JPH0419753Y2 - - Google Patents

Info

Publication number
JPH0419753Y2
JPH0419753Y2 JP1987057151U JP5715187U JPH0419753Y2 JP H0419753 Y2 JPH0419753 Y2 JP H0419753Y2 JP 1987057151 U JP1987057151 U JP 1987057151U JP 5715187 U JP5715187 U JP 5715187U JP H0419753 Y2 JPH0419753 Y2 JP H0419753Y2
Authority
JP
Japan
Prior art keywords
heating element
heater
supply port
reaction tube
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987057151U
Other languages
Japanese (ja)
Other versions
JPS63164194U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987057151U priority Critical patent/JPH0419753Y2/ja
Publication of JPS63164194U publication Critical patent/JPS63164194U/ja
Application granted granted Critical
Publication of JPH0419753Y2 publication Critical patent/JPH0419753Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Furnace Details (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、半導体ウエハ処理用加熱炉のヒー
タに関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a heater for a heating furnace for processing semiconductor wafers.

従来の技術 半導体ウエハ処理用加熱炉には、例えば、半導
体製造などに用いる拡散炉があるが、この拡散炉
には炉内を高温にするため均熱管(反応管)の外
側に所定間隔をおいてヒータが設けられている。
Conventional technology Heating furnaces for processing semiconductor wafers include, for example, diffusion furnaces used in semiconductor manufacturing, etc., but these diffusion furnaces have a predetermined space on the outside of the soaking tube (reaction tube) in order to raise the temperature inside the furnace. They have heaters.

従来、ヒータとして太線ヒータ、即ち、断面円
形の太線状発熱体が用いられる。しかし、このヒ
ータでは、高温時、例えば、1200℃における寿命
が長いがその反面重量が大きく熱容量も大きいの
で、設備電力が大きくなると共に高温時において
は、自重のため大きく変形する。そのためヒータ
がたれ下がり、反応管との間隔を所定に保つこと
ができなくなるので、反応管全長にわたり均一に
加熱することが困難となる。従つて、反応管内に
ある半導体ウエハ全部に均一な膜を形成すること
ができなくなるので、所定通りの半導体ウエハ処
理を行うことができない。
Conventionally, a thick wire heater, that is, a thick wire heating element with a circular cross section is used as a heater. However, although this heater has a long life at high temperatures, for example, 1200° C., it is heavy and has a large heat capacity, so the equipment power is increased and the heater deforms significantly due to its own weight at high temperatures. As a result, the heater sags, making it impossible to maintain a predetermined distance from the reaction tube, making it difficult to uniformly heat the entire length of the reaction tube. Therefore, it becomes impossible to form a uniform film on all the semiconductor wafers in the reaction tube, so that the semiconductor wafers cannot be processed in a predetermined manner.

又、ヒータが更に大きく変形すると、該ヒータ
は反応管に接触し、該反応管を破損させてしま
う。
Furthermore, if the heater is deformed even more, the heater will come into contact with the reaction tube and damage the reaction tube.

そのため、反応管内で処理中の多数のウエハ例
えば150枚が不良品となるとともに、破損した高
価な反応管を新しい反応管と交換しなければなら
ないので経済上著しい損害が発生する。又、反応
管交換時には長時間該加熱炉を使用できなくなる
ので、該加熱炉の稼働率が低下する。
As a result, a large number of wafers, for example 150, being processed in the reaction tube become defective, and the damaged and expensive reaction tube must be replaced with a new one, resulting in significant economic damage. Furthermore, since the heating furnace cannot be used for a long time when the reaction tube is replaced, the operating rate of the heating furnace decreases.

その上、昇降温特性が良くないので、ウエハの
熱処理終了後、炉が冷却するまで長時間かかり、
炉の稼働率が良くない。
In addition, the temperature rise and fall characteristics are not good, so it takes a long time for the furnace to cool down after the wafer heat treatment.
Furnace operating rate is not good.

そこで、細線ヒータ、即ち、断面円形の細線状
発熱体を用いることにより、上記問題点の解決を
図つている。しかし、このヒータでは、重量が小
さく、熱容量も小さいので、昇降温特性は良い
が、その反面、表面負荷が大きいので高温時にお
ける寿命が短い。
Therefore, the above-mentioned problem is solved by using a thin wire heater, that is, a thin wire heating element having a circular cross section. However, this heater has a small weight and a small heat capacity, so it has good temperature rise and fall characteristics, but on the other hand, it has a large surface load and therefore has a short lifespan at high temperatures.

又、従来、炉の稼働率を良くするため、ヒータ
と反応管との間に冷却流体、例えば、低温空気を
流し込んでいる。しかし、この冷却方法ではヒー
タ外周部に設けた断熱材が該冷風に当たりその繊
維質がウエハの嫌うゴミとなつて炉内に飛散す
る。
Furthermore, conventionally, in order to improve the operating rate of the furnace, a cooling fluid such as low-temperature air is poured between the heater and the reaction tube. However, in this cooling method, the heat insulating material provided around the outer periphery of the heater is hit by the cold air, and its fibers become dust that the wafers dislike and are scattered into the furnace.

この考案は上記事情に鑑み、加熱炉を冷却する
時に炉内にゴミが発生しないようにすることを目
的とする。
In view of the above-mentioned circumstances, the purpose of this invention is to prevent dust from being generated inside the heating furnace when the heating furnace is cooled.

他の目的は、反応管内を均一加熱できる様にす
るとともに使用寿命を伸ばすことである。
Another purpose is to enable uniform heating within the reaction tube and to extend its service life.

問題点を解決するための手段 この考案は、絶縁材で形成した収容部に、空間
部を介して反応管を挿着し、該空間部に半導体ウ
エハを拡散するための電気発熱体を配設した加熱
炉において、該電気発熱体が、流体供給口と流体
排出口とを炉外に露出せしめた無穴ストロー状薄
肉パイプ発熱体であることを特徴とする半導体ウ
エハ処理用加熱炉のヒータにより前記目的を達成
しようとするものである。
Means to Solve the Problem This idea involves inserting a reaction tube into a housing made of an insulating material through a space, and disposing an electric heating element in the space for diffusing semiconductor wafers. In the heating furnace for semiconductor wafer processing, the electric heating element is a non-porous, straw-shaped, thin-walled pipe heating element with a fluid supply port and a fluid discharge port exposed outside the furnace. This aims to achieve the above objective.

作 用 電気発熱体に電力を供給すると、ジール熱が発
生し、加熱炉内は高温となり、反応管内は均一温
度となる。
Function When power is supplied to the electric heating element, Zeal heat is generated, the temperature inside the heating furnace becomes high, and the temperature inside the reaction tube becomes uniform.

この時、該発熱体は無穴ストロー状薄肉パイプ
なので軽量で変形しにくく、かつち熱容量も小さ
く、又、高温時においても、表面負荷が小さく、
長寿命である。
At this time, the heating element is a non-perforated straw-shaped thin-walled pipe, so it is lightweight and difficult to deform, and has a small heat capacity, and has a small surface load even at high temperatures.
It has a long lifespan.

更に、パイプ状の発熱体は、加熱され易くかつ
冷却され易いので極めて昇降温特性がすぐれてい
るとともに、冷却時に流体供給口に冷却流体を流
入させ流体排出口から排出させても該冷却流体
は、該発熱体の配設されている空間部に漏れるこ
とはない。
Furthermore, since the pipe-shaped heating element is easily heated and cooled, it has extremely excellent temperature raising and lowering characteristics, and even when cooling fluid is flowed into the fluid supply port and discharged from the fluid discharge port during cooling, the cooling fluid remains unchanged. , there is no leakage into the space where the heating element is installed.

実施例 この考案の一実施例を添付図面により説明す
る。
Embodiment An embodiment of this invention will be described with reference to the accompanying drawings.

円筒状の断熱材1の内側には、間隔をおいて複
数の支持リング2が設けられている。
Inside the cylindrical heat insulating material 1, a plurality of support rings 2 are provided at intervals.

この支持リング2には、円周方向に間隔をおい
て、複数の無穴ストロー状薄肉パイプ発熱体(ヒ
ータ)3が設けられている。
This support ring 2 is provided with a plurality of non-perforated straw-shaped thin pipe heating elements (heaters) 3 at intervals in the circumferential direction.

ここで、無穴ストロー状薄肉パイプ発熱体とは
壁面に穴があいておらず、かつストローの様に薄
肉の発熱体を指称し、例えば、この発熱体3は、
第3図に示す様に断面円筒状に形成されその外径
Dは、15mm、その内径dは12mmに形成されてい
る。
Here, the non-porous straw-shaped thin-walled pipe heating element refers to a heating element that has no holes in its wall and is thin like a straw. For example, this heating element 3 is
As shown in FIG. 3, it is formed into a cylindrical cross-section, with an outer diameter D of 15 mm and an inner diameter d of 12 mm.

4は、発熱体3と接続する中空電極、5は流体
供給部でこの供給部5には、各発熱体3の中空部
3aと連通する流体供給口5aが設けられてい
る。
4 is a hollow electrode connected to the heating element 3; 5 is a fluid supply section; this supply section 5 is provided with a fluid supply port 5a communicating with the hollow section 3a of each heating element 3;

6は、流体排出部で、この排出部6には、各発
熱体3の中空部3aと連通する流体排出口6aが
設けられている。
Reference numeral 6 denotes a fluid discharge portion, and this discharge portion 6 is provided with a fluid discharge port 6a that communicates with the hollow portion 3a of each heating element 3.

7は、反応管でこの中には、ウエハを収容した
石英ボート(図示せず)が挿入されている。
7 is a reaction tube into which a quartz boat (not shown) containing a wafer is inserted.

次に、この実施例の作動について説明すると、
反応管7内にウエハを収容したボートを挿入した
後、中空電極4から給電し、発熱体3を加熱する
と、反応管7内が高温、例えば、1200℃になるの
で、反応管7内のウエハは熱処理される。
Next, the operation of this embodiment will be explained.
After inserting the boat containing the wafers into the reaction tube 7, power is supplied from the hollow electrode 4 to heat the heating element 3. As the temperature inside the reaction tube 7 reaches a high temperature, for example, 1200°C, the wafers inside the reaction tube 7 are heated. is heat treated.

この時、発熱体3は、高温となるが、ストロー
状薄肉パイプで、かつ、径が大きいので、重量が
軽い割りには、曲げに対する強度があり、また、
その変形量も少ない。更に表面負荷も小さいの
で、長寿命が期待でき、又この発熱体3は、支持
リング2に保持されているので、仮に変形して
も、ヒータの内側にある石英管7に接触する危険
性も少ない。
At this time, the heating element 3 becomes high temperature, but since it is a straw-shaped thin-walled pipe and has a large diameter, it has strength against bending despite its light weight.
The amount of deformation is also small. Furthermore, since the surface load is small, a long life can be expected, and since this heating element 3 is held by the support ring 2, even if it deforms, there is no risk of it coming into contact with the quartz tube 7 inside the heater. few.

ウエハの熱処理終了後、液体供給部5の供給口
5aから冷却流体、例えば、低温空気又は、ガス
を圧入し発熱体3の中空部3aを通し、液体排出
部6の排出口6aから排出せしめると、発熱体3
は、冷却流体に熱量を奪われて急激に冷却される
ので、反応管7内は、急激に冷却される。
After the heat treatment of the wafer is completed, a cooling fluid such as low-temperature air or gas is forced into the supply port 5a of the liquid supply section 5, passes through the hollow section 3a of the heating element 3, and is discharged from the discharge port 6a of the liquid discharge section 6. , heating element 3
The inside of the reaction tube 7 is rapidly cooled because heat is taken away by the cooling fluid and the reaction tube 7 is rapidly cooled.

従つて、冷却のために多くの時間を必要としな
いので、ローテーシヨンを早めることが可能とな
る。
Therefore, since much time is not required for cooling, it is possible to speed up the rotation.

又、この冷却方法によると、従来例のような問
題、即ち、強制冷却する場合石英管とヒータとの
間に冷風を流していたため、ヒータ外周部に設け
た断熱材が、該冷風に当たり、その繊維質がウエ
ハの嫌うゴミとなつて炉内に飛散するという問題
の発生を防止することができる。
In addition, this cooling method has a problem similar to the conventional example, that is, when forced cooling, cold air is flowed between the quartz tube and the heater, so the heat insulating material provided around the outer circumference of the heater is hit by the cold air, causing damage. It is possible to prevent the occurrence of a problem in which fibers become dust that is disliked by wafers and are scattered in the furnace.

なお、流体供給部5の供給口5から加熱流体、
例えば、高温空気又は、ガスを発熱体3の中空部
3aに圧入しながら発熱体3に給電すると、より
一層ヒータの加熱が早くなるので能率的なウエハ
の熱処理を行う事ができる。
Note that the heating fluid is supplied from the supply port 5 of the fluid supply section 5,
For example, if high-temperature air or gas is forced into the hollow portion 3a of the heating element 3 while power is supplied to the heating element 3, the heater can be heated even more quickly, so that efficient wafer heat treatment can be performed.

この考案の実施例は、上記に限定されるもので
なく、例えば、パイプ発熱体3の形状を第4図に
示すように断面中空楕円状にしたり、又第5図に
示す様に、断面中空方形状に形成しても良い。
The embodiments of this invention are not limited to the above, but for example, the pipe heating element 3 may have a hollow elliptical cross section as shown in FIG. 4, or may have a hollow cross section as shown in FIG. It may also be formed into a rectangular shape.

又、パイプ発熱体3を第6図に示す様に反応管
7の外周にスパイラル状に巻きつけてもよいこと
は勿論である。更に、第7図に示すようにセパレ
ータ70に支持されたパイプ発熱体の両端にヘツ
ダ71,72を設け、ヘツダ71に端子74付中
空電極75を接続し、この電極75からガスを供
給し、ヘツダ72に設けた端子76付中空電極7
7より排出してもよい。
Furthermore, it goes without saying that the pipe heating element 3 may be spirally wound around the outer periphery of the reaction tube 7 as shown in FIG. Furthermore, as shown in FIG. 7, headers 71 and 72 are provided at both ends of the pipe heating element supported by the separator 70, a hollow electrode 75 with a terminal 74 is connected to the header 71, and gas is supplied from this electrode 75. Hollow electrode 7 with terminal 76 provided on header 72
It may be discharged from 7.

このセパレータの形状は、第8図、第9図のよ
うなものがあり、第8図のセパレータ81には発
熱体貫通孔82が形成され、又、第9図のセパレ
ータ91には、発熱体嵌合溝92が形成されてい
る。
There are shapes of this separator as shown in FIG. 8 and FIG. 9. The separator 81 in FIG. 8 is formed with a heating element through hole 82, and the separator 91 in FIG. A fitting groove 92 is formed.

第10図は、三つのセパレータ101,10
2,103により、曲がりくねつた一本の発熱体
104を支持した実施例を示す斜視図でパイプ発
熱体の入口105とパイプ発熱体の出口106に
は各々端子107,108が設けられている。
FIG. 10 shows three separators 101, 10
2, 103 is a perspective view showing an embodiment in which a single winding heating element 104 is supported. Terminals 107 and 108 are provided at the inlet 105 of the pipe heating element and the outlet 106 of the pipe heating element, respectively.

考案の効果 この考案は以上の様に構成したので次の如き顕
著な効果を奏する。
Effects of the invention Since this invention is constructed as described above, it has the following remarkable effects.

(1) 無穴ストロー状薄肉パイプ発熱体なので軽量
であり、従来例の太線ヒータに比べ、自重が軽
いため、ヒータの変形を防ぐことができる。そ
のため、ヒータの所定位置に維持できるので、
従来例と異なり、反応管内の温度を均一にでき
るとともに反応管の破損事故を防止できる。
(1) Since it is a non-porous, straw-shaped, thin-walled pipe heating element, it is lightweight, and its own weight is lighter compared to conventional thick wire heaters, which prevents the heater from deforming. Therefore, the heater can be kept in place,
Unlike the conventional example, the temperature inside the reaction tube can be made uniform and accidental breakage of the reaction tube can be prevented.

従つて、半導体ウエハ処理に最適な加熱炉と
なる。
Therefore, it is a heating furnace that is most suitable for semiconductor wafer processing.

(2) 従来例の細線ヒータに比べ、表面負荷が小さ
いので、使用寿命を伸ばすことができる。
(2) Compared to conventional thin wire heaters, the surface load is lower, so the service life can be extended.

(3) 流体供給口と流体排出口とを炉外に露出して
設けたので、ヒータを冷却する場合には、該流
体供給口に冷却流体を供給すると、発熱体は急
冷されるので、反応管内は急激に冷却される。
(3) Since the fluid supply port and the fluid discharge port are provided to be exposed outside the furnace, when cooling the heater, when cooling fluid is supplied to the fluid supply port, the heating element is rapidly cooled and the reaction is prevented. The inside of the tube is rapidly cooled.

従つて、昇降特性が極めてよくなるので、ロ
ーテーシヨンが早くなり、炉の稼働率を向上さ
せることができる。
Therefore, the lifting and lowering characteristics become extremely good, so rotation becomes faster and the operating rate of the furnace can be improved.

又、流体供給口に冷却流体を流し流体排出口
から排出させても該冷却流体が空間部に漏れる
ことはない。従つて、従来例と異なり断熱材に
冷却流体が衝突することがないので、該断熱材
の繊維質がウエハの嫌うゴミとなることもな
い。そのため、加熱炉にクリーンな状態に維持
することができる。
Further, even if the cooling fluid is caused to flow through the fluid supply port and discharged from the fluid discharge port, the cooling fluid will not leak into the space. Therefore, unlike the conventional example, since the cooling fluid does not collide with the heat insulating material, the fibers of the heat insulating material do not become dust that the wafer dislikes. Therefore, the heating furnace can be maintained in a clean state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の実施例を示す縦断面図第
2図は、第1図の−線断面図、第3図は第1
図の要所拡大図でパイプ発熱体の断面図第4図、
第5図は、他の実施例を示す断面図で、第3図に
相当する図、第6図〜第10図は、各々、更に他
の実施例を示す図である。 1……断熱材、2……支持リング、3……無穴
ストロー状薄肉パイプ発熱体、5a……流体供給
口、6a……流体排出口、7……反応管。
Fig. 1 is a vertical sectional view showing an embodiment of this invention; Fig. 2 is a sectional view taken along the line - - of Fig. 1;
Figure 4 is a cross-sectional view of the pipe heating element with an enlarged view of key points in the figure.
FIG. 5 is a sectional view showing another embodiment, and FIG. 3 is a diagram corresponding to FIG. 3, and FIGS. 6 to 10 are diagrams showing still other embodiments. DESCRIPTION OF SYMBOLS 1... Heat insulating material, 2... Support ring, 3... Holeless straw-shaped thin pipe heating element, 5a... Fluid supply port, 6a... Fluid discharge port, 7... Reaction tube.

Claims (1)

【実用新案登録請求の範囲】 (1) 絶縁材で形成した収容部に、空間部を介して
反応管を挿着し、半導体ウエハを拡散するため
の電気発熱体を該空間部に配設した加熱炉にお
いて、該電気発熱体が、流体供給口と流体排出
口とを炉外に露出せしめた無穴ストロー状薄肉
パイプ発熱体であることを特徴とする半導体ウ
エハ処理用加熱炉のヒータ。 (2) 流体供給口が、冷却流体の供給口であること
を特徴とする実用新案登録請求の範囲1記載の
半導体ウエハ処理用加熱炉のヒータ。 (3) 流体供給口が、加熱流体の供給口であること
を特徴とする実用新案登録請求の範囲1記載の
半導体ウエハ処理用加熱炉のヒータ。
[Scope of Claim for Utility Model Registration] (1) A reaction tube is inserted into a housing made of an insulating material through a space, and an electric heating element for diffusing semiconductor wafers is disposed in the space. A heater for a heating furnace for processing semiconductor wafers, wherein the electric heating element is a non-porous, straw-shaped, thin-walled pipe heating element with a fluid supply port and a fluid discharge port exposed outside the furnace. (2) The heater for a heating furnace for semiconductor wafer processing according to claim 1, wherein the fluid supply port is a cooling fluid supply port. (3) The heater for a heating furnace for semiconductor wafer processing according to claim 1, wherein the fluid supply port is a heating fluid supply port.
JP1987057151U 1987-04-15 1987-04-15 Expired JPH0419753Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987057151U JPH0419753Y2 (en) 1987-04-15 1987-04-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987057151U JPH0419753Y2 (en) 1987-04-15 1987-04-15

Publications (2)

Publication Number Publication Date
JPS63164194U JPS63164194U (en) 1988-10-26
JPH0419753Y2 true JPH0419753Y2 (en) 1992-05-06

Family

ID=30886595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987057151U Expired JPH0419753Y2 (en) 1987-04-15 1987-04-15

Country Status (1)

Country Link
JP (1) JPH0419753Y2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473578A (en) * 1977-11-24 1979-06-12 Toshiba Corp Pattern exposure method of semiconductor substrate and pattern exposure apparatus
JPS5514791B2 (en) * 1975-10-07 1980-04-18
JPS5778790A (en) * 1980-11-04 1982-05-17 Mitsubishi Heavy Ind Ltd Telescopic slide insulating and supporting device for electric heater
JPS5950439B2 (en) * 1975-12-27 1984-12-08 アイダエンジニアリング カブシキガイシヤ How to balance the power of balance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514791U (en) * 1978-07-18 1980-01-30
JPS5950439U (en) * 1982-09-27 1984-04-03 キヤノン株式会社 semiconductor exposure equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514791B2 (en) * 1975-10-07 1980-04-18
JPS5950439B2 (en) * 1975-12-27 1984-12-08 アイダエンジニアリング カブシキガイシヤ How to balance the power of balance
JPS5473578A (en) * 1977-11-24 1979-06-12 Toshiba Corp Pattern exposure method of semiconductor substrate and pattern exposure apparatus
JPS5778790A (en) * 1980-11-04 1982-05-17 Mitsubishi Heavy Ind Ltd Telescopic slide insulating and supporting device for electric heater

Also Published As

Publication number Publication date
JPS63164194U (en) 1988-10-26

Similar Documents

Publication Publication Date Title
US8134100B2 (en) Heat processing furnace and method of manufacturing the same
TWI401728B (en) Heat treatment furnace and vertical heat treatment device
US8476560B2 (en) Thermal processing furnace
KR101117016B1 (en) Heat treatment furnace and vertical heat treatment apparatus
US8023806B2 (en) Heat processing furnace and vertical-type heat processing apparatus
TWI430696B (en) Heat-processing furnace and manufacturing method thereof
US20050094989A1 (en) Lamp filament design
JPH0864546A (en) Heat treatment furnace and manufacture thereof
JPH0336719A (en) Heat processing furnace and its operating method
JPH10233277A (en) Heat treatment device
JP2007502549A (en) Holding mechanism of heating coil of high temperature diffusion furnace
TW451048B (en) Ultra-high-temperature heat treatment apparatus
JPH0419753Y2 (en)
KR100817400B1 (en) Heat treatment equipment
KR100817401B1 (en) Heat treatment equipment
JPH04369215A (en) Vertical-type electric furnace
US6781291B2 (en) Filament support for lamp
JPH04101419A (en) Heat treatment furnace for substrate
KR100324539B1 (en) heater for outlet pipe of semiconductor making apparatus
JP3043543U (en) Liquid heating device
JP2008098497A (en) Water-cooled jacket for heat treatment furnace and manufacturing method thereof
JPS581992Y2 (en) Heater holding device for heat reflection type diffusion furnace
JPH06204155A (en) Vertical semiconductor diffusion furnace
JP2003272804A (en) Heat treatment device
JPS61287226A (en) Heat treatment furnace