JPH04196505A - Insulated coil of electric machine for vacuum - Google Patents

Insulated coil of electric machine for vacuum

Info

Publication number
JPH04196505A
JPH04196505A JP33291590A JP33291590A JPH04196505A JP H04196505 A JPH04196505 A JP H04196505A JP 33291590 A JP33291590 A JP 33291590A JP 33291590 A JP33291590 A JP 33291590A JP H04196505 A JPH04196505 A JP H04196505A
Authority
JP
Japan
Prior art keywords
coil
vacuum
baking
gas
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33291590A
Other languages
Japanese (ja)
Inventor
Yoshifusa Tsubone
嘉房 坪根
Yoshikatsu Nakamura
中村 美勝
Nobuhiko Ota
大田 暢彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP33291590A priority Critical patent/JPH04196505A/en
Publication of JPH04196505A publication Critical patent/JPH04196505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Insulating Of Coils (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PURPOSE:To obtain an insulated coil of an electric machine for vacuum use, which exhausts little gas in vacuum circumstances, by kneading solid content of silicon compound, devitrified mica glass, natural mica powder, titanium oxide and aluminum oxide for a coil formed by winding a wire, impregnating the coil with impregnant diluted by organic solvent, and molding said coil. CONSTITUTION:Silicon compound solid content of 50-30wt.%, devitrified mica glass of 40-20wt.%, natural mica powder of 30-10wt.% which contains 50wt.% or more of scaly diameter larger than or equal to 50m, titanium oxide of 25-10wt.%, and aluminum oxide of 10-2wt.% are kneaded for a coil formed by winding a wire. The coil is impregnated with impregnant diluted by organic solvent, and molded. The obtained insulating coil has essentially a small exhaust amount of gas and high heat resistance, and is capable of high temperature baking. Further it has adequate voids suitable for gas discharge at the time of baking, and baking effect is exhibited in a short time, so that the coil is capable of vacuum application without shielding using a stainless can or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、真空中で使用される電気機器の絶縁線輪に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulated wire ring for electrical equipment used in a vacuum.

〔従来の技術〕[Conventional technology]

真空溝境で使用される機器には、ガス放出が少ないこと
が要求される。真空中でのガス放出は、材料表面に吸着
された物質の脱離や、材料内部に含まれるガスの拡散に
よる表面への移行、表面からの放出によって生ずる。そ
こで、真空装置内で使用される機器は、ガス放出の少な
い材料で構成されると共に、真空装置の運転に先立って
ベーキングによる強制脱ガス処理に付される。
Equipment used in vacuum trenches is required to have low gas emissions. Gas release in a vacuum occurs due to desorption of substances adsorbed on the material surface, migration of gas contained within the material to the surface due to diffusion, and release from the surface. Therefore, the equipment used in the vacuum apparatus is constructed of materials that emit less gas, and is subjected to forced degassing treatment by baking prior to operation of the vacuum apparatus.

このため従来では真空用モータなどの絶縁線輪用として
は、次の絶縁方式開発されている。第1は比較的耐熱性
の高い有機絶縁材料を主体とした絶縁方式で、例えば、
電線にポリ了ミドイミド線、絶縁フィルムにポリイミド
フィルム、コイルワニスに耐熱アルキッドワニスを用い
たもの(山洋電気株式会社高真空用ステッピングモータ
:トリケップ社主催講演会資料)や、コイル絶縁にはポ
リイミド系樹脂を使用し、リード線にはテフロン被覆絶
縁電線を用いたもの(補動、村上純−1照井佳幸、小林
隆、百目鬼英雄、真空、30 (1987)619)で
ある。
For this reason, the following insulation methods have been developed for insulated wire wheels such as vacuum motors. The first is an insulation method mainly using organic insulating materials with relatively high heat resistance, for example,
Polyimide wire is used for the electric wire, polyimide film is used for the insulation film, and heat-resistant alkyd varnish is used for the coil varnish. and a Teflon-coated insulated wire was used for the lead wire (Supplementary Action, Jun Murakami-1 Yoshiyuki Terui, Takashi Kobayashi, Hideo Doumeki, Shinkuu, 30 (1987) 619).

第2は絶縁層を金属でシールドし真空還境から隔離する
方式で、倒えば、ステンレスシースのMI型ケーブルを
用いたコイル(助川電気工業株式会社:真空用ステッピ
ングモータカタログ)や、コイルが巻回されたステータ
をステンレスのキャンでシールドする方法(武松忠、盛
山一部、山川洋室、小笠原勝:真空、31  (198
8)388)である。
The second method is to shield the insulating layer with metal and isolate it from the vacuum environment. How to shield the rotated stator with a stainless steel can (Tadashi Takematsu, Part Moriyama, Yoshitsu Yamakawa, Masaru Ogasawara: Vacuum, 31 (198
8) 388).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、第1の比較的耐熱性の高い有機絶縁材料を主
体とした絶縁方式では、有機材料は本質的にガスの放出
量が多く、さらにベーキングの温度が制約されるたとそ
の効果は低く、絶縁層からのガスの放出を少なくするこ
とができない。
However, in the first insulation method, which is based on relatively heat-resistant organic insulating materials, the organic materials inherently release a large amount of gas, and if the baking temperature is restricted, the effectiveness is low, making it difficult to insulate. It is not possible to reduce the release of gas from the layer.

第2の絶縁層を金属でシールドし真空環境から隔離する
方式において、ステンレスシースのMI型ケーブルを用
いたコイルでは、渦電流によるステンレスシースの発熱
で、ステンレスからのガスの放出量が多くなるという問
題があり、また、コイルとともにステータをステンレス
のキャンでシールドする方法では、ガスの放出量は非常
に少なくなるがキャンによるステータとロータ間の磁気
ギャップの増大によるモータの効率の低下や、構造が複
雑でしかも薄肉のキャンを加工する必要があるために、
生産性が悪く高価になるという問題がある。
In the method of shielding the second insulating layer with metal and isolating it from the vacuum environment, in a coil using a stainless steel sheathed MI type cable, the amount of gas released from the stainless steel increases due to heat generation of the stainless steel sheath due to eddy current. In addition, the method of shielding the stator along with the coils with a stainless steel can greatly reduces the amount of gas released, but the can increases the magnetic gap between the stator and rotor, reducing motor efficiency and causing structural problems. Because it is necessary to process complex and thin-walled cans,
There are problems with poor productivity and high costs.

そこで、本発明は真空環境内においてガスの放出が少な
い真空用電気機器の絶縁線輪を提供することを目的をす
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an insulated wire ring for vacuum electrical equipment that releases less gas in a vacuum environment.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、電線を巻回した線輪に、シリ
コーン化合物の固形分50〜30重量%、デビトロ化し
たマイカガラス40〜20重量%、鱗片径50μm以上
を少なくとも50重量%以上含む天然マイカ粉末30〜
10重量%、酸化チタン25〜10重量%、および酸化
アルミニュウム10〜2重量%とを混練し、有機溶剤で
希釈した含浸剤を含浸、モールドするものである。
In order to solve the above problems, a wire ring around which electric wire is wound has a solid content of 50 to 30% by weight of a silicone compound, 40 to 20% by weight of devitreted mica glass, and at least 50% by weight of a scale diameter of 50 μm or more. Mica powder 30~
10% by weight of titanium oxide, 25 to 10% by weight of titanium oxide, and 10 to 2% by weight of aluminum oxide are kneaded, impregnated with an impregnating agent diluted with an organic solvent, and molded.

〔作用〕[Effect]

この含浸剤を線輪に含浸、モールドし300℃以上の温
度で焼成すると、シリコーン化合物の有機成分の熱分解
で生じたガスが系外に放出される。
When this impregnating agent is impregnated into a wire ring, molded, and fired at a temperature of 300° C. or higher, gas generated by thermal decomposition of the organic component of the silicone compound is released to the outside of the system.

さらに、デビトロ化したマイカガラス中のカリ四ケイ素
雲母から気化する微量のフッ素化合物、例えば、SiF
、、KFなどが、シリコーン化合物の熱分解生成物であ
る5102の一部を融かし、セラミック化した骨材とな
る。加えて、鱗片径50μm以上の比較的大きい天然マ
イカは、実用時における熱応力などに対する補強材とな
る。
Furthermore, trace amounts of fluorine compounds vaporized from potassium tetrasilicon mica in the devitrified mica glass, such as SiF
,, KF, etc. melt a part of 5102, which is a thermal decomposition product of a silicone compound, to form a ceramic aggregate. In addition, relatively large natural mica with a scale diameter of 50 μm or more serves as a reinforcing material against thermal stress during practical use.

このようにして形成された絶縁層は、セラミック化によ
る優れた耐熱性と、脱ガスに適した気孔を有する絶縁線
輪となる。
The insulating layer thus formed becomes an insulating coil having excellent heat resistance due to ceramicization and pores suitable for degassing.

〔実施例〕〔Example〕

以下、本発りを図に示す実施例について説明する。 Hereinafter, a description will be given of an example in which the invention is illustrated in the drawings.

第1図は本発明を用いた真空用アキシャルギャプモータ
のステータを示す断面図である。対地間絶縁を施したス
テータコア1に低粘度の含浸剤を含浸処理したコイル2
を挿入した後、高粘度の含浸剤をモールドし製作したも
のである。なお、4はステータハウジングである。
FIG. 1 is a sectional view showing a stator of a vacuum axial gap motor using the present invention. Coil 2 in which stator core 1 with ground insulation is impregnated with low viscosity impregnating agent
It was manufactured by inserting the pores and then molding them with a highly viscous impregnating agent. Note that 4 is a stator housing.

コイル含浸およびモールドに用いた含浸剤は、シリコー
ン樹脂(信越化学株式会社製:KR282)、デビトロ
化したマイカガラス(トビーエ業株式会社製 PDM−
に、325メツシユ)、天然マイカ (岡部マイカ株式
会社製:DR−2>、酸化チタン(帝国化工株式会社製
:JRNC)、酸化アルミニュウム(昭和電工株式会社
製二T−A−6)を、重量比で100:90:45:5
7:13に調合しボールミルで混練した後にキシレンで
希釈し、低粘度の含浸剤は20℃の粘度が500CPに
なるように、高粘度の含浸剤は20℃の粘度が2000
CPになるように調整した。
The impregnating agents used for coil impregnation and molding were silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd.: KR282) and devitreted mica glass (manufactured by Tobie Gyo Co., Ltd., PDM-).
325 mesh), natural mica (manufactured by Okabe Mica Co., Ltd.: DR-2>, titanium oxide (manufactured by Teikoku Kako Co., Ltd.: JRNC), aluminum oxide (manufactured by Showa Denko Co., Ltd.: 2T-A-6), weight Ratio: 100:90:45:5
Mix 7:13 and knead with a ball mill, then dilute with xylene so that the low viscosity impregnant has a viscosity of 500 CP at 20°C, and the high viscosity impregnant has a viscosity of 2000 CP at 20°C.
Adjusted to be CP.

コイル2は上記のように調整した低粘度の含浸剤を含浸
漬風乾し、さたに80℃、120℃で加熱することによ
り溶剤を蒸発させ、これをステータコア1の脚に挿入し
てステータハウジング4内に設置した。さらに、コイル
2の外周面とステータコア1およびステータハウジング
4との間隙に高粘度の含浸剤を充填し、80℃さらに1
20℃で加熱して溶剤を蒸発させた後、200℃でシリ
コーン樹脂を硬化させ、さらに400℃で焼成して無機
絶縁層を形成した。この無機絶縁層は、セラミック化し
た骨材と鱗片径の比較的大きい天然マイカの補強効果に
より十分な機械的強度を有し、さらに、シリコーン化合
物の熱分解生成ガスが系外に放出された跡が、脱ガスに
適した気孔となっている。
The coil 2 is impregnated with a low-viscosity impregnant prepared as described above, air-dried, heated at 80°C and 120°C to evaporate the solvent, and inserted into the legs of the stator core 1 to form the stator housing. It was installed within 4. Furthermore, the gap between the outer peripheral surface of the coil 2 and the stator core 1 and the stator housing 4 is filled with a high viscosity impregnating agent.
After heating at 20°C to evaporate the solvent, the silicone resin was cured at 200°C and further baked at 400°C to form an inorganic insulating layer. This inorganic insulating layer has sufficient mechanical strength due to the reinforcing effect of ceramicized aggregate and natural mica with a relatively large scale diameter. However, the pores are suitable for degassing.

第2図は、このように絶縁処理された線輪を用いたアキ
シャルギャップモータと、従来品の有機絶縁材料で絶縁
した線輪をステンレスのキャンでシールドして用いたア
キシャルギャップモータとを組み込んだ真空装置につい
て、t3時間まで室温で排気し、その後t3時間までベ
ーキングを行い、t3時間まで室温で排気した排気時間
と真空度との関係を示した特性図である。
Figure 2 shows an axial gap motor that uses wire rings that have been insulated in this way, and an axial gap motor that uses a conventional wire ring insulated with an organic insulating material and shielded with a stainless steel can. FIG. 7 is a characteristic diagram showing the relationship between the evacuation time and the degree of vacuum in which the vacuum device is evacuated at room temperature until time t3, then baked until time t3, and evacuated at room temperature until time t3.

従来品を組み込んだ真空装置では、曲線已に示すように
排気開始直後はキャン材料のステンレスからのガス放出
が比較的少ないた杓、真空度の上昇(圧力の低下)速度
は比較的速い。しかし、ベーキング時は、その温度が線
輪の耐熱温度で制限されるため、ベンキングの効果は少
ない。その様子を曲線Bでillすると、ベーキング温
度が低く、ベーキング時のガス放出量の増加幅が小さい
ので、ベーキング時の真空度の低下(圧力の上昇)が少
なく、ベーキング後も多量のガスが残されており、その
ガスが除々に放出され続ける。したがって、高い真空度
(低い圧力)は得られない。
In a vacuum device incorporating a conventional product, as shown in the curve, there is relatively little gas released from the stainless steel can material immediately after the start of evacuation, and the rate of increase in vacuum level (decrease in pressure) is relatively fast. However, during baking, the baking temperature is limited by the heat resistance temperature of the wire, so baking is less effective. If this situation is illustrated by curve B, the baking temperature is low and the increase in the amount of gas released during baking is small, so there is little decrease in vacuum level (increase in pressure) during baking, and a large amount of gas remains after baking. The gas continues to be released gradually. Therefore, a high degree of vacuum (low pressure) cannot be obtained.

一方、本発明による線輪を用いたモータを組み込んだ真
空装置では、曲線Aに示すように排気開始直後はキャン
ドモータよりもガスの放出量は多く、真空度の上昇(圧
力の低下)速度は比較的遅い。しかし、ベーキング時は
線輪によるベーキング温度の制限はなく高い温度でベー
キングできることや、線輪の絶縁層が適度の気孔を有し
、材料内部から表面に拡散していき表面から放出される
ガスの拡散距離が短く、しかも表面積が太きいたと、短
時間に多量のガスが放出される。その結果、ベーキング
の効果が大きく、ベーキング後に容易に高い真空度(低
い圧力)が得られることがわかる。
On the other hand, in a vacuum device incorporating a motor using a coil according to the present invention, as shown in curve A, the amount of gas released is larger than that of a canned motor immediately after the start of evacuation, and the rate of increase in vacuum level (decrease in pressure) is slower. Relatively slow. However, during baking, the baking temperature is not limited by the wire and can be baked at a high temperature, and the insulating layer of the wire has a suitable amount of pores, which prevents gases from diffusing from the inside of the material to the surface and being released from the surface. If the diffusion distance is short and the surface area is large, a large amount of gas will be released in a short period of time. As a result, it can be seen that the effect of baking is large and that a high degree of vacuum (low pressure) can be easily obtained after baking.

〔発胡の効果〕[Effect of Hathu]

以上説明したように、焼成によりセラミックス化する本
発明の絶縁線輪は、従来の有機絶縁に比べ本質的にガス
の放出量が少ないこと、耐熱性が高く高温度でのベーキ
ングが可能で、しかも、ベーキング時の脱ガスに適した
適度の気孔を有しており、短時間にベーキングの効果が
表れることから、ステンレスなどのキャンでシールドす
ることなく、真空用に適用することができる。さらに、
キャンを必要としないので、機器の効率が良くなるとと
もに、生産性も向上する。
As explained above, the insulating wire of the present invention, which is made into a ceramic by firing, essentially releases less gas than conventional organic insulation, has high heat resistance, and can be baked at high temperatures. It has appropriate pores suitable for degassing during baking, and the baking effect appears in a short time, so it can be applied to vacuum applications without shielding with a can such as stainless steel. moreover,
Since there is no need for a can, the efficiency of the equipment is improved and productivity is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す真空用アキシャルギ
ャップモータのステータの計画図、第2図は、本発卯に
よる絶縁と従来の絶縁とを真空装置中で排気したときの
排気特性を示す特性図である。 1・・・ステータコア、2・・・無機絶縁コイル、3・
・・無機モルールド、4・・・ステータハウジング特許
出願人 株式会社 安用電機製作所第1図 第2図
Fig. 1 is a plan view of a stator of a vacuum axial gap motor showing an embodiment of the present invention, and Fig. 2 shows the exhaust characteristics when insulation by this invention and conventional insulation are evacuated in a vacuum device. FIG. 1... Stator core, 2... Inorganic insulated coil, 3...
...Inorganic Morruled, 4...Stator housing patent applicant Yasuyo Electric Manufacturing Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 電線を巻回した線輪に、シリコーン化合物の固形分50
〜30重量%、デビトロ化したマイカガラス40〜20
重量%、鱗片径50μm以上を少なくとも50重量%以
上含む天然マイカ粉末30〜10重量%、酸化チタン2
5〜10重量%、および酸化アルミニュウム10〜2重
量%とを混練し、有機溶剤で希釈した含浸剤を含浸、モ
ールドすることを特徴とする真空用電気機器の絶縁線輪
The solid content of silicone compound is 50% in the coil around which the electric wire is wound.
~30% by weight, devitrified mica glass 40-20
30-10% by weight of natural mica powder containing at least 50% by weight of scale diameters of 50 μm or more, titanium oxide 2
An insulated wire ring for vacuum electrical equipment, characterized in that 5 to 10% by weight of aluminum oxide and 10 to 2% by weight of aluminum oxide are kneaded, impregnated with an impregnating agent diluted with an organic solvent, and molded.
JP33291590A 1990-11-28 1990-11-28 Insulated coil of electric machine for vacuum Pending JPH04196505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33291590A JPH04196505A (en) 1990-11-28 1990-11-28 Insulated coil of electric machine for vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33291590A JPH04196505A (en) 1990-11-28 1990-11-28 Insulated coil of electric machine for vacuum

Publications (1)

Publication Number Publication Date
JPH04196505A true JPH04196505A (en) 1992-07-16

Family

ID=18260229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33291590A Pending JPH04196505A (en) 1990-11-28 1990-11-28 Insulated coil of electric machine for vacuum

Country Status (1)

Country Link
JP (1) JPH04196505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012926A (en) * 2001-06-26 2003-01-15 Fujikura Ltd Silicone resin composition and fire-resistant low-voltage cable obtained using the same
JP2006503121A (en) * 2002-08-01 2006-01-26 セラム ポリメリック ピーティーワイ リミテッド Fire resistant silicone polymer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012926A (en) * 2001-06-26 2003-01-15 Fujikura Ltd Silicone resin composition and fire-resistant low-voltage cable obtained using the same
JP2006503121A (en) * 2002-08-01 2006-01-26 セラム ポリメリック ピーティーワイ リミテッド Fire resistant silicone polymer composition

Similar Documents

Publication Publication Date Title
JP2827333B2 (en) Manufacturing method of heat-resistant insulating coil
JP5189652B2 (en) Powder for powder magnetic core, powder magnetic core, and production method thereof
JPH04196505A (en) Insulated coil of electric machine for vacuum
US20120023870A1 (en) Methods of forming insulated wires and hermetically-sealed packages for use in electromagnetic devices
JPH04196504A (en) Insulated coil of electric machine for vacuum
US4080726A (en) Method for manufacturing an electrical heating device
JPH04317531A (en) Insulating coil for vacuum electric machinery
JPH0269911A (en) Insulating method for vacuum electric apparatus coil
JPH02261038A (en) Insulation of coil of electric instrument for vacuum equipment
JPS59185148A (en) Insulating method of electric machine coil
JPS63184310A (en) Coil insulation of vacuum electric apparatus
JPS63184311A (en) Coil insulation of vacuum electric apparatus
US2688569A (en) Encapsulated coils and method of making same
JPS6161526B2 (en)
JPH04332405A (en) Heat-resisting electric insulating conductor
EP4333275A1 (en) High-temperature electromagnetic machine and method of manufacturing the same
JPH02301909A (en) Inorganic insulated cable and its manufacture
JPH04251547A (en) Heat resisting insulated coil
JPH08264275A (en) Induction heating coil
JPH04282509A (en) Electric wire for vacuum
JP3291324B2 (en) Heat resistant insulated wire
JP2817270B2 (en) How to make heat-resistant windings for electrical equipment
JPS6328020A (en) Manufacture of insulating coil
JPS5854608A (en) Insulating method for coil used on electric machine
JPH04251548A (en) Insulation treating method for heat resisting insulated coil