JPH0418790B2 - - Google Patents

Info

Publication number
JPH0418790B2
JPH0418790B2 JP17712584A JP17712584A JPH0418790B2 JP H0418790 B2 JPH0418790 B2 JP H0418790B2 JP 17712584 A JP17712584 A JP 17712584A JP 17712584 A JP17712584 A JP 17712584A JP H0418790 B2 JPH0418790 B2 JP H0418790B2
Authority
JP
Japan
Prior art keywords
sample
antenna
shielding effect
transmitting
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17712584A
Other languages
Japanese (ja)
Other versions
JPS6154467A (en
Inventor
Fumio Suzuki
Nobuyasu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP17712584A priority Critical patent/JPS6154467A/en
Publication of JPS6154467A publication Critical patent/JPS6154467A/en
Publication of JPH0418790B2 publication Critical patent/JPH0418790B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、シールド材の電磁界に対するシール
ド効果を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for measuring the shielding effect of a shielding material against an electromagnetic field.

<従来の技術> 最近、外部からの不要放射電磁雑音による電子
システムの誤動作が頻発し、大きな問題となつて
いる。その対策として、電磁波に対するシールド
効果の高いシールド材により、雑音放射源を取り
囲む必要が高まり、そのようなシールド材の開発
が急がれている。
<Prior Art> Recently, electronic systems have frequently malfunctioned due to unnecessary radiated electromagnetic noise from the outside, and this has become a serious problem. As a countermeasure, there is an increasing need to surround the noise radiation source with a shielding material that has a high shielding effect against electromagnetic waves, and there is an urgent need to develop such a shielding material.

シールド材の開発に当つては、材料のシールド
効果を測定しなければなない。従来、シールド効
果の測定方法としては、以下に述べるような方法
が代表的なものとして知られている。
When developing shielding materials, the shielding effectiveness of the material must be measured. Conventionally, the method described below is known as a typical method for measuring shielding effectiveness.

第4図に示すように、両端が開放した方形の
導体筒1で送信アンテナ3と受信アンテナ4を
囲み、両者の間に方形の試料2を配置する。送
信アンテナ3を送信機5に接続し、受信アンテ
ナ4を受信機6に接続し、試料2のある場合と
ない場合のそれぞれについて送、受信アンテナ
間結合量を測定し、その差をもつて試料2のシ
ールド効果を評価する。
As shown in FIG. 4, a transmitting antenna 3 and a receiving antenna 4 are surrounded by a rectangular conductor tube 1 with both ends open, and a rectangular sample 2 is placed between them. Connect the transmitting antenna 3 to the transmitter 5, connect the receiving antenna 4 to the receiver 6, measure the amount of coupling between the transmitting and receiving antennas with and without the sample 2, and calculate the difference between the two. Evaluate the shielding effect of 2.

第5図に示すように、送信アンテナ13と受
信アンテナ14を対向させ、それらを方形の導
体容器11で周囲を取り囲む。送、受信アンテ
ナ間に試料12を挿入した場合としない場合の
それぞれについて、送、受信アンテナ間結合量
を測定し、その差により試料12のシールド効
果を評価する。15は送信アンテナ13と接続
される送信機、16は受信アンテナ14と接続
される受信機である。
As shown in FIG. 5, a transmitting antenna 13 and a receiving antenna 14 are opposed to each other, and a rectangular conductive container 11 surrounds them. The amount of coupling between the transmitting and receiving antennas is measured with and without inserting the sample 12 between the transmitting and receiving antennas, and the shielding effect of the sample 12 is evaluated based on the difference. 15 is a transmitter connected to the transmitting antenna 13, and 16 is a receiver connected to the receiving antenna 14.

第6図に示すように、同軸管21の外部導体
で試料22を囲み、中央導体23を送、受信ア
ンテナとして用い、試料22のある場合とない
場合の送、受信アンテナ間結合量の差により試
料のシールド効果を評価する。25は送信機、
26は受信機である。
As shown in FIG. 6, the sample 22 is surrounded by the outer conductor of the coaxial tube 21, and the central conductor 23 is used as a transmitting and receiving antenna. Evaluate the shielding effect of the sample. 25 is a transmitter,
26 is a receiver.

<発明が解決しようとする問題点> 上記方法は、送、受信アンテナ間に破線7で
示すような外部結合が生じる。また、導体筒1の
内径が大きい場合、導波管モードの発生により、
送、受信アンテナ3,4間に不要結合を発生す
る。このようなことから、試料固有のシールド効
果を直接的に正しく測定することは困難であり、
測定値の補正が不可欠である。
<Problems to be Solved by the Invention> In the above method, external coupling as shown by the broken line 7 occurs between the transmitting and receiving antennas. In addition, when the inner diameter of the conductor cylinder 1 is large, due to the generation of waveguide mode,
Unnecessary coupling occurs between the transmitting and receiving antennas 3 and 4. For these reasons, it is difficult to directly and correctly measure the shielding effect specific to the sample.
Correction of measurements is essential.

上記方法は、導体容器11が大きい場合、共
振モードの発生により送、受信アンテナ13,1
4間に不要結合が生じるため、上記方法と同様
の問題がある。また、送信アンテナ13を固定と
なり、試料12に照射する電磁波の波動インピー
ダンスを制御できないという問題もある。
In the above method, when the conductor container 11 is large, the transmission and reception antennas 13 and 1 are
Since unnecessary bonds occur between the two, there is a problem similar to that of the above method. Another problem is that the transmitting antenna 13 is fixed and the wave impedance of the electromagnetic waves irradiated onto the sample 12 cannot be controlled.

上記方法は、TEMモードにおける測定であ
るので、平面電磁波に対する測定しかできず、近
接領域での測定は不可能である。
Since the above method is a measurement in TEM mode, it can only measure plane electromagnetic waves and cannot measure in a close range.

本発明は、以上に述べた従来方法の諸問題を解
決したシールド効果測定方法を提供しようとする
ものである。
The present invention aims to provide a shielding effect measuring method that solves the problems of the conventional methods described above.

<問題点を解決するための手段> 本発明は、上記問題点を解決するために、送信
アンテナと受信アンテナとの間に試料を介在させ
た場合と介在させない場合との該送、受信アンテ
ナ間結合量の差をもつて該試料のシールド効果を
評価するシールド効果測定方法において、測定周
波数よりカツトオフ周波数が十分高い、一面のみ
開放した導体容器内に該受信アンテナを収容し、
該試料を該導体容器の開放面に配置し、該送信ア
ンテナを該試料の前方の外部空間に配置する。
<Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention provides a solution between the transmitting and receiving antennas with and without a sample interposed between the transmitting antenna and the receiving antenna. In a shielding effect measurement method for evaluating the shielding effect of the sample based on the difference in the amount of coupling, the receiving antenna is housed in a conductive container with only one side open and whose cutoff frequency is sufficiently higher than the measurement frequency,
The sample is placed on the open surface of the conductive container, and the transmitting antenna is placed in an external space in front of the sample.

<作用> 試料配置面以外では受信アンテナは導体で囲ま
れるため、送、受信アンテナ間に不要な外部結合
が生じなくなる。導体容器のカツトオフ周波数は
測定周波数より十分高く選ばれているため、共振
の影響を受けない。送信アンテナは外部空間に配
置されるから、送信アンテナを自由に移動させる
ことにより、試料面上の波動インピーダンスを容
易に変更できる。
<Function> Since the receiving antenna is surrounded by a conductor except for the sample placement surface, unnecessary external coupling between the transmitting and receiving antennas is eliminated. The cutoff frequency of the conductor container is chosen to be sufficiently higher than the measurement frequency, so it is not affected by resonance. Since the transmitting antenna is placed in external space, the wave impedance on the sample surface can be easily changed by freely moving the transmitting antenna.

<実施例> 以下、本発明の一実施例について詳細に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail.

第1図に、シールド効果測定のための装置構成
を示す。この図において、31は金属導体で作ら
れた容器であり、その一面(図中左面)だけが開
放されている。この容器31の内面寸法は、測定
波長より十分小さく選ばれている。測定周波数の
上限が1GHzの場合、容器31として、例えば100
mm×100mm×100mmの内面寸法を有する方形筒体が
用いられる。また容器31には、その開放面と同
一面に、金属プレート32が延設されている。
FIG. 1 shows the configuration of an apparatus for measuring the shielding effect. In this figure, 31 is a container made of a metal conductor, and only one side (the left side in the figure) is open. The inner dimensions of this container 31 are selected to be sufficiently smaller than the measurement wavelength. If the upper limit of the measurement frequency is 1 GHz, for example, 100
A rectangular cylinder with inner dimensions of mm x 100 mm x 100 mm is used. Further, a metal plate 32 is extended on the same surface as the open surface of the container 31.

容器31の内部に受信アンテナ33が配置され
ている。この受信アンテナ33の引き出し線は、
微小な孔35を通して容器31から外部へ引き出
され、受信機36に接続されている。
A receiving antenna 33 is arranged inside the container 31. The lead wire of this receiving antenna 33 is
It is drawn out from the container 31 through a minute hole 35 and connected to a receiver 36 .

37は測定すべき試料であり、容器31の開放
面をふさぐように、取付けネジ38により金属プ
レート32に取り付けられる。
Reference numeral 37 denotes a sample to be measured, which is attached to the metal plate 32 with attachment screws 38 so as to cover the open surface of the container 31.

39は送信アンテナであり、支持体40の上端
部に支持されている。この支持体40の下端部は
ネジが切られた送り軸41に螺合しており、送り
軸41を回転させることにより支持体40を送信
アンテナ39と一諸に矢印42の方向に進退させ
得るように成つている。すなわち、送り軸41を
回転させることにより、送信アンテナ39と試料
37の距離を変化させ得る。送信アンテナ39の
引き出し線は送信機44と接続される。
A transmitting antenna 39 is supported at the upper end of the support 40. The lower end of this support 40 is screwed into a threaded feed shaft 41, and by rotating the feed shaft 41, the support 40 and the transmitting antenna 39 can be moved forward and backward in the direction of arrow 42. It is structured like this. That is, by rotating the feed shaft 41, the distance between the transmitting antenna 39 and the sample 37 can be changed. A lead wire of the transmitting antenna 39 is connected to a transmitter 44 .

なお、受信アンテナ33および送信アンテナ3
9としては、電界シールド効果測定用には微小ダ
イボールアンテナ、磁界シールド効果測定用には
微小ループアンテナが一般に用いられる。しか
し、指向性やゲインの点で問題があればモノポー
ルアンテナや多重ループアンテナ等を使用しても
よい。
Note that the receiving antenna 33 and the transmitting antenna 3
As for antenna 9, a micro die ball antenna is generally used for measuring the electric field shielding effect, and a micro loop antenna is generally used for measuring the magnetic field shielding effect. However, if there are problems with directivity or gain, a monopole antenna, multiple loop antenna, etc. may be used.

測定の手順は次の通りである。送信アンテナ3
9の位置、送信機44の出力レベルと送信周波
数、受信機36の受信周波数等を測定する。そし
て、試料37を取り付けた場合と取り付けない場
合のそれぞれについて、受信アンテナ33の誘起
電力を受信機36で検出し、試料37の有無によ
る送、受信アンテナ39,33間結合量の差を測
定する。
The measurement procedure is as follows. Transmission antenna 3
9, the output level and transmission frequency of the transmitter 44, the reception frequency of the receiver 36, etc. are measured. Then, the induced power of the receiving antenna 33 is detected by the receiver 36 with and without the sample 37 attached, and the difference in the amount of coupling between the transmitting and receiving antennas 39 and 33 depending on the presence or absence of the sample 37 is measured. .

本実施例の場合、受信アンテナ33は、試料取
付け面以外は金属導体容器31により包囲される
ため、送、受信アンテナ33,39間の外部結合
は生じない。また、容器31の内面寸法は測定波
長より十分小さく、容器31のカツトオフ周波数
は測定周波数より十分高いため、容器31の共振
問題は起こらない。上述した寸法の場合、最低次
共振モードのTE101に対する共振周波数は2.1GHz
となり、1GHzまでの測定周波数について容器3
1の共振の影響は無視し得る。かくして、従来の
ような外部結合や共振の影響を受けることなく、
シールド効果を直接的に正確に測定できる。
In the case of this embodiment, since the receiving antenna 33 is surrounded by the metal conductor container 31 except for the sample mounting surface, no external coupling occurs between the transmitting and receiving antennas 33 and 39. Further, since the inner dimensions of the container 31 are sufficiently smaller than the measurement wavelength and the cutoff frequency of the container 31 is sufficiently higher than the measurement frequency, the resonance problem of the container 31 does not occur. For the dimensions mentioned above, the resonant frequency for the lowest resonant mode TE 101 is 2.1 GHz
Therefore, for measurement frequencies up to 1 GHz, container 3
1 resonance effect is negligible. In this way, it is not affected by conventional external coupling or resonance,
Shielding effectiveness can be measured directly and accurately.

また、送信アンテナ39を移動させることによ
り、波動インピーダンスを種々変更しながら測定
を行うことができ、試料37のシールド効果を広
範囲に亘つて測定できる。なお、送信アンテナ3
9の近接領域(Near Field)における波動イン
ピーダンスは、下式のように表され、周波数と距
離の関数であり、測定周波数が一定ならば距離だ
けの関数になる。
Further, by moving the transmitting antenna 39, measurements can be performed while changing the wave impedance in various ways, and the shielding effect of the sample 37 can be measured over a wide range. In addition, the transmitting antenna 3
The wave impedance in the near field of No. 9 is expressed as shown below and is a function of frequency and distance, and if the measurement frequency is constant, it becomes a function only of distance.

微小ループアンテナの場合: Zwh=Zp1+j(−1/βr)/1−1/(βr)2
j(−1/βr) (ただし、Zwhは磁界に対する波動インピーダ
ンス) 微小ダイボールアンテナの場合: Zwe=Zp1−1/(βr)2+j(1/βr)/1+j
(−1/βr) (ただし、Zweは電界に対する波動インピーダ
ンス) ここで Zp=120π〔Ω〕 β=2πfp/Cp(fpは周波数) Cp=3×108〔m〕 r=アンテナからの距離〔m〕 (電磁波シールドの基礎:シーエムシー発行、
p26,27参照) さらに、試料37は容器31の開放面に配置す
るから、試料37の取付け、取外しは極めて容易
である。
In the case of a small loop antenna: Z wh =Z p 1+j (-1/βr)/1-1/(βr) 2 +
j (-1/βr) (where Z wh is the wave impedance to the magnetic field) In the case of a micro die ball antenna: Z we =Z p 1-1/(βr) 2 +j (1/βr)/1+j
(-1/βr) (However, Z we is the wave impedance to the electric field) Here, Z p = 120π [Ω] β = 2πf p /C p (f p is the frequency) C p = 3×10 8 [m] r = Distance from the antenna [m] (Basics of electromagnetic shielding: Published by CMC,
(See pages 26 and 27) Furthermore, since the sample 37 is placed on the open surface of the container 31, it is extremely easy to attach and detach the sample 37.

第2図に、本実施例の方法による磁界シールド
効果の測定結果を例示する。この時の試料は固有
抵抗2.828×10-6(Ω・cm)、厚さ17μmのアルミニ
ウム箔、送信アンテナと試料の距離は5mmであ
る。このグラフのカーブは計算値であり、黒点が
測定値である。なお、計算は、前記のZwhあるい
はZweと試料の固有インピーダンスとの縦続接続
に対して伝送回路論的に行なつた。アンテナは、
2回巻ループアンテナを使用し、ループ面は試料
と平行に配置した。この例から、本実施例によれ
ば、シールド効果を直接的に極めて正確に測定で
きることが分かる。
FIG. 2 illustrates the measurement results of the magnetic field shielding effect by the method of this example. The sample at this time had a specific resistance of 2.828×10 -6 (Ω·cm), an aluminum foil with a thickness of 17 μm, and the distance between the transmitting antenna and the sample was 5 mm. The curve in this graph is a calculated value, and the black dots are measured values. Note that the calculation was performed based on transmission circuit theory for the cascade connection between Z wh or Z we and the inherent impedance of the sample. The antenna is
A two-turn loop antenna was used, and the loop surface was placed parallel to the sample. From this example, it can be seen that according to this example, the shielding effect can be directly and extremely accurately measured.

別の試料を用い、本実施例の方法により測定し
た電界および磁界に対するシールド効果を第3図
に示す。試料は厚さ1mmのカーボン入りプラスチ
ツクであり、送信アンテナと試料の距離は5mmで
ある。なお、このグラフからも分かるように、近
接領域においては、(1)磁界シールド効果は周波数
が上昇するに従い単調に悪化し、(2)電界シールド
効果は周波数が上昇するにつれ単調に向上する、
という一般的傾向がある。
FIG. 3 shows the shielding effect against electric and magnetic fields measured by the method of this example using another sample. The sample is carbon-filled plastic with a thickness of 1 mm, and the distance between the transmitting antenna and the sample is 5 mm. As can be seen from this graph, in the close range, (1) the magnetic field shielding effect monotonically worsens as the frequency increases, and (2) the electric field shielding effect monotonically improves as the frequency increases.
There is a general tendency.

以上、一実施例について説明したが、本発明は
それだけに限定されるものではなく、種々変形し
て実施し得るものである。
Although one embodiment has been described above, the present invention is not limited thereto, and can be implemented with various modifications.

<発明の効果> 以上の説明から明らかなように、本発明によれ
ば、以下のような効果が得られる。
<Effects of the Invention> As is clear from the above description, according to the present invention, the following effects can be obtained.

() 送、受信アンテナ間の外部結合を防止で
きる。
() External coupling between transmitting and receiving antennas can be prevented.

() 導体容器の共振による送、受信アンテナ
間の不要結合を防止できる。
() Unnecessary coupling between transmitting and receiving antennas due to resonance of the conductor container can be prevented.

() 上記()と()の結果、シールド効
果を正確に直接的に測定できる。
() As a result of () and () above, the shielding effect can be measured directly and accurately.

() 送信アンテナは外部空間に配置されるの
で、その試料からの距離を自由に変えることが
できる。従つて、試料表面の波動インピーダン
スを種々変化させて、試料のシールド効果を測
定できる。
() Since the transmitting antenna is placed in external space, its distance from the sample can be changed freely. Therefore, the shielding effect of the sample can be measured by varying the wave impedance of the sample surface.

() 試料は導体容器の開放面に配置するか
ら、その取付け、取外しが容易であり、測定を
能率的に行うことができる。
() Since the sample is placed on the open surface of the conductor container, it is easy to attach and detach, and measurements can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における測定装置構
成を示す概略断面図、第2図は同実施例の方法に
よるアルミニウム箔の磁界シールド効果の測定値
とその計算値を示すグラフ、第3図は同実施例の
方法によるカーボン入りプラスチツクの電界およ
び磁界に対するシールド効果の測定値を示すグラ
フ、第4図ないし第6図はそれぞれ従来のシール
ド効果測定方法を説明するための概略断面図であ
る。 31…金属導体の容器、32…金属プレート、
33…受信アンテナ、36…受信機、37…試
料、39…送信アンテナ、44…送信機。
FIG. 1 is a schematic sectional view showing the configuration of a measuring device in an embodiment of the present invention, FIG. 2 is a graph showing measured values and calculated values of the magnetic field shielding effect of aluminum foil by the method of the same embodiment, and FIG. 3 1 is a graph showing the measured values of the shielding effect of carbon-containing plastic against electric and magnetic fields by the method of the same embodiment, and FIGS. 4 to 6 are schematic cross-sectional views for explaining the conventional shielding effect measuring method, respectively. 31... Metal conductor container, 32... Metal plate,
33... Receiving antenna, 36... Receiver, 37... Sample, 39... Transmitting antenna, 44... Transmitter.

Claims (1)

【特許請求の範囲】[Claims] 1 送信アンテナと受信アンテナとの間に試料を
介在させた場合と介在させない場合との該送、受
信アンテナ間結合量の差をもつて該試料のシール
ド効果を評価するシールド効果測定方法におい
て、測定周波数よりカツトオフ周波数が十分高
い、一面のみ開放した導体容器内に該受信アンテ
ナを収容し、該試料を該導体容器の開放面に配置
し、該送信アンテナを該試料の前方の外部空間に
配置することを特徴とするシールド効果測定方
法。
1. In a shielding effect measurement method that evaluates the shielding effect of a sample based on the difference in the amount of coupling between the transmitting and receiving antennas when a sample is interposed between the transmitting antenna and the receiving antenna and when the sample is not interposed between the transmitting antenna and the receiving antenna. The receiving antenna is housed in a conductive container with only one side open, the cut-off frequency of which is sufficiently higher than the frequency, the sample is placed on the open surface of the conductive container, and the transmitting antenna is placed in an external space in front of the sample. A shielding effect measuring method characterized by:
JP17712584A 1984-08-25 1984-08-25 Measuring method of shield effect Granted JPS6154467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17712584A JPS6154467A (en) 1984-08-25 1984-08-25 Measuring method of shield effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17712584A JPS6154467A (en) 1984-08-25 1984-08-25 Measuring method of shield effect

Publications (2)

Publication Number Publication Date
JPS6154467A JPS6154467A (en) 1986-03-18
JPH0418790B2 true JPH0418790B2 (en) 1992-03-27

Family

ID=16025603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17712584A Granted JPS6154467A (en) 1984-08-25 1984-08-25 Measuring method of shield effect

Country Status (1)

Country Link
JP (1) JPS6154467A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645916B2 (en) * 1986-03-12 1994-06-15 関西ペイント株式会社 Foaming prevention method in recovery water washing process of electrodeposition coating
JPH0410628Y2 (en) * 1986-04-11 1992-03-16
CN1298915C (en) * 2002-03-05 2007-02-07 乐金电子(天津)电器有限公司 Assembling structure of washing machine display part
CN1324188C (en) * 2002-07-05 2007-07-04 乐金电子(天津)电器有限公司 Control panel assembly for washing machine
JP5951383B2 (en) * 2012-07-20 2016-07-13 星和電機株式会社 Electromagnetic shielding performance evaluation jig and electromagnetic shielding performance evaluation apparatus using the same
CN103630777A (en) * 2013-11-19 2014-03-12 陕西海泰电子有限责任公司 Electric equipment shielding effectiveness test system and method

Also Published As

Publication number Publication date
JPS6154467A (en) 1986-03-18

Similar Documents

Publication Publication Date Title
FI75949B (en) ANTENNSYSTEM FOER PERSONLIG RADIOSAENDARE-MOTTAGARE.
EP0183523B1 (en) Automobile antenna system
US8410989B2 (en) Antenna structure including radiating conductor and magnetic material having dielectric property
US4853703A (en) Microstrip antenna with stripline and amplifier
EP2953207B1 (en) Circularly-polarized patch antenna
US2587055A (en) Electrical cavity resonator for microwaves
JPH0418790B2 (en)
WO2002016962A1 (en) Electromagnetic wave radar antenna manufacturing method and electromagnetic wave radar antenna
CA2179703C (en) Broadband horn antenna useful in mass spectroscopy
JP2002196027A (en) Device for evaluating shielding effect and method for measuring shielding effect
US4970455A (en) Device for measuring electromagnetic wave leakage
CN210534025U (en) Wave-absorbing material test fixture
JP2523361B2 (en) Jig for shielding effect of electromagnetic shield material
JPH1130638A (en) Wide-band electromagnetic wave testing black box
JP2007195014A (en) Antenna
JP3434219B2 (en) antenna
JP3155684B2 (en) Probe mounting structure for outdoor converter for satellite broadcasting reception
KR20180052968A (en) Cavity-backed coupler with connector located in rear side
Alhargan et al. Frequency response characteristics of the multiport planar elliptic patch
JP2555635Y2 (en) Obstacle locator
JPS6125075A (en) Shield effect measuring apparatus for connector
EP3822646B1 (en) Rf-hood for antenna measurements at low frequencies
US20240088567A1 (en) Horn antenna device
Solbach et al. Dielectric image line groove antennas for millimeter waves, Part II: Experimental verification
KR100236180B1 (en) Electromagnetic wave shielding function measuring method and its apparatus for iron plate