JPH04192302A - Thin film thermistor element - Google Patents

Thin film thermistor element

Info

Publication number
JPH04192302A
JPH04192302A JP2302058A JP30205890A JPH04192302A JP H04192302 A JPH04192302 A JP H04192302A JP 2302058 A JP2302058 A JP 2302058A JP 30205890 A JP30205890 A JP 30205890A JP H04192302 A JPH04192302 A JP H04192302A
Authority
JP
Japan
Prior art keywords
thin film
heat
film
electrodes
iron silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2302058A
Other languages
Japanese (ja)
Inventor
Masami Koshimura
正己 越村
Masashi Komabayashi
正士 駒林
Masahiro Hirama
平間 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2302058A priority Critical patent/JPH04192302A/en
Publication of JPH04192302A publication Critical patent/JPH04192302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a thin film thermistor which is excellent in thermal stability and thermal response and can cope with various uses by combining an arbitrary B constant and resistance value, by constituting heat-sensitive resistance film of iron silicide. CONSTITUTION:On an electrically insulative substrate 2 of a thin film thermistor element 1, a pair of electrodes 3, 3 are formed. A heat-sensitive resistance film 4 is formed on the upper surfaces of the electrodes 3, 3 and the upper surface of the substrate 2 on which the electrodes are not formed. Leads 5, 5 are connected with the electrodes 3, 3. The heat-sensitive resistance film 4 is composed of iron silicide. It is preferable that the composition of iron silicide is Fe1-ySiy and 0.63<=y<=0.71. The main component of iron silicide is Fe and Si, a part of which may be substituted by metal element M. Thereby the following thin film thermistor element can be obtained; various temperature characteristics are realized, wide range resistance value from several ohms to several megohms or higher at a room temperature when the B constant is 1000-5000K and the film thickness is 0.01-2mum is obtained, and stability is excellent at a temperature higher than or equal to 300 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は感熱性抵抗膜か鉄けい化物からなる薄膜サーミ
スタ素子に関する。特に高温用センサに好適な薄膜サー
ミスタ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film thermistor element made of a heat-sensitive resistive film or iron silicide. In particular, the present invention relates to a thin film thermistor element suitable for high temperature sensors.

[従来の技術] 従来、この種のサーミスタ素子としては、■アルミナを
主成分とする金属酸化物の焼結体に白金なとのリード線
を埋込みガラスコートして外気と遮断・保護したビード
型素子、■上記■と同一材料のチップ状素子の両側に電
極を付け、これをガラス封入したD HT (doub
le heat−sink thermis−tor)
型素子、■電極にリード線を付はガラスコートしたガラ
スモールドチップ型素子、或いは■電気絶練性基板上に
炭化けい素からなる感熱性薄膜を形成してリード線を付
与した薄膜サーミスタ素子(例えば、特開昭53−63
552)が知られている。
[Conventional technology] Conventionally, this type of thermistor element is a bead type in which lead wires such as platinum are embedded in a sintered body of metal oxide whose main component is alumina and coated with glass to isolate and protect it from the outside air. The device is a DHT (double
heat-sink thermistor)
type element, ■Glass-molded chip type element with a glass coated electrode with lead wires, or ■Thin film thermistor element with lead wires formed by forming a heat-sensitive thin film made of silicon carbide on an electrically refractory substrate. For example, JP-A-53-63
552) is known.

[発明が解決しようとする課題] 上記■〜■のサーミスタ素子は高温において安定性がな
く、構造上から熱的応答性が劣るという問題点があった
[Problems to be Solved by the Invention] The thermistor elements of (1) to (4) above have problems in that they are not stable at high temperatures and have poor thermal responsiveness due to their structure.

また上記■の薄膜サーミスタ素子は熱的安定性に優れて
いるため高温に耐える特長がある反面、その構造上けい
素と炭素の組成比の変更は難しいため、スパッタリング
時の成膜条件によってのみB定数や抵抗値等のサーミス
タ特性を変えられるに過ぎず、材料特性が限定され、各
種用途にきめ細かに対応し幅広い特性を具備したサーミ
スタ素子が得がたい不具合があった。
In addition, although the thin film thermistor element mentioned above has excellent thermal stability and can withstand high temperatures, it is difficult to change the composition ratio of silicon and carbon due to its structure. Only the thermistor characteristics such as constants and resistance values can be changed, and the material properties are limited, making it difficult to create a thermistor element with a wide range of characteristics that can be tailored to various applications.

本発明の目的は、上記問題点を解決するもので熱的安定
性が高く、熱的応答性に優れ、かつ任意のB定数と抵抗
値とを組合せて各種用途にきめ細かに対応し得る幅広い
特性を具備した薄膜サーミスタ素子を提供することにあ
る。
The purpose of the present invention is to solve the above-mentioned problems, and has high thermal stability, excellent thermal responsiveness, and a wide range of characteristics that can be finely adapted to various uses by combining arbitrary B constants and resistance values. An object of the present invention is to provide a thin film thermistor element having the following.

[課題を解決するための手段] 本発明者らは耐熱材料として開発されたFeSi□系の
バルク材料が耐酸化性にも優れ、しかも大気中で利用で
きる高温用熱電材料であること(RKieffer、 
F、Benesovsky and C,Konopi
cky: Ber。
[Means for Solving the Problems] The present inventors discovered that the FeSi□-based bulk material, which was developed as a heat-resistant material, has excellent oxidation resistance and is a high-temperature thermoelectric material that can be used in the atmosphere (R Kieffer,
F. Benesovsky and C. Konopi
cky: Ber.

Deunt、 Keram、 Ges、、31 (19
54) 223など)、また986℃までは状態図上安
定な材料であって(JP、Piton and M、F
、Fay: C,R,Acad、 Sci 、C266
(1968) 154) 、Lかもこの材料°が半導体
材料としても用いられていることに着目し、この材料を
薄膜化することにより、上記目的を達成できることを見
出し、本発明に到達した。
Deunt, Keram, Ges, 31 (19
54) 223, etc.), and is a stable material on the phase diagram up to 986°C (JP, Piton and M, F
, Fay: C,R,Acad,Sci,C266
(1968) 154) focused on the fact that this material is also used as a semiconductor material, and found that the above object could be achieved by making this material into a thin film, thereby achieving the present invention.

第1図に示すように、本発明の薄膜サーミスタ素子1は
、電気絶縁性基板2上に1対の電極3゜3が設けられ、
これらの電極3.3の上面及び電極が設けられていない
基板2の上面に感熱性抵抗膜4が設けられる。電極3,
3に′はリード線5゜5が接着される。
As shown in FIG. 1, the thin film thermistor element 1 of the present invention includes a pair of electrodes 3.3 provided on an electrically insulating substrate 2.
A heat-sensitive resistive film 4 is provided on the upper surface of these electrodes 3.3 and on the upper surface of the substrate 2 where no electrodes are provided. electrode 3,
A lead wire 5.5 is glued to 3'.

本発明の特徴あるところは、感熱性抵抗膜4か鉄けい化
物であることにある。特に、鉄けい化物の組成がFe1
−ySiyであって、0.63≦y≦071であること
が好ましい。また鉄けい化物はFe及びSiを主成分と
し、この一部を金属元素Mで置換してもよい。この場合
、鉄けい化物の組成は(F e4−xM’x)1−y 
S i yであって、金属元素Mは元素周期表の3A族
、4A族、5A族。
A feature of the present invention is that the heat-sensitive resistive film 4 is made of iron silicide. In particular, the composition of iron silicide is Fe1
-ySiy, and preferably 0.63≦y≦071. Moreover, iron silicide has Fe and Si as main components, and a part of this may be replaced with metal element M. In this case, the composition of iron silicide is (Fe4-xM'x)1-y
S i y, and the metal element M is a group 3A, 4A, or 5A of the periodic table of elements.

6A族、7A族、8族及び1B族の元素から選ばれた少
なくとも1つの元素であり、X及びyがそれぞれO<x
≦0.30,0.63≦y≦0.71であることが好ま
しい。特に好ましい元素は遷移金属元素(Sc、Ti、
V、Cr、Mn、Fe。
At least one element selected from the elements of Group 6A, Group 7A, Group 8, and Group 1B, and X and y are each O<x
It is preferable that ≦0.30, 0.63≦y≦0.71. Particularly preferred elements are transition metal elements (Sc, Ti,
V, Cr, Mn, Fe.

Co、Ni、Cu)又は白金属元素(Ru、Rh。Co, Ni, Cu) or platinum metal elements (Ru, Rh.

Pd、Os、I r、Pt)である。金属元素Mの含有
率Xが0.15を越えるか又はSiの含有率yが0.6
3〜071の範囲を外れる組成になると、B定数が10
00に以下となりサーミスタの特性上好ましくない。
Pd, Os, Ir, Pt). The content x of the metal element M exceeds 0.15 or the content y of Si is 0.6
When the composition falls outside the range of 3 to 071, the B constant becomes 10.
00 or less, which is unfavorable in terms of the characteristics of the thermistor.

電極3.3は2対以上あってもよく、また電極3.3は
感熱性抵抗膜4の上面に設けてもよい。
There may be two or more pairs of electrodes 3.3, and the electrodes 3.3 may be provided on the upper surface of the heat-sensitive resistive film 4.

また第2図に示すように、感熱性抵抗膜4の上面に電気
絶縁用保護膜6を形成してもよい。
Furthermore, as shown in FIG. 2, an electrically insulating protective film 6 may be formed on the upper surface of the heat-sensitive resistive film 4.

本発明の電気絶縁性基板は、耐熱性を有し、鉄けい化物
の熱膨張率(IOX 10−’deg−1)に近い熱膨
張率を有し、鉄けい化物の付着性の大きいものであれば
よい。例示すればアルミナ、フォルスライト、ステアラ
イト、ベリリア、Mg−A文スピネル等のいずれかの材
料からなる基板か好ましい。
The electrically insulating substrate of the present invention has heat resistance, has a coefficient of thermal expansion close to that of iron silicide (IOX 10-'deg-1), and has a high adhesion of iron silicide. Good to have. For example, a substrate made of any one of materials such as alumina, forsrite, stearite, beryllia, and Mg-A spinel is preferable.

また電極は、耐熱性と耐蝕性°に優れた導電性材料によ
り作られる。例えば白金、白金−金、金−パラジウム−
白金等が挙げられる。この電極は薄膜もしくは上記金属
ペーストを基板端部に印刷して焼付けた厚膜により形成
される。
Furthermore, the electrodes are made of a conductive material with excellent heat resistance and corrosion resistance. For example, platinum, platinum-gold, gold-palladium-
Examples include platinum. This electrode is formed by a thin film or a thick film obtained by printing and baking the metal paste on the edge of the substrate.

更に感熱性抵抗膜は、気相成長法、電子ビーム蒸着法、
イオンビーム蒸着法、真空蒸着法、スパッタリング蒸着
法等により形成される。スパッタリング蒸着法が量産に
適しているため好ましい。
Furthermore, heat-sensitive resistive films can be produced using vapor phase growth method, electron beam evaporation method,
It is formed by ion beam evaporation, vacuum evaporation, sputtering evaporation, or the like. Sputtering deposition is preferred because it is suitable for mass production.

スパッタリング蒸着は、Arガスのような不活性ガス雰
囲気中で行われ、ターゲットには鉄とけい素の各粉末又
は鉄とけい素と前述した金属元素Mの各粉末を所定の比
率で配合し、円盤状に粉末冶金したものを使用する。蒸
着した抵抗膜は結晶構造上、FeSi*化合物又は(F
elJ)Si2化合物を形成している必要かあるため、
基板を300〜950℃の温度で加熱した状態で蒸着す
ることが望ましい。
Sputtering vapor deposition is performed in an inert gas atmosphere such as Ar gas, and the target is a mixture of iron and silicon powders or iron, silicon, and metal element M powders in a predetermined ratio, and a disk-shaped Use powder metallurgy. Due to its crystal structure, the vapor-deposited resistive film is made of FeSi* compound or (F
elJ) Since it is necessary to form a Si2 compound,
It is desirable to perform the vapor deposition while heating the substrate at a temperature of 300 to 950°C.

しかし室温で蒸着した後に、次に述べる熱処理によりF
eSi2化合物又は(FeM)Siz化合物を得てもよ
い。
However, after vapor deposition at room temperature, F
An eSi2 compound or a (FeM)Siz compound may be obtained.

本発明の感熱性抵抗膜は、膜厚が0.01〜2μmの範
囲からサーミスタの用途に応じて作られる。001μm
未満の場合、抵抗膜が基板と反応したり、また基板の凹
凸により膜が形成しにくいなどの基板からの影響を受は
易く、また2μmを越えると基板との熱膨張率の違いに
より膜が剥離し易くなるため、上記範囲内で作られる。
The heat-sensitive resistance film of the present invention is made to have a film thickness in the range of 0.01 to 2 μm depending on the purpose of the thermistor. 001μm
If it is less than 2 μm, the resistive film may react with the substrate, or it may be difficult to form a film due to the irregularities of the substrate, and if it exceeds 2 μm, the film may be difficult to form due to the difference in thermal expansion coefficient with the substrate. Since it becomes easy to peel off, it is made within the above range.

感熱性抵抗膜を形成した後、その電気絶縁性基板を40
0〜985℃の温度範囲で熱処理すると、サーミスタと
しての感熱性の再現性がよく、かつ熱的安定性に優れる
ため好ましい。この熱処理は不活性ガス雰囲気中又は真
空中がより安定した特性を得るために好ましいか、大気
中でも特性か安定しているためよい。また熱処理は40
0℃未満であるとその効果か乏しく、985℃を越える
と抵抗膜が熱的損傷を受は易くなる。
After forming the heat-sensitive resistive film, the electrically insulating substrate was heated for 40 minutes.
Heat treatment in the temperature range of 0 to 985° C. is preferable because it provides good reproducibility of heat sensitivity as a thermistor and excellent thermal stability. This heat treatment is preferably carried out in an inert gas atmosphere or vacuum in order to obtain more stable characteristics, or in the air because the characteristics are stable. Also, heat treatment is 40
If the temperature is less than 0°C, the effect will be poor, and if it exceeds 985°C, the resistive film will be susceptible to thermal damage.

電気絶縁用保護膜はイオン性のある湿気や水分が感熱性
抵抗膜に直接付着してサーミスタ特性か変化するのを防
止するもので、01〜10μmの膜厚に形成される。0
1μm未満であると保護機能に劣り、10μmを越える
と熱膨張率の違いにより剥離し易くなるため、上記範囲
に形成される。この保護膜としては、熱膨張率か感熱性
抵抗膜のそれに近くて、耐蝕性に優れた材料か選ばれる
。例示すれば鉄けい化物の酸化物、高純度けい素、二酸
化けい素、窒化けい素等が挙げられる。
The electrical insulating protective film prevents ionic moisture or moisture from directly adhering to the heat-sensitive resistive film and changing the thermistor characteristics, and is formed to a thickness of 01 to 10 μm. 0
If it is less than 1 μm, the protective function will be inferior, and if it exceeds 10 μm, it will be easy to peel off due to the difference in coefficient of thermal expansion, so it is formed within the above range. For this protective film, a material with a coefficient of thermal expansion close to that of the heat-sensitive resistive film and excellent corrosion resistance is selected. Examples include iron silicide oxides, high purity silicon, silicon dioxide, and silicon nitride.

この保護膜は前述した感熱性抵抗膜を形成した後の熱処
理によって形成されることもあるか、この熱処理後、更
に保護膜形成のために特別に熱処理することが好ましい
This protective film may be formed by heat treatment after forming the above-mentioned heat-sensitive resistive film, or it is preferable that after this heat treatment, a special heat treatment is further performed for forming the protective film.

例えば、二酸化けい素の保護膜を作るには、熱処理した
電気絶縁性基板を大気中又は酸化性雰囲気中で500〜
1000℃の温度で更に熱処理すると、鉄けい化物の膜
表面の一部が分離し、抵抗膜上に5iOzの保護膜が形
成される。この熱処理は鉄けい化物の膜表面の一部を分
離させる必要かあることから前述の熱処理と比べて、短
時間で若干高い温度で行われる。絶縁性を高めるために
、5in2のターゲットを用いてスパッタリングして5
i02の保護膜を形成してもよい。
For example, to make a silicon dioxide protective film, a heat-treated electrically insulating substrate is heated to
When further heat-treated at a temperature of 1000° C., part of the surface of the iron silicide film separates, and a protective film of 5 iOz is formed on the resistive film. This heat treatment is performed in a shorter time and at a slightly higher temperature than the above-mentioned heat treatment because it is necessary to separate a part of the surface of the iron silicide film. To improve the insulation, sputtering is performed using a 5in2 target.
A protective film of i02 may be formed.

別の保護膜の成膜法としては、鉄けい化物の薄膜を形成
するときに、アルゴンガスの雰囲気を一部酸素で置換し
、活性スパッタリングを行って形成する方法もある。
Another method for forming a protective film is to replace part of the argon gas atmosphere with oxygen and perform active sputtering when forming a thin film of iron silicide.

最後にリード線を電極に接着することにより、薄膜サー
ミスタ素子が得られる。このリード線の電極への接着方
法は、例えば白金細線をボンディングし、これを太い耐
熱性導線に溶接する方法、或いは電極焼付けに用いた白
金ペーストを用いて白金リード線を電極に焼付は固定す
る方法がある。
Finally, by bonding the lead wires to the electrodes, a thin film thermistor element is obtained. The method of adhering this lead wire to the electrode is, for example, by bonding a thin platinum wire and welding it to a thick heat-resistant conductor wire, or by baking and fixing the platinum lead wire to the electrode using the platinum paste used for baking the electrode. There is a way.

リード線を電極に接着した後、耐熱性が高く絶縁性の高
い無機充填剤を用いて薄膜サーミスタ素子全体を金属性
パイプ内に埋め込むと、温度センサか得られる。
After bonding the lead wires to the electrodes, a temperature sensor is obtained by embedding the entire thin-film thermistor element in a metal pipe using an inorganic filler that has high heat resistance and high insulation properties.

[作 用] 本発明の薄膜サーミスタ素子は、鉄とけい素の組成比又
は鉄とけい素の組成比を所定の範囲内で変えたり、鉄の
一部を金属元素Mで置換して感熱性抵抗膜を形成できる
ため、種々の温度特性を有し、B定数が1000〜50
00に、膜厚か001〜2μmで室温におい′て数Ω〜
数MΩ以上の幅広い範囲の抵抗値を有し、少なくとも3
00℃以上の温度で安定性の良いサーミスタ特性を備え
る。
[Function] The thin film thermistor element of the present invention can be made into a heat-sensitive resistive film by changing the composition ratio of iron and silicon or the composition ratio of iron and silicon within a predetermined range, or by replacing a part of iron with metal element M. It has various temperature characteristics and has a B constant of 1000 to 50.
00, the film thickness is 001 to 2 μm, and the resistance is several Ω at room temperature.
It has a wide range of resistance values of several MΩ or more, and at least 3
Equipped with thermistor characteristics that are stable at temperatures above 00°C.

電気絶縁基板上に形成された鉄けい化物薄膜はバルクと
して耐熱性にも耐酸化性にも優れているため、薄膜サー
ミスタの状態でも高温用サーミスタとして極めて安定で
ある。
Since the iron silicide thin film formed on the electrically insulating substrate has excellent heat resistance and oxidation resistance as a bulk, it is extremely stable as a high-temperature thermistor even in the form of a thin film thermistor.

また感熱性抵抗膜は成膜時の形状寸法の自由度が比較的
高<、シかも形成された薄膜のトリミングも可能である
ため、一般にサーミスタ素子に要求されるB定数及び抵
抗値の中から所望の特性を具備することができる。
In addition, heat-sensitive resistive films have a relatively high degree of freedom in shape and size during film formation, and trimming of the formed thin film is also possible. It can have desired properties.

[発明の効果] 以上述べたように、本発明の薄膜サーミスタ素子は、感
熱性抵抗膜がFeSi、系材料であるため、耐熱性及び
耐酸化性に優れ、しかも薄膜であるため、熱的応答性が
良好で、高温用に好適である。
[Effects of the Invention] As described above, the thin film thermistor element of the present invention has excellent heat resistance and oxidation resistance because the heat-sensitive resistive film is made of FeSi, and because it is a thin film, it has excellent thermal response. It has good properties and is suitable for high temperature applications.

また鉄とけい素の組成比又は鉄とけい素の組成比を所定
の範囲内で変えたり、鉄の一部を金属元素Mで置換して
感熱性抵抗膜を形成できるため、種々のB定数と抵抗値
の組合せが可能になり、所望の特性のサーミスタ素子が
得られる。
In addition, it is possible to form a heat-sensitive resistive film by changing the composition ratio of iron and silicon or the composition ratio of iron and silicon within a predetermined range, or by replacing a part of iron with the metal element M. Combinations of values become possible and a thermistor element with desired characteristics can be obtained.

特に感熱性抵抗膜の上面に電気絶縁用保護膜を形成すれ
ば、外界の影響を受けにくくなり、かつ耐酸化性も高ま
るため、より特性が安定し、高温用サーミスタにより一
層適したものになる。
In particular, if an electrically insulating protective film is formed on the top surface of the heat-sensitive resistive film, it will be less susceptible to external influences and will also have higher oxidation resistance, making the characteristics more stable and making it more suitable for high-temperature thermistors. .

[実施例コ 次に本発明の実施例を比較例とともに説明する。[Example code] Next, examples of the present invention will be described together with comparative examples.

〈実施例1〉 電気絶縁性基板として、この例ではアルミナ基板を選定
した。ガラス粉末が混入された、所謂ガラスフリット入
り白金ペーストを基板の上面にスクリーン印刷法により
印刷し大気中にて1000℃の温度で1時間焼付けて1
対の電極を形成した。
<Example 1> In this example, an alumina substrate was selected as the electrically insulating substrate. A so-called glass frit-containing platinum paste mixed with glass powder was printed on the top surface of the substrate by screen printing and baked in the air at a temperature of 1000°C for 1 hour.
A counter electrode was formed.

この基板を18枚用意し、そのうち4枚は鉄とけい素か
らなる鉄けい化物、残りの13枚は鉄の一部を金属元素
M (M=Mn、Cr、N i、v。
Eighteen of these substrates were prepared, four of which were made of iron silicide made of iron and silicon, and the remaining 13 were made of metal elements M (M=Mn, Cr, Ni, v).

Pt、Pd)で置換した鉄けい化物からなる薄膜を作る
ために用いた。各基板の上面に高周波スパッタリング法
により鉄けい化物薄膜を形成し、18種類の薄膜サーミ
スタを作製した。即ち、鉄とけい素の原子比及び鉄とけ
い素と金属元素M(M=Mn、Cr、Ni、V、Pt、
Pd)の原子比を変えた18種類のターゲットを用意し
て各ターゲットを高周波スパッタリング装置の陰極に各
別に設け、数mTorr程度のArガス雰囲気中で高周
波電力300W、成膜速度3μm / h rの条件で
スパッタリングし基板の上面に薄膜を形成した。
It was used to make a thin film made of iron silicide substituted with Pt, Pd). An iron silicide thin film was formed on the upper surface of each substrate by high frequency sputtering, and 18 types of thin film thermistors were manufactured. That is, the atomic ratio of iron and silicon, iron, silicon, and metal element M (M=Mn, Cr, Ni, V, Pt,
Eighteen types of targets with different atomic ratios of Pd) were prepared, and each target was separately placed on the cathode of a high-frequency sputtering device. A thin film was formed on the upper surface of the substrate by sputtering under the following conditions.

蒸着後、薄膜を形成した基板を600℃の温度で熱処理
した。続いて薄膜の一部をエツチングし、電極部分を露
出させ、この部分に直径015mmの白金細線をパラレ
ルギャップ法により接続し、高温用センサに適した薄膜
サーミスタ素子を作製した。
After the vapor deposition, the substrate on which the thin film was formed was heat-treated at a temperature of 600°C. Subsequently, a part of the thin film was etched to expose an electrode part, and a thin platinum wire with a diameter of 015 mm was connected to this part by the parallel gap method to produce a thin film thermistor element suitable for a high temperature sensor.

く比較例1〉 実施例1の18種類のターゲットの中で、金属元素Mを
含有しない4種類のもののうち、鉄の原子比が最低のも
のより更に低いターゲット及び鉄の原子比が最高のもの
より更に高いターゲットを用いた以外は、実施例1と同
様にして2種類の薄膜サーミスタ素子を作製した。
Comparative Example 1> Among the 18 types of targets in Example 1, among the four types that do not contain the metal element M, a target with an iron atomic ratio lower than the lowest one and a target with the highest iron atomic ratio Two types of thin film thermistor elements were produced in the same manner as in Example 1, except that a higher target was used.

〈比較例2〉 実施例1の18種類のターゲットの中で、金属元素Mを
含有する14種類のもののうち、金属元素Mの含有率が
最大のものより更にMの含有率の大きいターゲット、S
iの含有率が最小のものより更にStの含有率の小さい
ターゲット及びSiの含有率が最大のものより更にSi
の含有率の大きいターゲットを用いた以外は、実施例1
と同様にして3種類の薄膜サーミスタ素子を作製した。
<Comparative Example 2> Among the 18 types of targets in Example 1, among the 14 types containing the metal element M, a target with a higher content of M than the target with the highest content of the metal element M, S
Targets with a smaller St content than those with a minimum i content and even more Si than those with a maximum Si content
Example 1 except that a target with a large content of
Three types of thin film thermistor elements were fabricated in the same manner as above.

実施例1.比較例1及び比較例2で作製した23種類の
サーミスタ素子の特性を第1表に示す。
Example 1. Table 1 shows the characteristics of the 23 types of thermistor elements manufactured in Comparative Example 1 and Comparative Example 2.

第3図にそのうちの1種類の鉄とけい素からなる鉄けい
化物でy=0.676のトリミング処理した抵抗値が7
200にΩのサーミスタ素子の温度特性を示す。23種
類の薄膜サーミスタ素子は膜厚が0.1μm又は1.0
μmであって、いずれも電極間距離1mm、薄膜の幅1
mmであった。
Figure 3 shows that one type of iron silicide made of iron and silicon has a resistance value of 7 after trimming at y=0.676.
200 Ω shows the temperature characteristics of the thermistor element. The 23 types of thin film thermistor elements have a film thickness of 0.1 μm or 1.0 μm.
μm, the distance between the electrodes is 1 mm, and the width of the thin film is 1 mm.
It was mm.

B定数は25℃と100℃の抵抗値より算出した。The B constant was calculated from the resistance values at 25°C and 100°C.

抵抗値は25℃における値である。また高抵抗化にする
ために、23種類の薄膜サーミスタ素子のうち19種類
について薄膜の表面の一部をレーザーにてトリミング処
理した。
The resistance value is the value at 25°C. Furthermore, in order to increase the resistance, a portion of the surface of the thin film of 19 out of 23 types of thin film thermistor elements was trimmed using a laser.

(以下、本頁余白) 第1表 第1表の結果から金属元素M (M=M n 、  C
r。
(Hereinafter, this page margin) Table 1 From the results in Table 1, the metal element M (M=M n , C
r.

Ni、V、Pt、Pd)の含有率Xが0.15以下であ
るか、又はSiの含有率yか063〜071の範囲内に
あると、B定数が100OKを上回り、温度センサ或い
は温度補償用のサーミスタに好適なサーミスタ素子であ
ることか判った。
If the content (X) of Ni, V, Pt, Pd) is 0.15 or less, or if the Si content (y) is within the range of 063 to 071, the B constant will exceed 100OK and the temperature sensor or temperature compensation It was found that this thermistor element is suitable for use in commercial thermistors.

また第3図に示すように、本実施例の薄膜サーミスタ素
子は25℃〜500℃の温度範囲において極めて安定し
た特性を示すことか判った。
Furthermore, as shown in FIG. 3, it was found that the thin film thermistor element of this example exhibited extremely stable characteristics in the temperature range of 25 DEG C. to 500 DEG C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜サーミスタ素子の断面図。 第2図は本発明の別の薄膜サーミスタ素子の断面図。 第3図は本発明一実施例薄膜サーミスタ素子の特性図。 1:薄膜サーミスタ素子、 2:電気絶縁性基板、 3:電極、 4:感熱性抵抗膜、 5:リード線、 6:電気絶縁用保護膜。 特許出願人 三菱鉱業セメント株式会社T (”C) 手続補正書6.え、 平成3年8月5日 特許庁長官  深 沢   亘 殿 2、発明の名称 薄膜サーミスタ素子 3補正をする者 事件との関係   特許出願人 住所(居所)東京都千代田区大手町−丁目6番1号氏名
(名称)   三菱マテリアル株式会社4、代理人 8、補正の内容 (1)明細書第5頁第16行目 「・・・1000に以下・・・」を 「・・・500に以下・・・」と訂正する。 (2)明細書第10頁第8行目 r・・・1000〜5000 K・Jを「・・・500
に以上・・・」と訂正する。 (3)明細書第15頁第1表 (以下、本頁余白) 第1表 第1表 と訂正する。 (4)明細書第16頁第4行目 「・・・1000Kjを r、500KJと訂正する。
FIG. 1 is a sectional view of a thin film thermistor element of the present invention. FIG. 2 is a sectional view of another thin film thermistor element of the present invention. FIG. 3 is a characteristic diagram of a thin film thermistor element according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1: Thin film thermistor element, 2: Electrically insulating substrate, 3: Electrode, 4: Heat-sensitive resistance film, 5: Lead wire, 6: Protective film for electrical insulation. Patent applicant: Mitsubishi Mining and Cement Co., Ltd. T (“C) Procedural amendment 6. August 5, 1991 Commissioner of the Japan Patent Office Mr. Wataru Fukazawa 2, Title of invention: Thin film thermistor element 3 Amendment case Related Patent applicant address (residence) 6-1 Otemachi-chome, Chiyoda-ku, Tokyo Name: Mitsubishi Materials Corporation 4, Agent 8 Contents of amendment (1) Page 5, line 16 of the specification " ...1000 or less..." is corrected to "...500 or less...". (2) Page 10, line 8 of the specification r...1000-5000 K.J....500
More than that…” I corrected myself. (3) Table 1, page 15 of the specification (hereinafter referred to as the margin of this page) is corrected to Table 1, Table 1. (4) Page 16, line 4 of the specification: ``...1000Kj is corrected to r, 500KJ.

Claims (1)

【特許請求の範囲】 1)電気絶縁性基板上に感熱性抵抗膜とこの抵抗膜の上
面又は下面に少なくとも1対の電極がそれぞれ設けられ
た薄膜サーミスタにおいて、 前記電極にリード線が接着され、かつ 前記感熱性抵抗膜が鉄けい化物であることを特徴とする
薄膜サーミスタ素子。 2)鉄けい化物の組成が Fe_1_−_ySi_yであって、 0.63≦y≦0.71である請求項1記載の薄膜サー
ミスタ素子。 3)鉄けい化物はFe及びSiを主成分とし、この一部
を金属元素Mで置換し、その組成が (Fe_1_−_xM_x)_1_−_ySi_yであ
って、金属元素Mは元素周期表の3A族,4A族,5A
族,6A族,7A族,8族及び1B族の元素から選ばれ
た少なくとも1つの元素であり、x及びyがそれぞれ0
<x≦0.30,0.63≦y≦0.71である請求項
1記載の薄膜サーミスタ素子。 4)感熱性抵抗膜の上面に電気絶縁用保護膜が形成され
た請求項1記載の薄膜サーミスタ素子。
[Scope of Claims] 1) A thin film thermistor comprising a heat-sensitive resistive film on an electrically insulating substrate and at least one pair of electrodes on the upper or lower surface of the resistive film, the lead wires being bonded to the electrodes, A thin film thermistor element characterized in that the heat-sensitive resistive film is made of iron silicide. 2) The thin film thermistor element according to claim 1, wherein the composition of the iron silicide is Fe_1_-_ySi_y, and 0.63≦y≦0.71. 3) Iron silicide has Fe and Si as main components, some of which are replaced with metal element M, and its composition is (Fe_1_-_xM_x)_1_-_ySi_y, where metal element M belongs to Group 3A of the periodic table of elements. , 4A group, 5A
at least one element selected from the elements of Group 6A, Group 7A, Group 8 and Group 1B, and x and y are each 0.
The thin film thermistor element according to claim 1, wherein <x≦0.30, 0.63≦y≦0.71. 4) The thin film thermistor element according to claim 1, wherein an electrically insulating protective film is formed on the upper surface of the heat-sensitive resistance film.
JP2302058A 1990-11-07 1990-11-07 Thin film thermistor element Pending JPH04192302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2302058A JPH04192302A (en) 1990-11-07 1990-11-07 Thin film thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2302058A JPH04192302A (en) 1990-11-07 1990-11-07 Thin film thermistor element

Publications (1)

Publication Number Publication Date
JPH04192302A true JPH04192302A (en) 1992-07-10

Family

ID=17904411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2302058A Pending JPH04192302A (en) 1990-11-07 1990-11-07 Thin film thermistor element

Country Status (1)

Country Link
JP (1) JPH04192302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100227490B1 (en) * 1995-05-11 1999-11-01 모리시타 요이찌 Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element
JP2007027541A (en) * 2005-07-20 2007-02-01 Tateyama Kagaku Kogyo Kk Ntc thermistor element and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100227490B1 (en) * 1995-05-11 1999-11-01 모리시타 요이찌 Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element
JP2007027541A (en) * 2005-07-20 2007-02-01 Tateyama Kagaku Kogyo Kk Ntc thermistor element and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH09145489A (en) Resistance thermometer
US6072165A (en) Thin film metal/metal oxide thermocouple
JP3349036B2 (en) Temperature measuring resistor, method for producing the same, and infrared detecting element using the temperature measuring resistor
JP3493343B2 (en) Platinum temperature sensor and method of manufacturing the same
US4276535A (en) Thermistor
US6368734B1 (en) NTC thermistors and NTC thermistor chips
JPH04192302A (en) Thin film thermistor element
JPH04170001A (en) Thin-film thermistor and its manufacture
JPH04170002A (en) Thin-film thermistor and its manufacture
JPH04170003A (en) Thin-film thermistor and its manufacture
JPS5923082B2 (en) Thermistor and its manufacturing method
JP2537606B2 (en) Ceramic Heater
JPS62293701A (en) Thin film temperature sensor and manufacture of the same
JP2727541B2 (en) Manufacturing method of thin film thermistor
JPS61161701A (en) Thermistor
JPH08219901A (en) Adjusting method for temperature coefficient of resistance of resistor element for temperature measurement
JPH04192303A (en) Chip type thermister
JPH10199708A (en) Temperature sensor
JP2002267530A (en) Infrared detection element manufacturing method and infrared detection element
JPH07167715A (en) Composite thermistor temperature sensor
JPH071722B2 (en) Thin film resistor
JPH0620803A (en) Thin film resistor and manufacture thereof
JPH04206603A (en) Manufacture of positive temperature coefficient thermistor
JPS6395601A (en) Resistance thin film
JPH10312903A (en) Temperature sensor