmの素子を形成
することかできる。このセルに電圧を印加したとき、飽
和電界か22ポル1〜と低くなっていることと、しきい
値特性か向上するとともにコン1〜ラス1〜50が得ら
れた。このセルを立てた状態で、100時間通電試験を
行っても、ポリマー微粒子の片寄りに基づく表示不良が
発生しなかった。
The transparent electrode substrate contains indium tin oxide (IT
O) transparent conductive film (surface resistivity: 100Ω/mouth)
A polyimide thin film (approximately 1000 angstroms) was provided as a layer and a protective layer (a glass plate was used. A solution having the above composition was placed on the transparent electrode substrate using a doctor blade method while keeping the temperature at an isotropic temperature of the liquid crystal. By coating, a film with a thickness of 20 μm is obtained.Next, a counter substrate is superimposed on the above substrate and rolled at an isotropic temperature of liquid crystal to form an element with a cell cap thickness of 15 μm. When a voltage was applied to this cell, the saturation electric field was as low as 22 pol 1, and the threshold characteristics were improved, and a con 1 to las 1 to 50 was obtained. Even when a 100-hour current test was conducted in an upright position, no display defects due to the misalignment of the polymer particles occurred.

[発明の効果] 本発明によれば、飽和電圧が低く、長期安定性を有し、
かつコントラストが高く、アクティブマl〜リクス駆動
に適した高分子分散型液晶による電界応答性の表示素子
か提供される。
[Effects of the Invention] According to the present invention, the saturation voltage is low, long-term stability is achieved,
Furthermore, an electric field-responsive display element using a polymer-dispersed liquid crystal that has high contrast and is suitable for active matrix driving is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による液晶分散型素子の模式的断面図、
第2図は本発明による素子の一例の印加電圧に対する透
過率の変化を示す特性図で必る。 1.4・・・透明電極基板 2・・・液晶 3・・・微粒子 5・・・出側光 6・・・入射光 剣り÷2
FIG. 1 is a schematic cross-sectional view of a liquid crystal dispersion type element according to the present invention;
FIG. 2 is a characteristic diagram showing changes in transmittance with respect to applied voltage of an example of the element according to the present invention. 1.4...Transparent electrode substrate 2...Liquid crystal 3...Fine particles 5...Outgoing light 6...Incoming light beam ÷2

Claims (4)

【特許請求の範囲】[Claims] (1)液晶と、この液晶中に分散された光学的に透明な
微粒子とを少なくとも含有する組成物を用いた液晶表示
素子であって、微粒子の粒径の標準偏差が5%以下であ
ることを特徴とする液晶表示素子。
(1) A liquid crystal display element using a composition containing at least a liquid crystal and optically transparent fine particles dispersed in the liquid crystal, in which the standard deviation of the particle size of the fine particles is 5% or less. A liquid crystal display element featuring:
(2)組成物中には、微粒子を結合させる結合剤を含む
請求項(1)記載の液晶表示素子。
(2) The liquid crystal display element according to claim (1), wherein the composition contains a binder for binding the fine particles.
(3)微粒子は高分子樹脂である請求項(1)記載の液
晶表示素子。
(3) The liquid crystal display element according to claim (1), wherein the fine particles are a polymer resin.
(4)微粒子は液晶に対する配向処理が施されている請
求項(1)記載の液晶表示素子。
(4) The liquid crystal display element according to claim (1), wherein the fine particles are subjected to alignment treatment with respect to the liquid crystal.
JP32968390A 1990-11-30 1990-11-30 Liquid crystal display element Pending JPH04204517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32968390A JPH04204517A (en) 1990-11-30 1990-11-30 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32968390A JPH04204517A (en) 1990-11-30 1990-11-30 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH04204517A true JPH04204517A (en) 1992-07-24

Family

ID=18224105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32968390A Pending JPH04204517A (en) 1990-11-30 1990-11-30 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH04204517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308465A (en) * 1993-04-21 1994-11-04 Nec Corp Polymer liquid crystal composite film, its production and liquid crystal optical element using the same
JP2001194656A (en) * 2000-01-06 2001-07-19 Eastman Kodak Co Method for manufacturing material having uniform incorporation restricting domain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308465A (en) * 1993-04-21 1994-11-04 Nec Corp Polymer liquid crystal composite film, its production and liquid crystal optical element using the same
JP2001194656A (en) * 2000-01-06 2001-07-19 Eastman Kodak Co Method for manufacturing material having uniform incorporation restricting domain

Similar Documents

Publication Publication Date Title
JPS58501631A (en) Liquid crystal composition and liquid crystal optical device
JPS6377019A (en) Ferroelectric liquid crystal element
EP0749030A1 (en) Liquid crystal display element and method of manufacturing the same
US20020084442A1 (en) Liquid crystal mixture and liquid crystal cell for LCDs and use of a dye with a dipole for a liquid crystal mixture
JP2586529B2 (en) Liquid crystal display
KR100812275B1 (en) Prepolymer formulation and reverse mode polymer dispersed liquid crystal using the same
JPH04204517A (en) Liquid crystal display element
DE69925617T2 (en) REFLECTIVE LIQUID CRYSTAL DISPLAY
WO1992014185A1 (en) Liquid crystal display device, and manufacture and application thereof
JP3708983B2 (en) Liquid crystal-containing / polymer microcapsule and liquid crystal electro-optical element
WO1996020425A1 (en) Liquid-crystal display element and process for production thereof
JPS62205189A (en) Liquid crystal display device
JP2721357B2 (en) Liquid crystal device
TW490578B (en) Liquid crystal optical shutter
JPH0255318A (en) Device for using liquid crystal
JPH08201780A (en) Liquid crystal display medium
JPH04336531A (en) Drive for liquid crystal shutter
JP2586528B2 (en) Display body
JP2790196B2 (en) Liquid crystal structure
JPH03245120A (en) Liquid crystal display material and production thereof
JPH03163520A (en) Transmission type liquid crystal display element
JPH05341268A (en) Liquid crystal electrooptical device and its production
JP2844880B2 (en) Liquid crystal display device and method of manufacturing the same
JPS61103984A (en) Liquid crystal material of dynamic scattering
JPH04353831A (en) Liquid crystal shutter