JP2523361B2 - Jig for shielding effect of electromagnetic shield material - Google Patents

Jig for shielding effect of electromagnetic shield material

Info

Publication number
JP2523361B2
JP2523361B2 JP1044631A JP4463189A JP2523361B2 JP 2523361 B2 JP2523361 B2 JP 2523361B2 JP 1044631 A JP1044631 A JP 1044631A JP 4463189 A JP4463189 A JP 4463189A JP 2523361 B2 JP2523361 B2 JP 2523361B2
Authority
JP
Japan
Prior art keywords
jig
sample
shield material
electromagnetic wave
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1044631A
Other languages
Japanese (ja)
Other versions
JPH02223868A (en
Inventor
敏夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP1044631A priority Critical patent/JP2523361B2/en
Priority to US07/482,802 priority patent/US5061899A/en
Publication of JPH02223868A publication Critical patent/JPH02223868A/en
Application granted granted Critical
Publication of JP2523361B2 publication Critical patent/JP2523361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は電磁波シールド材のシールド効果測定治具に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a shield effect measuring jig for an electromagnetic wave shield material.

〈従来の技術〉 近来、電子関連機器の普及に伴い、電子機器から放射
される電磁波ノイズが問題とされており、その対策とし
て種々の電磁波シールド材が開発されている。而して、
電子機器を適正に電磁波シールドするには、電磁波シー
ルド材のシールド特性を正確に把握しておく必要があ
る。
<Prior Art> With the recent widespread use of electronic-related devices, electromagnetic noise radiated from electronic devices has become a problem, and various electromagnetic wave shield materials have been developed as countermeasures against them. Therefore,
In order to properly shield an electronic device from electromagnetic waves, it is necessary to accurately grasp the shielding characteristics of the electromagnetic wave shielding material.

従来、電磁波シールド材のシールド効果評価治具とし
て、例えば、送信アンテナを納めた窓つきボックスと受
信アンテナとを備え、シールド効果の評価には、電磁波
の放射電力を一定としてボックスの窓に電磁波シールド
材の試料を装着した場合の受信アンテナの誘起電力P1
試料を装着しなかった場合の受信アンテナの誘起電力P0
をそれぞれ測定し、S=10logP0/P1の値でシールド効
果を評価するもの、同軸管型であって、治具中央におい
て外部導体と内部導体との間に試料を装着した場合の出
力電力P1、装着しなかった場合の出力電力P0をそれぞれ
測定して、上記Sを求めるもの、或いは、電磁波放射用
のTEMセルと検出用とTEMセルとを窓を介して合体してな
り、その窓に試料を装着した場合の検出電力P1、装着し
なかった場合の検出電力P0をそれぞれ測定し、上記Sを
求めるもの等が知られている。
Conventionally, as a shield effect evaluation jig of an electromagnetic wave shield material, for example, a box with a window containing a transmitting antenna and a receiving antenna are provided, and in the evaluation of the shielding effect, the electromagnetic wave radiation power is kept constant and the electromagnetic wave shield is applied to the box window. Induced power P 1 of the receiving antenna when a sample of material is attached,
Induced power P 0 of the receiving antenna when the sample is not attached
Respectively, and the shield effect is evaluated by the value of S = 10logP 0 / P 1 , the coaxial tube type, and the output power when the sample is mounted between the outer conductor and the inner conductor in the center of the jig. P 1 , the output power P 0 when not attached is measured to obtain S, or the TEM cell for electromagnetic wave emission and the TEM cell for detection and the TEM cell are combined through a window, It is known that the detected power P 1 when the sample is attached to the window and the detected power P 0 when the sample is not attached are measured to obtain the above S, and the like.

〈解決しようとする課題〉 しかしながら、上記のS値は、例えば、試料の大きさ
等によって変動し、電磁波シールド材の真のシールド効
果を表わしているものではなく、当該S値でシールド効
果を評価しても、適正な評価をなし得ず、補正を必要と
する。
<Problems to be Solved> However, the above S value varies depending on, for example, the size of the sample, and does not represent the true shielding effect of the electromagnetic wave shield material. However, it cannot be properly evaluated and needs correction.

ところで、シールド材の伝達インピーダンスZtとシー
ルド効果Sとの間には一定の関係があり、その計算プロ
グラムが1979年にP.I.Madie氏等により開発された。し
かしながら、伝達インピーダンスを実測できる治具は未
だ開発されていない。
By the way, there is a certain relationship between the transfer impedance Zt of the shield material and the shield effect S, and its calculation program was developed by PI Madie et al. In 1979. However, a jig that can measure the transfer impedance has not been developed yet.

本発明の目的は、伝達インピーダンスの実測が可能
で、補正を行うこと無く真のシールド効果を求め得るシ
ールド効果測定治具を提供することにある。
An object of the present invention is to provide a shield effect measuring jig that can measure the transfer impedance and can obtain the true shield effect without correction.

〈課題を解決するための手段〉 本発明に係る電磁波シールド材のシールド効果測定治
具は、互に突合わされる同軸型治具片からなり、一方の
治具片の内部導体を互に摺動自在に接続されたヘッド部
材とリード部材とから構成し、このヘッド部材の被測定
試料を貫通しての他方の治具片の内部導体ヘッド部への
結合により当該試料の内周部を挾持する内部導体結合手
段を設け、両治具片の外部導体間に上記試料の外周部を
挾持する外部導体結合手段を設けたことを特徴とする構
成である。
<Means for Solving the Problems> A shield effect measuring jig for an electromagnetic wave shielding material according to the present invention comprises coaxial jig pieces that are butted against each other, and the inner conductors of one jig piece slide on each other. It is composed of a head member and a lead member that are freely connected, and the inner peripheral portion of the sample is held by the other member of the jig that penetrates the sample to be measured and is connected to the internal conductor head part. The internal conductor coupling means is provided, and the external conductor coupling means for sandwiching the outer peripheral portion of the sample is provided between the outer conductors of both jig pieces.

本発明に係る治具による伝達インピーダンスの測定に
おいては、発振器側同軸線路内より伝播されてくる電磁
波がシールド材試料に入射され、その電磁波の一部(シ
ールドされなかった電磁波分)がシールド材試料の裏面
側に透過される状態で測定されるために、シールド材表
面側から裏面側への電磁波の伝達性を的確に示す伝達イ
ンピーダンスが測定され得る。
In the measurement of the transfer impedance by the jig according to the present invention, the electromagnetic wave propagating from the oscillator-side coaxial line is incident on the shield material sample, and a part of the electromagnetic wave (the unshielded electromagnetic wave component) is shielded by the shield material sample. Since the measurement is performed while being transmitted to the back surface side of the shield material, the transfer impedance that accurately indicates the transferability of the electromagnetic wave from the front surface side of the shield material to the back surface side can be measured.

〈実施例の説明〉 以下、本発明の実施例について説明する。<Description of Examples> Examples of the present invention will be described below.

第1図は本発明の一実施例を示す上半部欠切側面図で
ある。
FIG. 1 is a cutaway side view of an upper half portion showing an embodiment of the present invention.

第1図において、A・Bは同軸型治具片である。1aは
治具片Aの外部導体であり、一端にフランジ11aを備
え、他端にNJコネクター部12aを備えている。2aは治具
片Aの内部導体であり、ヘッド部21aとリード部22aとを
備え、リード部22aは外部導体のコネクター部12a内に絶
縁体31a、例えばテフロンによって同軸状に保持してあ
る。23aはヘッド部に設けた螺子穴である。1bは治具片
Bの外部導体であり、一端にはフランジ11bを、他端に
はNJコネクター部12bをそれぞれ備えている。2bは治具
片の内部導体であり、ソケット部221を有するリード部
材22bとスリ割りを設けたピン部211を有するヘッド部材
21bとから構成し、リード部材22bを外部導体のコネクタ
ー部12b内に絶縁体31bによって同軸状に保持し、リード
部材22bのソケット部221にヘッド部材21bのピン部211を
摺動自在に差込接続してある。23bはヘッド部材21bに突
設した螺子部であり、一方の内部導体ヘッド部21aの螺
子穴23aに螺結してある。r・(r)は各内部導体2a・
(2b)のリード部22a・(22b)の途中にろう接した抵抗
器であり、その抵抗値は、測定系特性インピーダンス
(50Ω)に等しくしてある。32a・32bは抵抗器部分の補
強用絶縁体、例えば、高密度ポリエチレン、ポリスチロ
ール等であり、これは部分インピーダンスの補正用とし
ても機能している。4は両外部導体のフランジを締結せ
るボルト・ナット、Tは供試体である。
In FIG. 1, A and B are coaxial jig pieces. Reference numeral 1a denotes an outer conductor of the jig piece A, which has a flange 11a at one end and an NJ connector portion 12a at the other end. Reference numeral 2a denotes an inner conductor of the jig piece A, which includes a head portion 21a and a lead portion 22a, and the lead portion 22a is coaxially held in the connector portion 12a of the outer conductor by an insulator 31a, for example, Teflon. Reference numeral 23a is a screw hole provided in the head portion. Reference numeral 1b denotes an outer conductor of the jig piece B, which has a flange 11b at one end and an NJ connector portion 12b at the other end. Reference numeral 2b denotes an inner conductor of the jig piece, which is a head member having a lead member 22b having a socket portion 221 and a pin portion 211 provided with a slit.
21b, the lead member 22b is coaxially held in the connector portion 12b of the outer conductor by the insulator 31b, and the pin portion 211 of the head member 21b is slidably inserted into the socket portion 221 of the lead member 22b. It is connected. Reference numeral 23b is a screw portion projecting from the head member 21b, and is screwed into the screw hole 23a of one of the internal conductor head portions 21a. r ・ (r) is each inner conductor 2a ・
It is a resistor brazed in the middle of the lead portions 22a and (22b) of (2b), and its resistance value is made equal to the measurement system characteristic impedance (50Ω). 32a and 32b are insulators for reinforcing the resistor portion, for example, high-density polyethylene, polystyrene, etc., which also function to correct the partial impedance. 4 is a bolt and nut for fastening the flanges of both outer conductors, and T is a specimen.

治具に供試体(電磁波シールド材の試料)を装着する
には、治具片Aのヘッド部螺子穴23aに、他方の治具片
Bの構成要素であるヘッド部材21bの螺子部23bを螺合
し、供試体Tの内周部を挟持する。この螺合調節によっ
て、供試体Tの内周部をヘッド部21a・21b間に充分な接
触圧で挟持できる。次いで、ヘッド部材21bのピン部211
上に治具片Bにおける内部導体2bリード部材22bのソケ
ット部221を挿通し、而るのち、ヘッド部材21bのピン部
211を軸として治具片A・Bを相対的に回転させ、両外
部導体2a・2bのフランジ11a・11bのボルト孔を位置合せ
し、両フランジ11a・11bをボルト・ナット4の締付けに
よって連結する。
To mount the sample (sample of electromagnetic wave shielding material) on the jig, screw the head portion screw hole 23a of the jig piece A into the screw portion 23b of the head member 21b which is a constituent element of the other jig piece B. Then, the inner peripheral portion of the sample T is clamped. By this screwing adjustment, the inner peripheral portion of the sample T can be clamped between the head portions 21a and 21b with a sufficient contact pressure. Next, the pin portion 211 of the head member 21b
The socket portion 221 of the inner conductor 2b lead member 22b of the jig piece B is inserted therethrough, and then the pin portion of the head member 21b is inserted.
The jig pieces A and B are relatively rotated around the axis of 211, the bolt holes of the flanges 11a and 11b of both outer conductors 2a and 2b are aligned, and both flanges 11a and 11b are connected by tightening the bolts and nuts 4 To do.

供試体Tが電磁波シールドガスケット材である場合
は、第2図に示すように両治具片A・Bの内部導体2a・
2bとも、互に摺動自在に接続されたヘッド部材とリード
部材とから構成し、両治具片A・B間に金属板(銅板)
mを配し、この金属板mと各外部導体のフランジ11a・1
1bとの間でそれぞれガスケット供試体T・Tを挟持す
る。この場合、各ガスケット供試体T・(T)の厚みに
応じて、各治具片A・(B)の外部導体1a・(1b)が+
X・(−X)方向にずれるが、各内部導体2a・(2b)の
摺動接続部によってこのずれを吸収できる。
When the sample T is an electromagnetic shield gasket material, as shown in FIG. 2, the inner conductors 2a.
2b is composed of a head member and a lead member that are slidably connected to each other, and a metal plate (copper plate) between both jig pieces A and B.
m, the metal plate m and the flanges 11a ・ 1 of each outer conductor
Insert gasket specimen T and T between 1b and each. In this case, the outer conductors 1a and (1b) of each jig piece A and (B) are + depending on the thickness of each gasket specimen T and (T).
Although it shifts in the X-(-X) direction, this shift can be absorbed by the sliding connection portion of each inner conductor 2a, (2b).

上記において、一方の内部導体のヘッド部材を他方の
内部導体のヘッド部材に結着する構成は上記螺結方式に
限定されるものではなく、ヘッド部とヘッド部材との間
で試料を所定の接触圧で挟持できるものであればよい。
上記の両外部導体を連結する構成も上記フランジ方式に
限定されるものではなく、両外部導体の着脱が可能であ
れば、適宜の構成をなし得る。
In the above, the configuration in which the head member of one inner conductor is bound to the head member of the other inner conductor is not limited to the above-described screwing method, and the sample is contacted with the head portion and the head member at a predetermined contact. Anything that can be clamped by pressure may be used.
The configuration for connecting both outer conductors is not limited to the flange method, and any appropriate configuration can be used as long as the outer conductors can be attached and detached.

上記抵抗器はできるだけ供試試料の近傍に設けること
が好ましく、抵抗器と供試体との間隔は使用最高周波数
の波長の0.2倍以下とすることが望ましい。使用周波数
が低く、治具の大きさが波長に較べて十分に小さい場合
には、抵抗器を省略することもできる。
It is preferable to provide the above resistor as close to the sample under test as possible, and it is desirable that the distance between the resistor and the sample be 0.2 times or less the wavelength of the maximum frequency used. If the operating frequency is low and the size of the jig is sufficiently smaller than the wavelength, the resistor can be omitted.

本発明の治具を用いて電磁波シールド材のシールド効
果を測定するには、治具に試料をセットしたのち、治具
の一方のコネクター口に発振器を、他方のコネクター口
に電圧計をそれぞれ接続し、試料の伝達インピーダンス
を測定すればよい。
To measure the shielding effect of the electromagnetic wave shielding material using the jig of the present invention, after setting the sample on the jig, connect the oscillator to one connector port of the jig and the voltmeter to the other connector port. Then, the transfer impedance of the sample may be measured.

第3図は、その等価回路を示し、Iは同軸型測定治具
に対応する部分、IIは発振器側、IIIは電圧計側であ
る。Zoは測定系の特性インピーダンスを、rは抵抗器の
抵抗を、Ztは試料の伝達インピーダンスを、V1は発振器
出力電圧を、V2は測定電圧を、Iは試料に流れる電流
を、Vは試料にかかる電圧をそれぞれ示している(な
お、同軸型治具の特性インピーダンスを発振器の特性イ
ンピーダンス、電圧計インピーダンスに整合させるよう
に、同軸の内外導体径を設定してある)。
FIG. 3 shows an equivalent circuit thereof, where I is a portion corresponding to the coaxial measuring jig, II is an oscillator side, and III is a voltmeter side. Zo is the characteristic impedance of the measurement system, r is the resistance of the resistor, Zt is the transfer impedance of the sample, V 1 is the oscillator output voltage, V 2 is the measurement voltage, I is the current flowing through the sample, and V is The voltages applied to the samples are shown (note that the coaxial inner and outer conductor diameters are set so that the characteristic impedance of the coaxial jig matches the characteristic impedance of the oscillator and the voltmeter impedance).

第3図において、一般にZo≫Ztであるから、 また、 V=2V2 …… 従って、 である。而して、V1、V2より伝達インピーダンスを測
定すれば、前記第2式によってシールド効果を測定で
きる。
In FIG. 3, since generally Zo >> Zt, Also, V = 2V 2 ...... Therefore, Is. Then, if the transfer impedance is measured from V 1 and V 2 , the shield effect can be measured by the second formula.

第4図は、上記第1図において、抵抗器の抵抗値を50
Ω、治具の外部導体の内径を38.8mm、外部導体のコネク
ター部内径を14.0mm、内部導体のヘッド部またはヘッド
部材の外径を16.9mm、内部導体のリード部またはリード
部材の外径を6.1mm、試料から抵抗器までの距離を45.0m
mとして、次の各電磁波シールド材についての伝達イン
ピーダンスの周波数特性を測定した結果であり、1000MH
zといった高周波数帯でも安定した測定値を得ることが
できた。
FIG. 4 shows the resistance value of the resistor in FIG.
Ω, the outer diameter of the outer conductor of the jig is 38.8 mm, the inner diameter of the connector part of the outer conductor is 14.0 mm, the outer diameter of the inner conductor head or head member is 16.9 mm, and the inner conductor lead or lead member outer diameter is 6.1mm, the distance from the sample to the resistor is 45.0m
m is the result of measuring the frequency characteristics of the transfer impedance for each of the following electromagnetic wave shielding materials,
We were able to obtain stable measured values even in high frequency bands such as z.

(I)ニッケルメッキ処理を施した多数の微細孔を有す
る鉄箔であり、厚さ0.10mm、孔径2.0mm、開口率58%。
(I) An iron foil having a large number of fine holes plated with nickel, having a thickness of 0.10 mm, a hole diameter of 2.0 mm, and an opening ratio of 58%.

(II)同上、厚さ0.10mm、孔径1.7mm、開口率40%。(II) Same as above, thickness 0.10 mm, hole diameter 1.7 mm, opening ratio 40%.

(III)同上、厚さ0.10mm、孔径1.0mm、開口率19%。(III) Same as above, thickness 0.10 mm, hole diameter 1.0 mm, aperture ratio 19%.

(IV)ニッケルメッキ処理を施した無孔の鉄箔であり、
厚さ、0.10mm。
(IV) Non-perforated iron foil with nickel plating,
Thickness is 0.10 mm.

(V)銅をメッキしたポリエステル不織布であり、厚
さ、84μm、表面抵抗0.03Ω/□。
(V) Polyester non-woven fabric plated with copper, thickness, 84 μm, surface resistance 0.03 Ω / □.

(VI)表面を防錆処理した厚さ35μmの銅箔の裏面に厚
さ30μmの粘着層を付与。
(VI) An adhesive layer with a thickness of 30 μm is applied to the back side of a copper foil with a thickness of 35 μm, the surface of which has been rustproofed.

電磁波シールド材のシールド効果Sは、反射損失(電
波の伝播経路に媒質の異なる境界面が存在する場合の反
射による損失)をR、吸収損失(媒質中を伝播する経路
での熱損失)をA、多重反射損失(シールド材内部の両
境界面での反射の繰返しによる損失)をMとすれば、 S=R+A+M …… で与えられ、吸収損失Aが10dB以上のとき、多重反射損
失は無視できる。
The shielding effect S of the electromagnetic wave shield material is as follows: R is reflection loss (loss due to reflection when a boundary surface of a medium is different in propagation path of radio wave) and A is absorption loss (heat loss in path propagating in medium). , M is the multiple reflection loss (loss due to repeated reflection at both boundary surfaces inside the shield material), it is given by S = R + A + M ......, and the multiple reflection loss can be ignored when the absorption loss A is 10 dB or more. .

而るに、電界波に対する反射損失REは で与えられ、磁界波に対する反射損失RMは で与えられ、吸収損失Aは で与えられることが知られている。Therefore, the reflection loss RE for the electric field wave is And the return loss RM for the magnetic field wave is And the absorption loss A is It is known to be given in.

ここで、fは周波数、τは波源とシールド材間の距
離、tはシールド材の厚み、δはシールド材の導電率、
μは真空に対する透磁率である。
Where f is the frequency, τ is the distance between the wave source and the shield material, t is the thickness of the shield material, δ is the conductivity of the shield material,
μ is the magnetic permeability with respect to vacuum.

また、シールド効果Sと伝達インピーダンスZtとの間
には、上述したように S=20Logk〔Zw/Zt〕…… の関係がある(k=50/120π)。
Further, as described above, there is a relationship of S = 20Logk [Zw / Zt] ... Between the shield effect S and the transfer impedance Zt (k = 50 / 120π).

この式において、Zwは空間インピーダンスであり、電
界波に対する空間インピーダンスZWEは で与えられ、磁界波に対する空間インピーダンスZWMは 与えられることが知られている。ここにβは伝播定数、
λは波長、Rは波源とシールド材間の距離である。
In this equation, Zw is the spatial impedance, and the spatial impedance ZWE for the electric field wave is And the spatial impedance ZWM for the magnetic field wave is It is known to be given. Where β is the propagation constant,
λ is the wavelength, and R is the distance between the wave source and the shield material.

第5図における曲線Iは厚み35μmの銅箔についてR
=0.025mとしたときの上記式〜式により計算した電
界波シールド効果を示し、曲線IIは同じく磁界波シール
ド効果を示している。
Curve I in Fig. 5 is R for a copper foil with a thickness of 35 µm.
Shows the electric field wave shielding effect calculated by the above formulas when the value is 0.025 m, and the curve II also shows the magnetic field wave shielding effect.

同上厚み35μmの銅箔について本発明により測定した
伝達インピーダンスから上記式〜(10)式により求め
た周波数1MHZ、2MHZ、4MHZ、7MHZ、10MHZ、20MHZでのシ
ールド効果は第5図における・の通りであり、極めて優
れた精度で理論値曲線I、IIに一致している。
Same as above, the shielding effect at the frequencies 1MHZ, 2MHZ, 4MHZ, 7MHZ, 10MHZ, 20MHZ obtained by the above equations to (10) from the transfer impedance measured by the present invention for the copper foil having a thickness of 35 μm is as shown in FIG. Yes, it agrees with theoretical value curves I and II with extremely excellent accuracy.

本発明の治具を使用しての伝達インピーダンスの測定
においては、発振器側同軸線路内より伝播されてくる電
磁波がシールド材試料に入射され、その電磁波の一部
(シールドされなかった電磁波分)がシールド材試料の
裏面側に透過されるところ、上記シールド効果の測定値
と理論値との高精度の一致は、本発明の治具により測定
される伝達インピーダンスがシールド材表面側から裏面
側への電磁波の伝達性を的確に評価している結果であ
る。
In the measurement of the transfer impedance using the jig of the present invention, the electromagnetic wave propagated from the oscillator-side coaxial line is incident on the shield material sample, and a part of the electromagnetic wave (the unshielded electromagnetic wave component) When transmitted to the back surface side of the shield material sample, the measured value of the shield effect and the theoretical value agree with each other with high accuracy because the transfer impedance measured by the jig of the present invention is from the front surface side to the back surface side of the shield material. This is the result of accurately evaluating the transmissibility of electromagnetic waves.

上記したシールド効果の測定値と理論値との高精度の
一致からして、本発明に係る治具より測定した伝達イン
ピーダンスにて補正なしでシールド効果を適正に評価で
きることが明らかである。
From the above-mentioned highly accurate agreement between the measured value and the theoretical value of the shield effect, it is clear that the shield effect can be properly evaluated without correction by the transfer impedance measured by the jig according to the present invention.

〈発明の効果〉 本発明に係る治具は、同軸型であり、発振器側同軸線
路内より伝播されてくる電磁波がシールド材試料に入射
され、その電磁波の一部(シールドされなかった電磁波
分)がシールド材試料の裏面側に透過される状態で測定
が行われるために、シールド材表面側から裏面側への電
磁波の伝達性を的確に示す伝達インピーダンスが測定さ
れ得る。
<Effects of the Invention> The jig according to the present invention is a coaxial type, and electromagnetic waves propagated from inside the oscillator-side coaxial line are incident on the shield material sample, and a part of the electromagnetic waves (the electromagnetic waves that are not shielded) Since the measurement is performed in a state in which is transmitted to the back surface side of the shield material sample, the transfer impedance that accurately indicates the transmissibility of the electromagnetic wave from the front surface side of the shield material to the back surface side can be measured.

また、第1図に示すように、一方の治具片Bの内部導
体2bを互に摺動自在に接続されたヘッド部材21bとリー
ド部材22bとから構成し、このヘッド部材21aの被測定試
料Tを貫通しての他方の治具片Aの内部導体ヘッド部21
aへの結合により当該試料Tの内周部を挾持するように
したから、第1図において、治具片Aに試料Tをあてが
い、ヘッド部材21bを治具片Aの内部導体2aのヘッド部2
1aに螺合してこの試料Tの内周部をヘッド部材21bとヘ
ッド部21aとの間に充分な接触圧力で安定に挾持し、次
いで治具片Bをあてがい、ヘッド部材21bに治具片Bの
リード部材22bを差し込み接合し、両治具片A.Bの外部導
体1b,1aを結着して同上試料Tの外周部を外部導体1b,1a
間に充分な接触圧力で挾持でき、従って、これらの接触
箇所で接触抵抗を安定に保持でき、伝達インピーダンス
を安定に測定できる。また、両方の治具片における内部
導体を、互に摺動自在に接続せるヘッド部材とリード部
材とによって構成したものにおいては、外部導体間の間
隔を内部導体間の間隔より広くしても、この間隔の差を
摺動接続部で吸収できるから、外部導体間に電磁波シー
ルド材を配してそのシールド材のシールド効果をも測定
できる。
As shown in FIG. 1, the inner conductor 2b of one jig piece B is composed of a head member 21b and a lead member 22b slidably connected to each other. Internal conductor head portion 21 of the other jig piece A penetrating T
Since the inner peripheral portion of the sample T is held by being joined to a, the sample T is applied to the jig piece A and the head member 21b is attached to the head portion of the inner conductor 2a of the jig piece A in FIG. 2
The inner peripheral portion of the sample T is stably clamped by a sufficient contact pressure between the head member 21b and the head portion 21a by screwing with the 1a, and then the jig piece B is applied to the head member 21b. The lead member 22b of B is inserted and joined, the outer conductors 1b and 1a of both jig pieces AB are bonded, and the outer peripheral portion of the sample T is attached to the outer conductors 1b and 1a.
In between, it can be held with a sufficient contact pressure, so that the contact resistance can be stably maintained at these contact points, and the transfer impedance can be stably measured. Further, in the case where the inner conductors of both jig pieces are constituted by the head member and the lead member that are slidably connected to each other, even if the distance between the outer conductors is wider than the distance between the inner conductors, Since this sliding difference can be absorbed by the sliding connection portion, it is possible to dispose an electromagnetic wave shielding material between the outer conductors and measure the shielding effect of the shielding material.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す説明図、第2図は同上
実施例における試料装着状態の別例を示す説明図、第3
図は同上実施例の電気的等価回路図、第4図は同上実施
例による測定した試料の伝達インピーダンス特性を示す
図表、第5図は本発明の治具で測定した伝達インピーダ
ンスから求めたシールド効果と理論値との一致性を示す
図表である。 A・B……治具片、1a・1b……外部導体、2a・2b……内
部導体、21b……内部導体2bのヘッド部材、22b……内部
導体のリード部材、T……試料。
FIG. 1 is an explanatory view showing an embodiment of the present invention, FIG. 2 is an explanatory view showing another example of a sample mounting state in the same embodiment, and FIG.
FIG. 4 is an electrical equivalent circuit diagram of the same embodiment, FIG. 4 is a table showing transfer impedance characteristics of the sample measured according to the same embodiment, and FIG. 5 is a shield effect obtained from transfer impedance measured by the jig of the present invention. It is a chart showing the agreement between the and theoretical values. AB: Jig piece, 1a / 1b: outer conductor, 2a / 2b: inner conductor, 21b: head member of inner conductor 2b, 22b: lead member of inner conductor, T: sample.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互に突合わされる同軸型治具片からなり、
一方の治具片の内部導体を互に摺動自在に接続されたヘ
ッド部材とリード部材とから構成し、このヘッド部材の
被測定試料を貫通しての他方の治具片の内部導体ヘッド
部への結合により当該試料の内周部を挾持する内部導体
結合手段を設け、両治具片の外部導体間に上記試料の外
周部を挾持する外部導体結合手段を設けたことを特徴と
する電磁波シールド材のシールド効果測定治具。
1. A coaxial jig piece which is butted against each other,
The inner conductor of one jig piece is composed of a head member and a lead member that are slidably connected to each other, and the inner conductor head part of the other jig piece penetrates the sample to be measured of this head member. Electromagnetic wave characterized by providing an inner conductor coupling means for holding the inner peripheral portion of the sample by coupling to the outer conductor coupling means for holding the outer peripheral portion of the sample between the outer conductors of both jig pieces. Jig for shielding effect of shield material.
【請求項2】請求項(1)において、両方の治具片の内
部導体を互に摺動自在に接続されたヘッド部材とリード
部材とから構成したことを特徴とする電磁波シールド材
のシールド効果測定治具。
2. The shield effect of an electromagnetic wave shield material according to claim 1, wherein the inner conductors of both jig pieces are composed of a head member and a lead member slidably connected to each other. Measurement jig.
JP1044631A 1989-02-23 1989-02-23 Jig for shielding effect of electromagnetic shield material Expired - Fee Related JP2523361B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1044631A JP2523361B2 (en) 1989-02-23 1989-02-23 Jig for shielding effect of electromagnetic shield material
US07/482,802 US5061899A (en) 1989-02-23 1990-02-21 Transfer impedance testing fixture for electromagnetic wave shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1044631A JP2523361B2 (en) 1989-02-23 1989-02-23 Jig for shielding effect of electromagnetic shield material

Publications (2)

Publication Number Publication Date
JPH02223868A JPH02223868A (en) 1990-09-06
JP2523361B2 true JP2523361B2 (en) 1996-08-07

Family

ID=12696770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1044631A Expired - Fee Related JP2523361B2 (en) 1989-02-23 1989-02-23 Jig for shielding effect of electromagnetic shield material

Country Status (1)

Country Link
JP (1) JP2523361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149417B (en) * 2007-11-14 2010-10-13 中国林业科学研究院木材工业研究所 Screen performance test method for veneer with built-in electromagnetic layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643349B1 (en) * 2000-12-21 2006-11-10 주식회사 포스코 A method for evaluating shield effect of low frequency electromagnetic field of steel plate
CN108918592B (en) * 2018-04-25 2023-10-03 国网湖北省电力有限公司经济技术研究院 Modular measurement device for lightning-proof grounding material of power system and application method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149417B (en) * 2007-11-14 2010-10-13 中国林业科学研究院木材工业研究所 Screen performance test method for veneer with built-in electromagnetic layer

Also Published As

Publication number Publication date
JPH02223868A (en) 1990-09-06

Similar Documents

Publication Publication Date Title
Holloway et al. Shielding effectiveness measurements of materials using nested reverberation chambers
Crawford Generation of standard EM fields using TEM transmission cells
JP5424220B2 (en) Method and system for measuring passive intermodulation distortion
JP4219634B2 (en) Magnetic sensor, side-open TEM cell, and apparatus using them
Wilson et al. Techniques for measuring the electromagnetic shielding effectiveness of materials. II. Near-field source simulation
Gao et al. A new miniature magnetic field probe for measuring three-dimensional fields in planar high-frequency circuits
Sarto et al. Innovative test method for the shielding effectiveness measurement of conductive thin films in a wide frequency range
Gao et al. Calibration of electric coaxial near-field probes and applications
US7482814B2 (en) Electric/magnetic field sensor
US9568568B2 (en) Apparatus and method of measuring permeability of a sample across which a DC voltage is being applied
JP2523361B2 (en) Jig for shielding effect of electromagnetic shield material
US4281284A (en) Method and apparatus for electrically contacting a material specimen to the conductors of a coaxial cable
Manara Measurement of material shielding effectiveness using a dual TEM cell and vector network analyzer
JP2537680B2 (en) Measuring method of transmission impedance of electromagnetic shield material
US4970455A (en) Device for measuring electromagnetic wave leakage
US5061899A (en) Transfer impedance testing fixture for electromagnetic wave shielding material
Wilson et al. Measurement of the electromagnetic shielding capabilities of materials
Daniel et al. Shielding Efficiency Measuring Methods and Systems
JPS6154467A (en) Measuring method of shield effect
US5397980A (en) Current probe calibration fixture
JPH01244343A (en) Broad-band measuring cell
Nagasawa et al. A surface current detector for high‐frequency currents on a metal surface
JPH0225182Y2 (en)
Soderman Application of precision connectors to high-frequency measurements
Ming-Shing Analysis of measurement uncertainty in the measurement of electromagnetic shielding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees