JPH04202845A - Method for treating fiber structure - Google Patents

Method for treating fiber structure

Info

Publication number
JPH04202845A
JPH04202845A JP2335447A JP33544790A JPH04202845A JP H04202845 A JPH04202845 A JP H04202845A JP 2335447 A JP2335447 A JP 2335447A JP 33544790 A JP33544790 A JP 33544790A JP H04202845 A JPH04202845 A JP H04202845A
Authority
JP
Japan
Prior art keywords
treatment
low
fiber structure
plasma treatment
temperature plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2335447A
Other languages
Japanese (ja)
Other versions
JP2906656B2 (en
Inventor
Masao Seki
昌夫 関
Kazuyoshi Koide
小出 和佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2335447A priority Critical patent/JP2906656B2/en
Publication of JPH04202845A publication Critical patent/JPH04202845A/en
Application granted granted Critical
Publication of JP2906656B2 publication Critical patent/JP2906656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To obtain a fiber structure having high modification effects and excellent endurance by subjecting a fiber structure to treatment consisting of combination of ultraviolet ray treatment and low-temperature plasma treatment. CONSTITUTION:A fiber structure (e.g. knitted woven fabric, fiber wool string, etc.), preferably resin-finished is subjected to treatment consisting of a combination of ultraviolet ray treatment (preferably treatment by ultraviolet ray containing <=300nm wavelength ingredient) and low-temperature plasma treatment (preferably in nonpolymerizable and/or polymerizable gas atmosphere).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐久性にすぐれた繊維表面の改質処理方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for modifying the surface of fibers with excellent durability.

[従来技術] 繊維製品の表面特性を変化させ防汚性、制電性、親水性
、発色性などの特性を向上させることは合成繊維、天然
繊維を問わず重要視されている。例えば、繊維を親水化
する例としてポリエステルの場合、親水性ポリマーを染
色機などで浴中処理する方法、ビニル基を有するポリエ
チレングリコール化合物をパッド、スチーミングにより
処理する方法、またアクリル酸などをグラフト処理する
方法などが提案されている。
[Prior Art] It is important to change the surface properties of textile products to improve properties such as antifouling properties, antistatic properties, hydrophilic properties, and coloring properties, regardless of whether they are made of synthetic fibers or natural fibers. For example, in the case of polyester, as an example of making fibers hydrophilic, there is a method of treating a hydrophilic polymer in a bath with a dyeing machine, a method of treating a polyethylene glycol compound having a vinyl group with a pad or steaming, and a method of grafting acrylic acid, etc. Several methods have been proposed.

また、発色性を向上させるものとしては、繊維内部に無
機微粒子を添加し、アルカリ減量により繊維表面に凹凸
を形成させたり、屈折率の低い樹脂をコーティングする
方法などがある。しかし、これらの方法は、耐久性が不
十分だったり、繊維強度あるいは、繊維表面の摩擦特性
が低下するなど、各々問題をかかえている。
In addition, methods for improving color development include adding inorganic fine particles inside the fiber and forming unevenness on the fiber surface by alkali reduction, and coating with a resin having a low refractive index. However, these methods each have problems, such as insufficient durability and decreased fiber strength or frictional properties of the fiber surface.

近年、低温プラズマによる繊維表面改質の例が数多く提
案され、例えば、アルゴン、窒素などのガスプラズマで
処理し、繊維表面に親水基を導入し、親水性、防汚性、
接着性を向上させるものがあるが、この親水基の導入量
は平衡反応のためか限度かあり、改質性能そのもの、あ
るいは耐久性に限界があるのが現状である。また発色性
を向上させるものとして、酸素プラズマなどを用い、繊
維表面をエツチングし、微細な凹凸を形成させるものが
あるか、この方法は、処理に時間がかかることや、布帛
の幅方向および長さ方向に処理ムラか生じやすいなどの
欠点がある。
In recent years, many examples of fiber surface modification using low-temperature plasma have been proposed. For example, treatment with gas plasma such as argon or nitrogen introduces hydrophilic groups onto the fiber surface, resulting in hydrophilicity, antifouling properties,
Although there are materials that improve adhesion, there is a limit to the amount of hydrophilic groups introduced, perhaps due to the equilibrium reaction, and there is currently a limit to the modification performance itself or durability. In addition, to improve color development, there is a method that uses oxygen plasma or the like to etch the fiber surface to form fine irregularities. It has drawbacks such as the tendency to cause uneven processing in the horizontal direction.

すなわち、耐久性のある高度な改質加工法、生産性に富
んだ加工法は現在のところ提案されていない。
That is, a durable, advanced modification processing method and a processing method with high productivity have not been proposed at present.

[発明が解決しようとする課題] 本発明は、耐久性に優れた高度な性能をもつ繊維表面改
質加工処理方法を提供せんとするものである。
[Problems to be Solved by the Invention] The present invention aims to provide a fiber surface modification treatment method that has excellent durability and high performance.

[課題を解決するための手段] 本発明はかかる目的を達成するため、次のような構成を
有する。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

すなわち、本発明の繊維構造物の処理方法は、繊維構造
物に、紫外線処理および低温プラズマ処理の組合せの処
理を施すことを特徴とするものである。
That is, the method for treating a fibrous structure of the present invention is characterized by subjecting the fibrous structure to a combination of ultraviolet light treatment and low-temperature plasma treatment.

[作用] 本発明は、紫外線処理とプラズマ処理という2種の異な
る処理を繊維構造物に施すと、意外なことに繊維表面が
飛躍的にしかも耐久性よく改質されるという事実を究明
して完成されたものである。
[Function] The present invention has discovered the fact that when a fiber structure is subjected to two different treatments, ultraviolet treatment and plasma treatment, the fiber surface is unexpectedly modified dramatically and with good durability. It is complete.

すなわち、目的とする改質効果に応じて、紫外線処理し
た後プラズマ処理するか、または、プラズマ処理した後
紫外線処理するのである。
That is, depending on the desired modification effect, the ultraviolet ray treatment is followed by the plasma treatment, or the plasma treatment is followed by the ultraviolet ray treatment.

本発明の繊維構造物とは、天然繊維、合成繊維およびこ
れらの混合したものからなる編織物、糸線、ヒモなど、
繊維成形品の全てを意味するものである。
The fiber structures of the present invention include knitted fabrics, yarns, strings, etc. made of natural fibers, synthetic fibers, and mixtures thereof.
This refers to all fiber molded products.

本発明の低温プラズマ処理とは、ガスに高電圧を印加す
ることによって発生する放電を意味するものであり、か
かる放電には、火花放電、コロナ放電、グロー放電など
種々の形態のものがあるが、本発明に好適な放電形態は
、繊維に損傷を与えないことならびに放電か均一である
グロー放電か好ましい。
The low-temperature plasma treatment of the present invention refers to a discharge generated by applying a high voltage to a gas, and there are various forms of such discharge, such as spark discharge, corona discharge, and glow discharge. The preferred discharge form for the present invention is glow discharge, which does not damage the fibers and has a uniform discharge.

グロー放電は、好ましくは5QTorr以下、さらには
20Torr以下、特に好ましくは0.01〜IQTo
rrの減圧下のガス雰囲気中で高電圧を印加して発生さ
せるものである。
The glow discharge is preferably 5QTorr or less, further 20Torr or less, particularly preferably 0.01 to IQTorr.
It is generated by applying a high voltage in a gas atmosphere under reduced pressure of rr.

本発明でいう非重合性ガス雰囲気中でプラズマ処理する
方法は、重合性を有しないガスを減圧下でプラズマ化す
るもので、ガスの種類としては、Ar、N2 、He、
CO2、CO1α、空気、水蒸気などが例示できる。非
重合性ガスプラズマは、好ましくは0.01〜50To
rr、さらに好ましくは0. 1〜10Torrの減圧
下で、好ましくは5秒〜180秒の範囲の処理時間で行
なわれる。
The method of plasma treatment in a non-polymerizable gas atmosphere as used in the present invention is to turn a non-polymerizable gas into plasma under reduced pressure, and the types of gas include Ar, N2, He,
Examples include CO2, CO1α, air, and water vapor. The non-polymerizable gas plasma is preferably 0.01 to 50 To
rr, more preferably 0. It is carried out under reduced pressure of 1 to 10 Torr, preferably for a treatment time in the range of 5 seconds to 180 seconds.

本発明でいう重合性ガス雰囲気中でプラズマ処理する方
法は、重合性を有するガスを低温プラズマにより気相で
重合させ、被処理物に該重合物を析出させるものである
The method of plasma treatment in a polymerizable gas atmosphere as used in the present invention involves polymerizing a polymerizable gas in the gas phase using low-temperature plasma, and depositing the polymer on the object to be treated.

かかる重合性を有するガスとしては、架橋皮膜形成性の
よいものが好ましく、たとえば、エタン、エチレン、ア
セチレンなどの炭化水素ガスや、C3F6、C3F8、
C4FB、02F4などの含フツ素ガス、ビニルトリメ
トキシシラン、メチルトリエトキシシラン、メチルトリ
メトキシシランなどのシランガスなどを使用することが
できる。
Such a polymerizable gas is preferably one that has good crosslinking film forming properties, such as hydrocarbon gases such as ethane, ethylene, acetylene, C3F6, C3F8,
Fluorine-containing gases such as C4FB and 02F4, silane gases such as vinyltrimethoxysilane, methyltriethoxysilane, and methyltrimethoxysilane can be used.

かかるガスは少なくとも1種を用いることができる。At least one kind of such gas can be used.

重合ガスを用いる場合は、好ましくは0.01〜10T
orr、さらに好ましくは0. 05〜3Torrの減
圧下で、数秒から数分の範囲で処理する。
When using polymerization gas, preferably 0.01 to 10T
orr, more preferably 0. The treatment is performed under reduced pressure of 0.05 to 3 Torr for a period of several seconds to several minutes.

次に、本発明でいう紫外線処理とは、大気中に取り出せ
る180〜400nmの波長領域の紫外線に照射する処
理をいい、光源としては、高圧水銀ランプ、メタルハラ
イドランプ、クセノンランプ、低圧水銀ランプなどを使
用することができる。
Next, the ultraviolet treatment in the present invention refers to a treatment of irradiating ultraviolet light in the wavelength range of 180 to 400 nm that can be extracted into the atmosphere. Examples of light sources include high-pressure mercury lamps, metal halide lamps, xenon lamps, and low-pressure mercury lamps. can be used.

これらのなかでも、エネルギーレベルの大きい183.
9nmと253.7nmの波長を有する低圧水銀ランプ
が好ましく使用される。低圧水銀ランプの場合、雰囲気
ガスに空気、あるいは酸素を用いるとオゾンが発生し、
この酸化作用を利用すれば、目的とする改質効果によっ
ては、好ましい結果が得られる。かかる紫外線処理は、
減圧下または加圧下で処理してもさしつかえない。
Among these, 183.
Low-pressure mercury lamps with wavelengths of 9 nm and 253.7 nm are preferably used. In the case of low-pressure mercury lamps, ozone is generated when air or oxygen is used as the atmospheric gas.
By utilizing this oxidation effect, favorable results can be obtained depending on the desired modification effect. Such ultraviolet treatment
It may be processed under reduced pressure or under increased pressure.

かかる紫外線処理の照射強度は、照度が253゜7nm
の波長において3mw/car以上、好ましくは10m
w/cnf以上が良く、照射時間は秒単位から分単位の
時間で十分であるが、照度、時間は目的に応じて設定す
るのがよい。
The irradiation intensity of this ultraviolet treatment is 253°7 nm.
3 mw/car or more, preferably 10 m at a wavelength of
W/cnf or more is preferable, and an irradiation time of seconds to minutes is sufficient, but the illuminance and time are preferably set according to the purpose.

本発明の低温プラズマ処理装置としてAir−t。Air-t as a low temperature plasma processing apparatus of the present invention.

−Air方式のものを用い、紫外線照射装置として大気
中照射装置を用いて、低温プラズマ処理と紫外線照射装
置を連動して使用すると、生産性向上することができる
ので好ましい。
- It is preferable to use an air type device, use an atmospheric irradiation device as the ultraviolet irradiation device, and use the low temperature plasma treatment and the ultraviolet irradiation device in conjunction, since productivity can be improved.

[実施例コ 以下、実施例により、詳細に説明するが、本発明はこれ
らに限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

なお、実施例ならびに比較例で使用した織物は下記の2
種である。
The fabrics used in the Examples and Comparative Examples are the following 2.
It is a seed.

100デニール36フイラメントの加工糸(東し■製)
をタテ糸、ヨコ糸に使用した平織物を常法により精練、
乾燥し、180°Cの温度でヒートセットし、タテ糸密
度120本/1n1ヨコ糸密度80本/inの白生地を
得た(織物:白という)。
100 denier 36 filament processed yarn (manufactured by Toshi ■)
The plain fabric using the warp and weft yarns is refined by conventional methods,
It was dried and heat-set at a temperature of 180°C to obtain a white fabric having a warp thread density of 120/1n1 weft thread density of 80 threads/in (referred to as woven fabric: white).

該織物をDianip Black BG−FS  1
4%owf 、浴比1対40.130℃・60分の染色
をおこない常法により還元洗浄、水洗、乾燥し、170
℃でヒートセットし、黒染織物を得た(織物:黒という
)。
The fabric is Dianip Black BG-FS 1
4% owf, bath ratio 1:40. Dyeing was carried out at 130°C for 60 minutes, followed by reduction washing, washing with water, and drying using the usual method.
Heat setting was carried out at ℃ to obtain a black dyed fabric (fabric: black).

また、実施例、比較例に示す性能評価は次の方法で測定
した。
Furthermore, performance evaluations shown in Examples and Comparative Examples were measured by the following method.

(防汚性) JISL−0821に規定されている汚染液150m1
を直径6.4mmのステンレス鋼球10個をラウンダメ
ータ型洗たく試験機付属の450m1試験ビンに入れ4
0±2℃に余熱した後、試料(:白5cmxlOcm)
を入れ試験機にとりつけ40℃±2℃にて20分間回転
した後、試料を取り出し、水洗したあと風乾した。該汚
染布の汚染の程度をJISL−0805に規定された染
色堅牢度試験用グレースケールで級判定し洗濯時におけ
る汚染のしにくさの程度を求めた。
(Antifouling property) 150ml of contaminated liquid specified in JISL-0821
Place 10 stainless steel balls with a diameter of 6.4 mm into a 450 m1 test bottle attached to a rounder meter type washing tester.
After preheating to 0±2℃, sample (white 5cm x lOcm)
The sample was placed in a testing machine and rotated at 40°C±2°C for 20 minutes, then the sample was taken out, washed with water, and air-dried. The degree of contamination of the contaminated cloth was graded using the gray scale for color fastness test specified in JISL-0805, and the degree of resistance to contamination during washing was determined.

(吸水性) JTSL−1096に規定された方法により水の吸収速
度を求めた。
(Water Absorption) The water absorption rate was determined by the method specified in JTSL-1096.

(摩擦堅ろう性) JISL−0849に規定された方法で摩擦した試料の
摩擦面の変色をグレースケールで判定し、織物表面の耐
摩擦性を求めた。
(Friction fastness) Discoloration of the friction surface of the sample rubbed according to the method specified in JISL-0849 was determined on a gray scale, and the friction resistance of the fabric surface was determined.

(発色性) デジタル測色色差計算機(スガ試験機■製)で布帛のL
値を測定した。L値は色の視感濃度の指標であり、値の
小さいもの程、濃色であることを示す。
(Coloring properties) Using a digital color measurement color difference calculator (manufactured by Suga Test Instruments),
The value was measured. The L value is an index of the visual density of a color, and the smaller the value, the darker the color.

(撥水性) JISL−1079に規定される試験法(スプレー法)
で測定されるものである。また、耐久性は、次の洗濯ま
たはドライクリーニング試験を20回繰り返し行なった
後に上記の撥水試験を行ない判定した。
(Water repellency) Test method specified in JISL-1079 (spray method)
It is measured by Furthermore, durability was determined by repeating the following washing or dry cleaning test 20 times and then performing the water repellency test described above.

外観状態と評価配点との関係は次の通りである。The relationship between the appearance condition and the evaluation score is as follows.

100点二コニ面に付着湿潤のないもの90点: 表面
にわずかに付着湿潤を示すもの80点: 表面の水の落
下点が湿潤を示すもの70点: 表面全体にわたって部
分的湿潤を示すもの 50点コニ表面全体に湿潤を示すもの 0点: 表面が完全に湿潤を示すもの (改質効果の耐久性評価用洗濯条件) 自動反転うす巻き電気洗濯機(東芝VH1150型)に
40℃±2℃の0.25弱アルカリ性合成洗剤(JIS
  K337に規定される)液を入れ、浴比1:50に
なるように追加布を入れ強条件で10分間洗濯し、次い
で排水し水洗5分をする工程を1回としてこれを20回
繰り返した後、風乾した。
100 points: No adhesive moisture on the surface: 90 points: Slight adhesive moisture on the surface: 80 points: Water drop point on the surface indicates moisture: 70 points: Showing partial moisture over the entire surface: 50 points 0 points for those showing moisture on the entire surface: Those showing complete moisture on the surface (washing conditions for evaluating durability of modification effect) Automatic reversing thin winding electric washing machine (Toshiba VH1150 model) at 40°C ± 2°C 0.25 slightly alkaline synthetic detergent (JIS
(specified in K337), added additional cloth to make the bath ratio 1:50, washed under strong conditions for 10 minutes, then drained and rinsed with water for 5 minutes.This process was repeated 20 times. After that, it was air-dried.

また、実施例、比較例で使用したプラズマ処理ならびに
紫外線処理は、次の通りである。
Further, the plasma treatment and ultraviolet treatment used in the Examples and Comparative Examples are as follows.

(プラズマ処理条件) 内部電極装置 放電周波数 110KHz放電電力  
100.200W 真空度   0. 4.  ITorr処理時間  3
0,120sec ガス流量  40m1/min 非重合性ガス       Ar、N2重合性ガス  
      C3FB (紫外線処理条件) 低圧水銀ランプ ランプ出力 500W照度 40mv
/C1 (253,7nm) 処理時間 30. 120sec 空気中で照射 実施例1〜7、比較例1〜11 織物:白を、非重合性ガス雰囲気中でのプラズマ処理と
紫外線照射処理を表1に示す条件でおこない、処理上り
と洗タク後の防汚性と吸水性を測定した結果を表1に示
した。
(Plasma treatment conditions) Internal electrode device Discharge frequency 110KHz Discharge power
100.200W Vacuum degree 0. 4. ITorr processing time 3
0,120sec Gas flow rate 40m1/min Non-polymerizable gas Ar, N2 Polymerizable gas
C3FB (Ultraviolet treatment conditions) Low pressure mercury lamp Lamp output 500W Illuminance 40mv
/C1 (253,7nm) Processing time 30. Irradiation in air for 120 sec Examples 1 to 7, Comparative Examples 1 to 11 Fabric: White was subjected to plasma treatment and ultraviolet irradiation treatment in a non-polymerizable gas atmosphere under the conditions shown in Table 1, and the results were shown after treatment and after washing. Table 1 shows the results of measuring the antifouling properties and water absorption properties of the samples.

表1から、低温プラズマまたは紫外線照射単独での処理
においては、防汚性、吸水性の性能が飽和してしまうが
、両者を組合せて処理すると防汚性、吸水性とも効果が
向上し、その耐久性が向上していることがわかる。
Table 1 shows that when treated with low-temperature plasma or ultraviolet irradiation alone, the antifouling and water absorbing properties become saturated, but when the two are combined, the antifouling and water absorbing effects improve. It can be seen that the durability has improved.

実施例8〜14、比較例12〜16 織物:黒を、重合性ガス雰囲気中でのプラズマ処理およ
び、非重合性ガス雰囲気中でのプラズマ処理、紫外線照
射処理を、表2に示す条件でおこない、発色性向上効果
、撥水性向上効果、重合ポリマーの摩擦特性を測定した
結果を表2に示した。
Examples 8 to 14, Comparative Examples 12 to 16 Textiles: black were subjected to plasma treatment in a polymerizable gas atmosphere, plasma treatment in a non-polymerizable gas atmosphere, and ultraviolet irradiation treatment under the conditions shown in Table 2. Table 2 shows the results of measuring the effect of improving color development, the effect of improving water repellency, and the frictional properties of the polymerized polymer.

表2から、実施例8〜14のものは、発色性、撥水性、
耐摩擦性が向上し、しかも、その耐久性が向上すること
がわかる。
From Table 2, Examples 8 to 14 have color development, water repellency,
It can be seen that the abrasion resistance is improved and the durability is also improved.

実施例15〜22、比較例17〜22 織物:黒を、表3に示す条件で低温プラズマ処理、紫外
線照射処理した後、フッ素系撥水剤であるアサヒガード
AG−710(可成化学製)20g / l水溶液に浸
漬し、マングルで絞り、織物重量に対し80%の重量に
なるように溶液を付着させた後、130℃で3分乾燥し
、次いで180℃で2分の熱処理をおこない、処理上り
洗タク後の撥水性を測定した結果を表3に示した。
Examples 15-22, Comparative Examples 17-22 Fabric: Black was subjected to low-temperature plasma treatment and ultraviolet irradiation treatment under the conditions shown in Table 3, and then treated with Asahi Guard AG-710 (manufactured by Kasei Kagaku), a fluorine-based water repellent. After immersing it in a 20g/l aqueous solution, squeezing it with a mangle and applying the solution to a weight of 80% of the weight of the fabric, it was dried at 130°C for 3 minutes, and then heat-treated at 180°C for 2 minutes. Table 3 shows the results of measuring water repellency after treatment and washing.

表3から、実施例1−5〜22のものは、比較例17〜
22のものに比して撥水性の耐久性が向上していること
がわかる。
From Table 3, those of Examples 1-5 to 22 are the same as those of Comparative Examples 17 to 22.
It can be seen that the durability of water repellency is improved compared to No. 22.

[発明の効果] 本発明によれば、高いレベルの改質効果とすぐれた耐久
性を有する繊維構造物を生産性よく安定して提供するこ
とができる。
[Effects of the Invention] According to the present invention, a fiber structure having a high level of modification effect and excellent durability can be stably provided with good productivity.

Claims (4)

【特許請求の範囲】[Claims] (1)繊維構造物に、紫外線処理および低温プラズマ処
理の組合せを施すことを特徴とする繊維構造物の処理方
法。
(1) A method for treating a fibrous structure, which comprises subjecting the fibrous structure to a combination of ultraviolet treatment and low-temperature plasma treatment.
(2)紫外線処理が、300nm以下の波長成分を含む
ものである請求項(1)記載の繊維構造物処理方法。
(2) The method for treating a fiber structure according to claim (1), wherein the ultraviolet treatment includes a wavelength component of 300 nm or less.
(3)低温プラズマ処理が、非重合性および/または重
合性ガス雰囲気中で行なうものである請求項(1)記載
の繊維構造物処理方法。
(3) The method for treating a fibrous structure according to claim 1, wherein the low-temperature plasma treatment is performed in a non-polymerizable and/or polymerizable gas atmosphere.
(4)繊維構造物が、樹脂加工されているものである請
求項(1)記載の繊維構造物の処理方法。
(4) The method for treating a fibrous structure according to claim 1, wherein the fibrous structure is resin-processed.
JP2335447A 1990-11-29 1990-11-29 Processing method of fiber structure Expired - Fee Related JP2906656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2335447A JP2906656B2 (en) 1990-11-29 1990-11-29 Processing method of fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2335447A JP2906656B2 (en) 1990-11-29 1990-11-29 Processing method of fiber structure

Publications (2)

Publication Number Publication Date
JPH04202845A true JPH04202845A (en) 1992-07-23
JP2906656B2 JP2906656B2 (en) 1999-06-21

Family

ID=18288664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2335447A Expired - Fee Related JP2906656B2 (en) 1990-11-29 1990-11-29 Processing method of fiber structure

Country Status (1)

Country Link
JP (1) JP2906656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780107A (en) * 1994-08-09 1998-07-14 The University Of Manchester Institute Of Science And Technology Wool pre-treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780107A (en) * 1994-08-09 1998-07-14 The University Of Manchester Institute Of Science And Technology Wool pre-treatment method

Also Published As

Publication number Publication date
JP2906656B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
Kan et al. Low temperature plasma on wool substrates: The effect of the nature of the gas
Wong et al. Low temperature plasma treatment of linen
JPS5851557B2 (en) Method for improving color development of fiber structures
Kan et al. Effect of low temperature plasma, chlorination, and polymer treatments and their combinations on the properties of wool fibers
JP5865648B2 (en) Method for producing antifouling fabric
JPH04202845A (en) Method for treating fiber structure
JPH04202846A (en) Production of water-repellent and deep-colorable fiber structure
JP2638586B2 (en) Method for producing high-strength, high-modulus polyamide fiber dyed deeply
Shahidi et al. Study of surface modification of wool fabrics using low temperature plasma
JPH05287671A (en) Production of polyester-based fiber structure
JPH0314676A (en) Production of waterproof cloth
JPH10325078A (en) Production of durably antistatic and water-repelling fiber fabric
JPH05295657A (en) Production of fiber structure
JPH0559669A (en) Production of stain-proofing water-repellent fabric
Kan et al. Dyeing behavior of laser-treated polyester
JPH0314675A (en) Preparation of water-repellent and deep colored web
JPH01239179A (en) Bathochromic treatment of fiber structure
JPH06228881A (en) Treatment of polyester fiber
JPS60162865A (en) Deep color processing method of synthetic fiber
JP2007146328A (en) Polyester fiber structure and method for producing the same
JP2540173B2 (en) Durable deep-color processing method
JPH03180571A (en) Deep coloration of fiber structure
JPH0770920A (en) Flocking raw yarn and its production and flocked product
JP2638585B2 (en) Method for producing high-strength, high-modulus polyester fiber dyed deeply
JPH02191773A (en) Fiber having deepened color and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees