JPH04170003A - Thin-film thermistor and its manufacture - Google Patents

Thin-film thermistor and its manufacture

Info

Publication number
JPH04170003A
JPH04170003A JP27162490A JP27162490A JPH04170003A JP H04170003 A JPH04170003 A JP H04170003A JP 27162490 A JP27162490 A JP 27162490A JP 27162490 A JP27162490 A JP 27162490A JP H04170003 A JPH04170003 A JP H04170003A
Authority
JP
Japan
Prior art keywords
thermistor
heat
thin film
film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27162490A
Other languages
Japanese (ja)
Inventor
Masashi Komabayashi
正士 駒林
Masami Koshimura
正己 越村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP27162490A priority Critical patent/JPH04170003A/en
Publication of JPH04170003A publication Critical patent/JPH04170003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a thin-film thermistor with improved stability at a temperature at least exceeding 300 deg.C by forming a heat-sensitive resistance film with iron, manganese, and silicon and by specifying the composition. CONSTITUTION:In a thin-film thermistor 1, a pair of electrodes 3, 3 are provided on an electrical insulation substrate 2 and a heat-sensitive resistance film 4 is provided on an upper surface of these electrodes 3, 3 and that on the substrate 2 where no electrode is provided. Then, this heat-sensitive resistance film 4 consists of iron, manganese, and silicon and the composition is (Fe1-xMnx)1-ySiy, where 0<=x<=0.30, 0.63<=y<=0.71. If a content x of Mn exceeds 0.30 or a content y of Si is outside 0.63-0.71, B constant becomes 1000K or less and is not desirable in terms of thermistor characteristics, thus enabling reproducibility of heat-sensitive property even at a temperature exceeding 300 deg.C to be improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は感熱性抵抗膜が鉄とマンガンとけい素からなる
薄膜サーミスタ及びその製造方法に関する。特に高温用
に好適な薄膜サーミスタ及びその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film thermistor whose heat-sensitive resistive film is made of iron, manganese, and silicon, and a method for manufacturing the same. The present invention particularly relates to a thin film thermistor suitable for high temperature applications and a method for manufacturing the same.

[従来の技術] 従来、薄膜サーミスタの感熱性抵抗膜は酸化物材料又は
非酸化物材料により構成される。前者の酸化物材料とし
ては、Mn、C0.Niの金属複合酸化物又はMn、C
0.NiO中の2〜3成分にA交、Cr、Cu、Fe等
の中の1つ以上の成分を加えた金属複合酸化物が知られ
ている(例えば、特開昭62−291002.特開昭6
2−293701 、特開平1−50501)。また後
者の非酸化物材料としては、炭化けい素が知られている
(例えば、特公昭56−26965 、特開昭61−2
45502.特開平1−130503)。
[Prior Art] Conventionally, a heat-sensitive resistance film of a thin film thermistor is made of an oxide material or a non-oxide material. The former oxide materials include Mn, C0. Ni metal composite oxide or Mn, C
0. Metal composite oxides are known in which two to three components of NiO are added with one or more components of A, Cr, Cu, Fe, etc. 6
2-293701, JP-A-1-50501). Silicon carbide is known as the latter non-oxide material (for example, Japanese Patent Publication No. 56-26965, Japanese Patent Application Laid-open No. 61-2
45502. JP 1-130503).

[発明が解決しようとする課題] 一般にサーミスタ用の材料では、温度係数であるB定数
は少なくとも100OK以上が必要である。
[Problems to be Solved by the Invention] Generally, materials for thermistors require a B constant, which is a temperature coefficient, of at least 100 OK.

しかし、前者の酸化物材料の場合に上記B定数でその抵
抗率が25℃においては数Ω・cm以上の値となる。例
えば、電気絶縁性基板上に少なくとも1対の基底電極を
備え、これに薄膜を形成したサーミスタではその膜厚が
約2μm以下であることから25℃においてその抵抗値
は数にΩ〜LookΩ以上となり゛、高抵抗のサーミス
タしか作れない問題点があった。またこの高抵抗を利用
して、前者の酸化物材料で高温用サーミスタを作ると、
その組成が酸化物であることから高温時において酸化状
態が変化しサーミスタとしての特性が安定しなくなる問
題点があった。
However, in the case of the former oxide material, the resistivity at 25° C. is a value of several Ω·cm or more based on the above-mentioned B constant. For example, in a thermistor that has at least one pair of base electrodes on an electrically insulating substrate and a thin film formed thereon, the film thickness is about 2 μm or less, so the resistance value at 25°C is several Ω to LookΩ or more.゛There was a problem that only high-resistance thermistors could be made. Also, if you make use of this high resistance and make a high-temperature thermistor using the former oxide material,
Since its composition is an oxide, there is a problem in that the oxidation state changes at high temperatures, making the characteristics as a thermistor unstable.

後者の炭化けい素の場合には、この材料は熱的安定性が
高いため高温に耐える特長がある反面、その抵抗率が比
較的高く、膜厚を数μmとしても25℃で抵抗値が数1
00にΩ以上となり、やはり高抵抗のサーミスタしか作
れない問題点があった。また炭化けい素はB定数が25
℃付近において2500に程度と低いため、酸化物材料
と異なり程々の温度係数をもつ薄膜サーミスタを作るこ
とができない問題点があった。更に炭化けい素をサーミ
スタ用の材料とする場合、その構造上けい素と炭素の組
成比の変更は難しいため、成膜条件によってのみサーミ
スタの特性を変えられるに過ぎず、各種用途にきめ細か
に対応し幅広い特性を具備したサーミスタが得がたい不
具合があった。
In the case of the latter, silicon carbide, this material has high thermal stability and can withstand high temperatures, but on the other hand, its resistivity is relatively high, and even if the film thickness is several micrometers, the resistance value at 25 degrees Celsius is several micrometers. 1
However, there was a problem that only high-resistance thermistors could be made. Also, silicon carbide has a B constant of 25
Since the temperature coefficient is as low as 2,500° C., there is a problem in that unlike oxide materials, it is not possible to create a thin film thermistor with a moderate temperature coefficient. Furthermore, when using silicon carbide as a material for a thermistor, it is difficult to change the composition ratio of silicon and carbon due to its structure, so the characteristics of the thermistor can only be changed by changing the film formation conditions, making it possible to fine-tune the characteristics of the thermistor. However, there was a problem that made it difficult to obtain a thermistor with a wide range of characteristics.

本発明の目的は、上記問題点を解決するもので電気絶縁
性基板上に少なくとも1対の基底電極を備え、これに薄
膜を形成したサーミスタにおいて、少なくとも100O
K以上のB定数を有し、膜厚が0.1〜2μm程度で数
Ω〜数100にΩの抵抗値を有し、幅広い特性を具備す
ることができ、しかも少なくとも300℃以上の温度で
安定性の良い薄膜サーミスタ及びその製造方法を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems, and to provide a thermistor comprising at least one pair of base electrodes on an electrically insulating substrate and a thin film formed on the base electrodes.
It has a B constant of K or more, a film thickness of about 0.1 to 2 μm, a resistance value of several Ω to several 100 Ω, and can have a wide range of characteristics, and can be used at temperatures of at least 300°C or higher. An object of the present invention is to provide a thin film thermistor with good stability and a method for manufacturing the same.

[課題を解決するための手段] 本発明者らは耐熱材料として開発されたFe5is系の
バルク材料が耐酸化性にも優れ、しかも大気中で利用で
きる高温用熱電材料であること(R。
[Means for Solving the Problems] The present inventors have discovered that the Fe5is-based bulk material, which was developed as a heat-resistant material, has excellent oxidation resistance and is a high-temperature thermoelectric material that can be used in the atmosphere (R.

Kieffer、 F、Benesovsky and
 C,Konopicky: Ber。
Kieffer, F., Benesovsky and
C, Konopicky: Ber.

Deunt、 Keram、 Ges、、31 (19
54) 223など)、また986℃までは状態図上安
定な材料であって(J。
Deunt, Keram, Ges, 31 (19
54) 223, etc.), and is a stable material on the phase diagram up to 986°C (J.

P、Piton and MJ:、Fay: C,R,
Acad、 Sci、、C266(1968) 154
) 、Lかもこの材料が半導体材料としても用いられて
いることに着目し、この材料を薄膜化することにより、
上記目的を達成できることを見出し、本発明に到達した
P, Piton and MJ:, Fay: C,R,
Acad, Sci., C266 (1968) 154
), L.Komo focused on the fact that this material is also used as a semiconductor material, and by making this material into a thin film,
The inventors have discovered that the above object can be achieved and have arrived at the present invention.

第1図に示すように、本発明の薄膜サーミスタ1は、電
気絶縁性基板2上に1対の電極3.3が設けられ、これ
らの電極3.3の上面及び電極が設けられていない基板
2の上面に感熱性抵抗膜4が設けられる。そしてこの感
熱性抵抗膜4が鉄、マンガン及びけい素からなり、その
組成が(F e 1−1M n x)1−y S i 
yであって、0<x≦0.30,0.63≦y≦0.7
1であることを特徴とする。電極3.3は2対以上あっ
てもよく、また電極3.3は感熱性抵抗膜4の上面に設
けてもよい。
As shown in FIG. 1, the thin film thermistor 1 of the present invention includes a pair of electrodes 3.3 provided on an electrically insulating substrate 2, and a top surface of these electrodes 3.3 and a substrate on which no electrodes are provided. A heat-sensitive resistive film 4 is provided on the upper surface of 2. This heat-sensitive resistive film 4 is made of iron, manganese, and silicon, and has a composition of (F e 1-1M n x )1-y Si
y, 0<x≦0.30, 0.63≦y≦0.7
It is characterized by being 1. There may be two or more pairs of electrodes 3.3, and the electrodes 3.3 may be provided on the upper surface of the heat-sensitive resistive film 4.

この薄膜サーミスタを製造するには、不活性ガス雰囲気
中において、鉄とマンガンとけい素からなるターゲット
を用いて電気絶縁性基板上にスパッタリング蒸着により
、その組成が (F e 1−xM n X)l−)I S i yで
あって、0<x≦0.30,0.63≦y≦0,71で
ある感熱性抵抗膜を形成する。
In order to manufacture this thin film thermistor, the composition is (F e 1-xM n -) A heat-sensitive resistive film is formed where I S i y and 0<x≦0.30, 0.63≦y≦0,71.

本発明の電気絶縁性基板は、耐熱性を有し、鉄けい化物
の熱膨張率(10x 10−’deg−”)に近い熱膨
張率を有し、鉄けい化物の付着性の大きいものであれば
よい。例示すればアルミナ、フォルスライト、ステアラ
イト、ベリリア、Mg−AUスピネル等のいずれかの材
料からなる基板が好ましい。
The electrically insulating substrate of the present invention has heat resistance, has a coefficient of thermal expansion close to that of iron silicide (10 x 10-'deg-''), and has a high adhesion of iron silicide. For example, a substrate made of any material such as alumina, forsrite, stearite, beryllia, or Mg-AU spinel is preferable.

また電極は、耐熱性と耐蝕性に優れた導電性材料により
作られる。例えば銀、金、白金、白金−金、金−パラジ
ウム−白金等が挙げられる。この電極は上記金属ペース
トを基板端部に印刷して焼付けて形成される。
Further, the electrodes are made of a conductive material with excellent heat resistance and corrosion resistance. Examples include silver, gold, platinum, platinum-gold, gold-palladium-platinum, and the like. This electrode is formed by printing and baking the metal paste on the edge of the substrate.

更に感熱性抵抗膜は、気相成長法、電子ビーム蒸着法、
イオンビーム蒸着法、真空蒸着法、スパッタリング蒸着
法等により形成される。スパッタリング蒸着法が量産に
適しているため好ましい。
Furthermore, heat-sensitive resistive films can be produced using vapor phase growth method, electron beam evaporation method,
It is formed by ion beam evaporation, vacuum evaporation, sputtering evaporation, or the like. Sputtering deposition is preferred because it is suitable for mass production.

スパッタリング蒸着は、Arガスのような不活性ガス雰
囲気中で行われ、ターゲットには鉄とマンガンとけい素
の各粉末を所定の比率で配合し、円盤状に粉末冶金した
ものを使用する。蒸着した抵抗膜は結晶構造上、(Fe
Mn)Si*化合物を形成している必要があるため、基
板を300〜950℃の温度で加熱した状態で蒸着する
ことが望ましい。
Sputtering vapor deposition is performed in an inert gas atmosphere such as Ar gas, and a target containing powders of iron, manganese, and silicon in a predetermined ratio and powder metallurgized into a disk shape is used. Due to the crystal structure of the vapor-deposited resistive film, (Fe
Since it is necessary to form a Mn)Si* compound, it is desirable to perform the vapor deposition while heating the substrate at a temperature of 300 to 950°C.

しかし室温で蒸着した後に、次に述べる熱処理により(
FeMn)Sit化合物を得てもよい。
However, after vapor deposition at room temperature, the following heat treatment (
FeMn)Sit compounds may also be obtained.

本発明の感熱性抵抗膜は、その組成が (F e 1−XM n x)by S i yであっ
て、0<x≦0.30,0.63≦y≦071であるこ
とを特徴とする。Mnの含有率Xが0730を越えるか
又はSiの含有率yが0.63〜071の範囲を外れる
組成になると、B定数が1000に以下となりサーミス
タの特性上好ましくない。
The heat-sensitive resistive film of the present invention is characterized in that its composition is (F e 1-XM n x) by Si y, and 0<x≦0.30, 0.63≦y≦071. do. If the Mn content x exceeds 0730 or the Si content y falls outside the range of 0.63 to 071, the B constant will be less than 1000, which is unfavorable in terms of the characteristics of the thermistor.

この抵抗膜の厚さは01〜2μmの範囲からサーミスタ
の用途に応じて作られる。0.1μm未満の場合、電極
に接続されるリード線の電気的抵抗の影響を受は易く、
また2μmを越えると基板との熱膨張率の違いにより膜
が剥離し易くなるため、上記範囲内で作られる。
The thickness of this resistive film is made in the range of 0.1 to 2 μm depending on the purpose of the thermistor. If it is less than 0.1 μm, it is easily affected by the electrical resistance of the lead wire connected to the electrode.
Furthermore, if the thickness exceeds 2 μm, the film is likely to peel off due to the difference in coefficient of thermal expansion from the substrate, so it is made within the above range.

スパッタリング蒸着した後、感熱性抵抗膜を形成した電
気絶縁性基板を400〜985℃の温度範囲で熱処理す
ると、サーミスタとしての感熱性の再現性がよく、かつ
熱的安定性に優れるため好ましい。この熱処理は不活性
ガス雰囲気中又は真空中がより安定した特性を得るため
に好ましいが、大気中でも特性が安定しているためよい
。また熱処理は400℃未満であるとその効果が乏しく
、985℃を越えると抵抗膜が熱的損傷を受は易くなる
After sputtering and vapor deposition, it is preferable to heat-treat the electrically insulating substrate on which the heat-sensitive resistive film is formed at a temperature in the range of 400 to 985° C., since this results in good reproducibility of heat sensitivity as a thermistor and excellent thermal stability. This heat treatment is preferably performed in an inert gas atmosphere or in vacuum in order to obtain more stable characteristics, but it is also preferable to perform this heat treatment in the air because the characteristics are stable. Further, if the heat treatment temperature is less than 400°C, the effect will be poor, and if the temperature exceeds 985°C, the resistive film will be easily damaged by heat.

[作 用コ 基板上に感熱性抵抗膜を鉄とマンガンとけい素の組成比
を所定の範囲内で変えてスパッタリング蒸着することに
より、一般にサーミスタに要求されるB定数及び抵抗値
の中から所望の特性を具備することができる。また、基
板上に形成された鉄けい化物薄膜は耐熱性にも耐酸化性
にも優れ、しかも大気中で利用できる高温用熱電材料で
あるため、300℃以上の温度でも感熱性の再現性が良
好になる。
[Operation] By sputtering and depositing a heat-sensitive resistive film on a co-substrate while changing the composition ratio of iron, manganese, and silicon within a predetermined range, a desired value can be obtained from among the B constant and resistance value generally required for a thermistor. characteristics. In addition, the iron silicide thin film formed on the substrate has excellent heat resistance and oxidation resistance, and is a high-temperature thermoelectric material that can be used in the atmosphere, so it has excellent heat sensitivity reproducibility even at temperatures of 300°C or higher. Become good.

[発明の効果] 以上述べたように、本発明の(FeMn)SL薄膜サー
ミスタは鉄とマ:/ガソとけい素の組成比に応じてB定
数が少なくとも100OK以Fの、サーミスタとして好
ましい値を有し、しかも室温での抵抗率が数10mΩ・
Cm〜数Ω・cmと広範囲でかつ従来のサーミスタと比
べて極めて小さいため、薄膜サーミスタ素子として従来
不可能であった数10Ω〜数1000Ωの低い抵抗値を
容易に得ることができる。
[Effects of the Invention] As described above, the (FeMn)SL thin film thermistor of the present invention has a B constant of at least 100 OK or more, which is a preferable value as a thermistor, depending on the composition ratio of iron and magnesium/gaso and silicon. Moreover, the resistivity at room temperature is several tens of mΩ.
Since it has a wide range of Cm to several Ω·cm and is extremely small compared to conventional thermistors, it is possible to easily obtain a low resistance value of several tens of Ω to several thousand Ω, which was conventionally impossible as a thin film thermistor element.

特に薄膜に対してトリミング等を行えば、更に高抵抗化
することができ、高温における特性がより向上する。ま
た鉄けい化物は耐熱性に優れているため、本発明の薄膜
サーミスタは高温用に好適である。
In particular, if the thin film is trimmed, the resistance can be further increased, and the characteristics at high temperatures can be further improved. Further, since iron silicide has excellent heat resistance, the thin film thermistor of the present invention is suitable for use at high temperatures.

[実施例] 次に本発明の実施例を比較例とともに説明する。[Example] Next, examples of the present invention will be described together with comparative examples.

〈実施例1〉 電気絶縁性基板として、この例ではアルミナ基板を選定
した。ガラス粉末が混入された、所謂ガラスフリット入
り白金ペーストを基板の上面にスクリーン印刷法により
印刷し大気中にて1000℃の温度で1時間焼付けて1
対の電極を形成した。。
<Example 1> In this example, an alumina substrate was selected as the electrically insulating substrate. A so-called glass frit-containing platinum paste mixed with glass powder was printed on the top surface of the substrate by screen printing and baked in the air at a temperature of 1000°C for 1 hour.
A counter electrode was formed. .

この基板を9枚用意した後、各基板の上面に高周波スパ
ッタリング法により(FeMn)Si薄膜を形成し、9
種類の薄膜サーミスタを作製した。即ち、鉄とマンガン
とけい素の原子比を変えた9種類のターゲットを用意し
て、各ターゲットを高周波スパッタリング装置の陰極に
各別に設け、数mTorr程度のArガス雰囲気中で、
高周波電力aoow、成膜速度3μm/時の条件でスパ
ッタリシグし基板の上面に薄膜を形成した。
After preparing nine of these substrates, a (FeMn)Si thin film was formed on the top surface of each substrate by high frequency sputtering method.
We fabricated various types of thin film thermistors. That is, nine types of targets with different atomic ratios of iron, manganese, and silicon were prepared, and each target was separately placed on the cathode of a high-frequency sputtering device in an Ar gas atmosphere of about several mTorr.
A thin film was formed on the upper surface of the substrate by sputtering under the conditions of high frequency power AOOW and film formation rate of 3 μm/hour.

蒸着後、薄膜を形成した基板を600℃の温度で熱処理
した。
After the vapor deposition, the substrate on which the thin film was formed was heat-treated at a temperature of 600°C.

〈比較例1〉 実施例1の9種類のターゲットの中で、Mnの含有率が
最大のものより更にMnの含有率の大きいターゲット、
Siの含有率が最小のものより更にSiの含有率の小さ
いターゲット及びSiの含有率が最大のものより更にS
iの含有率の大きいターゲットを用いた以外は、実施例
1と同様にして3種類の薄膜サーミスタを作製した。
<Comparative Example 1> Among the nine types of targets in Example 1, a target with a higher Mn content than the one with the highest Mn content,
Targets with a lower Si content than those with a minimum Si content and targets with a lower Si content than those with a maximum Si content
Three types of thin film thermistors were produced in the same manner as in Example 1, except that a target with a high content of i was used.

実施例1及び比較例1で作製したサーミスタの特性を第
1表に示す。11種類の薄膜サーミスタはいずれも膜厚
約1μm1電極間距離1mm、薄膜の幅1mmであった
Table 1 shows the characteristics of the thermistors manufactured in Example 1 and Comparative Example 1. All of the 11 types of thin film thermistors had a film thickness of approximately 1 μm, a distance between electrodes of 1 mm, and a thin film width of 1 mm.

(以下、本頁余白) 第  1  表 第1表の結果から、Mnの含有率Xが0.30を越える
か、又はSiの含有率yが0.63〜0471の範囲を
外れる組成になると、B定数が1000に以下となりサ
ーミスタの特性上好ましくないことが判った。
(Hereinafter, this page margin) Table 1 From the results in Table 1, when the Mn content X exceeds 0.30 or the Si content y falls outside the range of 0.63 to 0471, It was found that the B constant was less than 1000, which was unfavorable in terms of the characteristics of the thermistor.

また実施例1の9種類の薄膜サーミスタはいずれも30
0〜500℃付近の温度まではB定数がほぼ一定で、5
00℃までの高温でも熱的に安定していた。500℃を
上回ると、B定数が大きくなる傾向を示し、これらの特
性は高温用サーミスタとして極めて好ましい結果であっ
た。
Furthermore, each of the nine types of thin film thermistors in Example 1 had a
The B constant is almost constant from 0 to 500℃, and 5
It was thermally stable even at high temperatures up to 00°C. When the temperature exceeds 500° C., the B constant tends to increase, and these characteristics are extremely favorable results for a high temperature thermistor.

一方比較例1の3種類の薄膜サーミスタはB定数が10
00に以下と温度係数が小さいため、温度センサ或いは
温度補償用のサーミスタとしては不向きであった。
On the other hand, the three types of thin film thermistors of Comparative Example 1 have a B constant of 10.
Since the temperature coefficient was small, less than 0.00, it was not suitable as a temperature sensor or a thermistor for temperature compensation.

〈実施例2〉 実施例1のサーミスタの電極間距離を0.1mmにした
以外は、実施例1と同様にして薄膜サーミスタを作製し
た。この結果、実施例2のサーミスタの抵抗値は実施例
1の抵抗値の約10分の1になった。
<Example 2> A thin film thermistor was produced in the same manner as in Example 1 except that the distance between the electrodes of the thermistor in Example 1 was set to 0.1 mm. As a result, the resistance value of the thermistor of Example 2 was approximately one tenth of the resistance value of Example 1.

〈実施例3〉 実施例1のサーミスタの膜厚を0.1μmにした以外は
、実施例1と同様にして薄膜サーミスタを作製した。こ
の結果、実施例3のサーミスタの抵抗値は実施例1の抵
抗値の約10倍になった。
<Example 3> A thin film thermistor was produced in the same manner as in Example 1 except that the film thickness of the thermistor in Example 1 was changed to 0.1 μm. As a result, the resistance value of the thermistor of Example 3 was approximately 10 times that of Example 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により製造した薄膜サーミスタの
断面図。 1:薄膜サーミスタ、 2:電気絶縁性基板、 3:電極、 4:感熱性抵抗膜。 特許出願人 三菱鉱業セメント株式会社1 簿膜サーミ
スタ 第1図 手続補正書0.え) 平成3年8月5日 2、発明の名称 薄膜サーミスタ及びその製造方法3、
補正をする者 事件との関係   特許出願人 住所(居所)東京都千代田区大手町−丁目6番1号氏名
(名称)   三菱マテリアル株式会社4、代理人 8、補正の内容 (1)明細書第3頁第5行目 「・・・100OK以上・・・」を 「・・・500に以上・・・」と訂正する。 (2)明細書第4頁第5行目 「・・・2500に程度と低いため、・・・」を「・・
・2500に程度であり、・・・」と訂正する。 (3)明細書第4頁第16行目 「・・・100OK以上・・・」を [・・・500に以上・・・」と訂正する。 (4)明細書第8頁第4行目〜同頁第5行目「・・・1
00OK以下・・・」を 「・・・500に以下・・・」と訂正する。 (5)明細書第9頁第15行目 「・・・100OK以上・・・」を 「・・・500に以上・・・」と訂正する。 (以下、本頁余白) (3)明細書第12頁第1表 第  1  表 を (以下、本頁余白) 第  1  表 と訂正する。 (4)明細書第12頁下から第2行目 rlooOK以下」を r500に以下Jと訂正する。 (5)明細書第13頁第8行目 「・・・100OK以下・・・」を 「・・・500に以下・・・」と訂正する。
FIG. 1 is a sectional view of a thin film thermistor manufactured by the method of the present invention. 1: thin film thermistor, 2: electrically insulating substrate, 3: electrode, 4: heat-sensitive resistance film. Patent Applicant Mitsubishi Mining Cement Co., Ltd. 1 Book Membrane Thermistor Diagram 1 Procedural Amendment 0. e) August 5, 1991 2. Title of invention: Thin film thermistor and method for manufacturing the same 3.
Relationship with the case of the person making the amendment Patent applicant address (residence) 6-1 Otemachi-chome, Chiyoda-ku, Tokyo Name: Mitsubishi Materials Corporation 4, Agent 8, Contents of amendment (1) Specification No. On page 3, line 5, "...more than 100 OK..." is corrected to "...more than 500...". (2) On page 4, line 5 of the specification, "...because it is as low as 2,500..." is replaced with "...
・It is about 2,500, and...'' I corrected it. (3) On page 4, line 16 of the specification, "...more than 100 OK..." is corrected to "...more than 500...". (4) Specification page 8, line 4 to line 5 of the same page “...1
00OK or less..." is corrected to "...500 or less...". (5) On page 9, line 15 of the specification, "...more than 100 OKs..." is corrected to "...more than 500...". (hereinafter referred to as "this page margin") (3) Table 1 of Table 1 on page 12 of the specification is corrected to (hereinafter referred to as "this page margin") Table 1. (4) ``rlooOK and below'' on page 12 of the specification, line 2 from the bottom, is corrected to r500 and below as J. (5) On page 13, line 8 of the specification, "...100 OK or less..." is corrected to "...500 or less...".

Claims (1)

【特許請求の範囲】 1)電気絶縁性基板(2)上に感熱性抵抗膜(4)とこ
の抵抗膜(4)の上面又は下面に少なくとも1対の電極
(3,3)がそれぞれ設けられた薄膜サーミスタ(1)
において、前記感熱性抵抗膜(4)が鉄、マンガン及び
けい素からなり、 その組成が(Fe_1_−_xMn_x)_1_−_x
Si_yであって、0<x≦0.30,0.63≦y≦
0.71であることを特徴とする薄膜サーミスタ。 2)不活性ガス雰囲気中において、鉄とマンガンとけい
素からなるターゲットを用いて電気絶縁性基板上にスパ
ッタリング蒸着により その組成が(Fe_1_−_xMn_x)_1_−_y
Si_yであって、0<x≦0.30,0.63≦y≦
0.71である感熱性抵抗膜を形成する薄膜サーミスタ
の製造方法。 3)スパッタリング蒸着した後、感熱性抵抗膜を形成し
た電気絶縁性基板を不活性ガス雰囲気中又は真空中で4
00〜985℃の温度範囲で熱処理する請求項2記載の
薄膜サーミスタの製造方法。
[Claims] 1) A heat-sensitive resistive film (4) on an electrically insulating substrate (2), and at least one pair of electrodes (3, 3) provided on the upper or lower surface of this resistive film (4), respectively. Thin film thermistor (1)
, the heat-sensitive resistive film (4) is made of iron, manganese and silicon, and its composition is (Fe_1_-_xMn_x)_1_-_x
Si_y, 0<x≦0.30, 0.63≦y≦
A thin film thermistor characterized in that the temperature is 0.71. 2) In an inert gas atmosphere, the composition is (Fe_1_-_xMn_x)_1_-_y by sputtering deposition on an electrically insulating substrate using a target consisting of iron, manganese, and silicon.
Si_y, 0<x≦0.30, 0.63≦y≦
A method for manufacturing a thin film thermistor forming a heat-sensitive resistance film having a temperature of 0.71. 3) After sputtering and vapor deposition, the electrically insulating substrate on which the heat-sensitive resistive film has been formed is heated in an inert gas atmosphere or in a vacuum.
3. The method for manufacturing a thin film thermistor according to claim 2, wherein the heat treatment is carried out at a temperature range of 00 to 985°C.
JP27162490A 1990-10-09 1990-10-09 Thin-film thermistor and its manufacture Pending JPH04170003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27162490A JPH04170003A (en) 1990-10-09 1990-10-09 Thin-film thermistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27162490A JPH04170003A (en) 1990-10-09 1990-10-09 Thin-film thermistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH04170003A true JPH04170003A (en) 1992-06-17

Family

ID=17502670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27162490A Pending JPH04170003A (en) 1990-10-09 1990-10-09 Thin-film thermistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH04170003A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916104B2 (en) * 1977-02-21 1984-04-13 極東開発工業株式会社 Hydraulic actuation device for piston pump for fluid pumping
JPS62291003A (en) * 1986-06-10 1987-12-17 日本鋼管株式会社 Manufacture of thin film thermistor
JPS62293701A (en) * 1986-06-13 1987-12-21 日本鋼管株式会社 Thin film temperature sensor and manufacture of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916104B2 (en) * 1977-02-21 1984-04-13 極東開発工業株式会社 Hydraulic actuation device for piston pump for fluid pumping
JPS62291003A (en) * 1986-06-10 1987-12-17 日本鋼管株式会社 Manufacture of thin film thermistor
JPS62293701A (en) * 1986-06-13 1987-12-21 日本鋼管株式会社 Thin film temperature sensor and manufacture of the same

Similar Documents

Publication Publication Date Title
US4276535A (en) Thermistor
JP2000150204A (en) Ntc thermistor and chip ntc thermistor
JP4622946B2 (en) Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
JPH04170003A (en) Thin-film thermistor and its manufacture
JPH04170001A (en) Thin-film thermistor and its manufacture
JPH04170002A (en) Thin-film thermistor and its manufacture
JPH04192302A (en) Thin film thermistor element
JPS62293701A (en) Thin film temperature sensor and manufacture of the same
JPS5923082B2 (en) Thermistor and its manufacturing method
JPS60208803A (en) Method of producing thin film thermistor
JP2587426B2 (en) Manufacturing method of thin film thermistor
JPH0354843B2 (en)
JP4073658B2 (en) Ternary alloy material
JP2004303804A (en) Ternary alloy material
JPH071722B2 (en) Thin film resistor
JPH04192303A (en) Chip type thermister
JP2507036B2 (en) Thin film thermistor and manufacturing method thereof
JPS6395601A (en) Resistance thin film
JPH0661016A (en) Thick film thermistor composition and manufacture thereof as well as thick film thermistor using same and manufacture thereof
CN114807859A (en) Platinum film with high resistance temperature coefficient and preparation method thereof
JPS634322B2 (en)
JPH0620803A (en) Thin film resistor and manufacture thereof
JPS6019642B2 (en) Manufacturing method of thermistor
JPH0677009A (en) Thick film thermistor composition and manufacture thereof, and thick film thermistor using the composition and manufacture thereof
JPS6024561B2 (en) resistive film thin