JPH04187558A - Binder for injection molding of ceramic and production of sintered ceramic using the same - Google Patents

Binder for injection molding of ceramic and production of sintered ceramic using the same

Info

Publication number
JPH04187558A
JPH04187558A JP2319269A JP31926990A JPH04187558A JP H04187558 A JPH04187558 A JP H04187558A JP 2319269 A JP2319269 A JP 2319269A JP 31926990 A JP31926990 A JP 31926990A JP H04187558 A JPH04187558 A JP H04187558A
Authority
JP
Japan
Prior art keywords
ceramic
component
injection molding
degreasing
organic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2319269A
Other languages
Japanese (ja)
Inventor
Toshimasa Miwa
三輪 利政
Reiji Matsubara
礼治 松原
Kaichi Imao
香一 今尾
Shoji Yamanaka
山中 捷治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2319269A priority Critical patent/JPH04187558A/en
Publication of JPH04187558A publication Critical patent/JPH04187558A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the generation of microcracks by mixing ceramic with an organic binder composed of paraffins containing specific carbon number components at specific ratios, injection-molding the obtained molding raw material and baking the molded article after degreasing. CONSTITUTION:An organic binder composed mainly of 18-35C paraffins is mixed with powdery ceramic such as Si3N4 at a volume ratio of 40/60 to 55/45 to obtain a ceramic material for injection molding. The paraffin used as the main component of the organic binder contains 22-27C component at the highest ratios. The content of 31C component is larger than that of 30C component and the content of 33C component is larger than that of 32C component. The ceramic raw material is injection-molded and the temperature is raised to 400-600 deg.C spending 2-15hr to effect the degreasing of the product and obtain a degreased molded article free from microcracks. The degreased molded article is baked in N2 atmosphere at 1550-1800 deg.C under normal pressure and at 1700-2000 deg.C under pressure in the case of sintered Si3N4 or baked in Ar atmosphere at 1900-2200 deg.C under normal pressure in the case of sintered SiC.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はセラミック射出成形用バインダーに関し、より
詳しくはセラミック射出成形体の脱脂工程が短縮でき、
且つ脱脂歩留が向上するセラミック射出成形用バインダ
ーに関する。更に、前記射出成形用バイングーを用いた
セラミック焼結体の製造方法に関する。
The present invention relates to a binder for ceramic injection molding, and more specifically, it can shorten the degreasing process of ceramic injection molded bodies, and
The present invention also relates to a binder for ceramic injection molding that improves the degreasing yield. Furthermore, the present invention relates to a method of manufacturing a ceramic sintered body using the injection molding baingu.

【従来の技術】[Conventional technology]

複雑な形状のセラミックターボチャージャーロタやセラ
ミックタービンロータ等を射出成形、流し込み成形によ
り成形する場合は、成形性を高めるため原料セラミック
粉末に熱可塑性樹脂やワックス等の有機バインダーを添
加してセラミック成形体を形成していた。 しかし、有機バインダーを用いた場合は焼成後の焼結体
の疎密化を防止するため、成形体中に含有された有機バ
インダーを、有機溶媒を用いる溶解除去や加熱による分
解除去ムニより添加した有機バインダーを成形体中から
焼結前にして予め除去する脱脂工程が必要である。 加熱による脱脂は、有機バインダーを熱分解してガス化
させ除去させる方法であるが、有機ハインダーとセラミ
ックスの熱膨張係数の差及びバインダーの熱分解時に生
しるガスや反応熱により、成形体中に応力が発生するた
め成形体の変形やクラックの原因となっている。特に、
肉厚成形体やターボチャージャーロータ等の複雑形状品
では、脱脂による変形やクラックの発生が顕著であり、
脱脂のための昇温加熱を非常にゆっくりと、例えば20
〜30日間かけて行わねばならなず、これらのセラミッ
ク製品の製造工程で問題となっていた。 発明者等は、先に特開平2−137773号公報にてパ
ラフィンワックスを主成分とする有機バインダーを使用
したセラミック成形体の脱脂方法を提案した。この方法
は、パラフィンワックスの液化によりセラミック成形体
が収縮を始める直前の温度において成形体を所定時間保
持することにより、従来より短時間で脱脂して成形体の
クランク等を防止することができ有用である。
When molding complex-shaped ceramic turbocharger rotors, ceramic turbine rotors, etc. by injection molding or pour molding, an organic binder such as thermoplastic resin or wax is added to the raw ceramic powder to improve molding properties. was forming. However, when an organic binder is used, in order to prevent the sintered body from becoming densified after firing, the organic binder contained in the compact can be removed by dissolving it using an organic solvent or decomposing it by heating. A degreasing step is required to remove the binder from the molded body before sintering. Degreasing by heating is a method of thermally decomposing the organic binder to gasify it and remove it, but due to the difference in thermal expansion coefficient between the organic binder and ceramics and the gas and reaction heat generated during the thermal decomposition of the binder, the inside of the molded body may be removed. This generates stress, which causes deformation and cracks in the molded product. especially,
Products with complex shapes such as thick molded bodies and turbocharger rotors are prone to deformation and cracking due to degreasing.
Raise the temperature for degreasing very slowly, e.g.
This process had to be carried out over a period of ~30 days, which caused problems in the manufacturing process of these ceramic products. The inventors previously proposed a method for degreasing a ceramic molded body using an organic binder containing paraffin wax as a main component in JP-A-2-137773. This method is useful because it holds the ceramic molded body for a predetermined period of time at a temperature just before the ceramic molded body begins to shrink due to the liquefaction of the paraffin wax, allowing it to be degreased in a shorter time than conventional methods and prevent the molded body from cranking. It is.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、上記提案の方法においても、従来に比し短縮さ
れたといえ、セラミックターボチャージャーロータ等の
複雑形状品の脱脂時間は、なおlO〜20日間を要し、
より短時間への改良が望まれていた。 更にまた、上記提案方法で得られる焼結体の中に、形状
、強度等所定の特性を有しないものが生ずることがあっ
た。 発明者等の知見によれば、上記の提案方法の場合を含め
、従来の脱脂方法で得られる成形脱脂体の中には、その
表面に深さ数10μmのマイクロクランクが生じている
ものがあり、そのマイクロクラックが焼結後も残存して
焼結体特性に悪影響を及ぼすことが明らかになった。 そのため、上記提案の脱脂によるクノラク防止の点で優
れる方法において、得られる成形脱脂体について表面を
観察しマイクロクラ・ツクが存在しているものについて
は、その表面を修正する操作を加えて行う必要があった
。しかし、表面観察、修正による形状変化、修正作業中
に生ずる品質低下等々表面修正に伴う作業の煩雑やコス
ト・アップ等の不都合が問題となっている。 発明者等は、更に、複雑形状や大型のセラミ・ツク射出
成形体の脱脂工程において、上記知見のマイクロクラッ
クの発生を抑制し、且つ脱脂時間の短縮を目的にして、
セラミック焼結体の製造における各工程について、特に
、射出成形時のバインダーについて鋭意検討した結果、
本発明を完成した。
However, even with the method proposed above, although it can be said to be shortened compared to the conventional method, the degreasing time for products with complex shapes such as ceramic turbocharger rotors still requires 10 to 20 days.
Improvements to shorter times were desired. Furthermore, some of the sintered bodies obtained by the proposed method do not have predetermined properties such as shape and strength. According to the findings of the inventors, some molded degreased bodies obtained by conventional degreasing methods, including the case of the proposed method described above, have microcranks several tens of μm deep on their surfaces. It has become clear that the microcracks remain even after sintering and have an adverse effect on the properties of the sintered body. Therefore, in the method proposed above which is excellent in terms of preventing cracks by degreasing, it is necessary to observe the surface of the resulting molded degreased body and if there are any microcracks, it is necessary to perform an additional operation to correct the surface. was there. However, problems such as surface observation, changes in shape due to correction, and quality deterioration that occur during the correction work, such as the complexity of surface correction operations and increased cost, have become problems. The inventors further aimed to suppress the occurrence of microcracks based on the above findings and shorten the degreasing time in the degreasing process of complex-shaped or large ceramic injection molded bodies.
As a result of intensive study on each process in the production of ceramic sintered bodies, especially on the binder during injection molding,
The invention has been completed.

【課題を解決するための手段】[Means to solve the problem]

本発明によれば、セラミック射出成形用の有機バインダ
ーであって、主成分として炭素数CI8〜C3Sのパラ
フィンを有し、炭素数02.〜C27成分が最大含有率
を示し、炭素数031成分がC30成分より多く炭素数
C’J3成分がC82成分より多いことを特徴とするセ
ラミック射出成形用バインダーが提供される。 更にまた、上記のセラミック射出成形用バインダーとセ
ラミックスとを体積比40/60〜55/45で混合し
たセラミック成形用原料を用い、射出成形工程、脱脂工
程及び焼成工程からなることを特徴とするセラミック焼
結体の製造方法が提供される。 発明者等は、前記したようにセラミ・ツク射出成形体の
脱脂工程における脱脂成形体表面のマイクロクラックの
発生の抑制等を目的に、各種の組成の有機バインダーを
用いて射出成形体の脱脂を実験検討した。その結果、特
定成分比のワ・ノクス状のパラフィン混合物を有機バイ
ンダーとして用G)だ場合、脱脂工程時間が短縮され、
且つマイクロクラックの発生も極めて少ないことを更に
知見したものである。 以下、本発明について詳しく説明する。 本発明の有機バインダー1. OOgをクロロホルム5
0m1に溶解してガスクロマトグラフィ(GC)?こて
分析し、更にガスクロマド−マススペクトル(GC−M
S)にて分析し、GCで検出されたピークをマススペク
トルにより定性的に同定した。この結果を第1図に示し
た。 更にまた、GCの結果を相対面積法にて各ピーク成分の
組成割合を検出した。この結果を第1表に示した。 なお、ここで用いたGCは、■品性製作所製のGCTA
G型GCであり、GC−MSは、日本電子■製JMSD
−300型GC−MSである。 (以下、余白) 第  1  表 上記で得られた結果から明らかなように、本発明のセラ
ミック射出成形用の有機バインダーは、炭素数01e−
C35のパラフィンを主成分とするも−ので、これらの
うち最大含有率を有する成分が炭素数C23〜C27に
存在するものである。 このような性状組成のパラフィンは、一般に、第1表に
成分組成比を示したJIS  規格 K2235−19
80に規定されるパラフィンワックスにおける融点51
.7 ”C以上54.4°C未満である種類125P4
こ分類されるパラフィンにほぼ相当するものである。し
かしながら、種類125Pのパラフィンワックスが、炭
素数032成分が炭素数C30成分に比して少なく、ま
た炭素数C33成分が炭素数032成分に比して少ない
のに対し、本発明の有機バインダーは、炭素数C30成
分及び炭素数C’+3成分がそれぞれ炭素数C30成分
及び炭素数C32成分より多く含有され、Cff1成分
/ CS。成分比及びC33成分/ C32成分比が約
1.1〜9.0の範囲にある。 本発明のセラミック焼結体の製造方法において、上記の
射出成形用バインダーを、セラミック原料粉末に対し体
積比で40/60〜55 / 45で混合してセラミッ
ク成形用原料を調製して用いることができる。バインダ
ーとセラミック原料との体積比が40/60より低い場
合は均一な混練物を得ることが難しく、また、55/4
5を超えると脱脂性が悪化するため好ましくない。 上記のようムこして調製したセラミック射出成形用原料
は、従来法と同様にして射出成形することができる。得
られた射出成形体は、次いで脱脂する。 本発明の脱脂工程は、通常、昇温速度は特に制限される
ことなく、最高温度400〜600 ”Cで2〜15時
間、好ましくは、450〜500 ’Cで5〜]0時間
保持して行うことができる。 従って、本発明の有機バインダーを用いて調製したセラ
ミック射出成形用原料を用いて射出成形した射出成形体
は、先に提藁したパラフィンワックス系の有機バインダ
ーを用いた射出成形体の脱脂が、所定の昇温速度での昇
温や所定温度で所定時間保持等煩雑な脱脂スケジュール
で操作する必要があったに比し、極めて簡単な操作で脱
脂することができる。 本発明の脱脂工程においては、射出成形体にヒビや割れ
等を生ずることなく、歩留約98%以上の高効率で脱脂
することができ、また得られる脱脂成形体の表面にはマ
イクロクラ・ツクの発生も殆どない。 本発明において、脱脂成形体は静水圧プレス後、通常の
セラミック焼成スケジュール、例えば、窒化珪素焼結体
では窒素雰囲気中、常圧下で1550〜1800°C1
加圧下で1700〜2000°Cで、また炭化珪素焼結
体ではアルゴン雰囲気中、常圧下1900〜2200°
Cで焼成すればよく、セラミック原料の種類、焼結体の
使用目的等により選択する二とができる。
According to the present invention, there is provided an organic binder for ceramic injection molding, which contains paraffin having a carbon number of CI8 to C3S as a main component, and has a carbon number of 02. - A binder for ceramic injection molding is provided, characterized in that the C27 component shows the maximum content, the carbon number 031 component is more than the C30 component, and the carbon number C'J3 component is more than the C82 component. Furthermore, a ceramic comprising an injection molding process, a degreasing process, and a firing process using a ceramic molding raw material obtained by mixing the above-mentioned binder for ceramic injection molding and ceramics in a volume ratio of 40/60 to 55/45. A method of manufacturing a sintered body is provided. As mentioned above, the inventors degreased injection molded bodies using organic binders of various compositions for the purpose of suppressing the occurrence of microcracks on the surface of the degreased molded body during the degreasing process of ceramic injection molded bodies. Experiments were conducted. As a result, when a wax-like paraffin mixture with a specific component ratio is used as an organic binder, the degreasing process time is shortened.
Furthermore, it has been found that the occurrence of microcracks is extremely small. The present invention will be explained in detail below. Organic binder of the present invention 1. OOg in chloroform 5
Dissolve in 0ml and perform gas chromatography (GC)? Trowel analysis and further gas chromatography mass spectrometry (GC-M
S), and the peaks detected by GC were qualitatively identified by mass spectrometry. The results are shown in FIG. Furthermore, the composition ratio of each peak component was detected using the relative area method based on the GC results. The results are shown in Table 1. The GC used here is GCTA manufactured by Kansei Seisakusho.
It is a G-type GC, and the GC-MS is JMSD manufactured by JEOL.
-300 type GC-MS. (Hereinafter, blank space) Table 1 As is clear from the results obtained above, the organic binder for ceramic injection molding of the present invention has a carbon number of 01e-
Since the main component is C35 paraffin, the component having the maximum content is present in carbon numbers C23 to C27. Paraffins with such properties and compositions are generally compliant with JIS standard K2235-19 whose component composition ratios are shown in Table 1.
Melting point 51 in paraffin wax defined in 80
.. Type 125P4 which is 7”C or more and less than 54.4°C
This is roughly equivalent to the paraffin classified in this category. However, while the type 125P paraffin wax has less carbon number components than C30 components and less carbon number components than C32 components, the organic binder of the present invention has The carbon number C30 component and the carbon number C'+3 component are contained in a larger amount than the carbon number C30 component and the carbon number C32 component, respectively, and the Cff1 component/CS. The component ratio and the C33 component/C32 component ratio are in the range of about 1.1 to 9.0. In the method for producing a ceramic sintered body of the present invention, the above injection molding binder may be mixed with the ceramic raw material powder at a volume ratio of 40/60 to 55/45 to prepare a ceramic molding raw material. can. If the volume ratio of binder and ceramic raw material is lower than 40/60, it is difficult to obtain a uniform kneaded product;
If it exceeds 5, degreasing properties will deteriorate, which is not preferable. The raw material for ceramic injection molding prepared as described above can be injection molded in the same manner as in the conventional method. The injection molded article obtained is then degreased. In the degreasing process of the present invention, the heating rate is usually not particularly limited, and the temperature is maintained at a maximum temperature of 400 to 600'C for 2 to 15 hours, preferably at 450 to 500'C for 5 to 0 hours. Therefore, an injection molded article made by injection molding using a raw material for ceramic injection molding prepared using the organic binder of the present invention is different from an injection molded article made using the paraffin wax-based organic binder as described above. In contrast to the case where degreasing of the present invention required complicated degreasing schedules such as raising the temperature at a predetermined rate and holding the temperature at a predetermined time for a predetermined time, degreasing can be performed with an extremely simple operation. In the degreasing process, it is possible to degrease with high efficiency with a yield of approximately 98% or more without causing cracks or cracks in the injection molded product, and there is no occurrence of microcracks on the surface of the resulting degreased molded product. In the present invention, after isostatic pressing, the degreased molded body is heated under a normal ceramic firing schedule, for example, in the case of a silicon nitride sintered body, the temperature is 1550 to 1800°C under normal pressure in a nitrogen atmosphere.
At 1700-2000°C under pressure, and at 1900-2200°C under normal pressure in an argon atmosphere for silicon carbide sintered bodies.
It is sufficient to sinter the sintered body with C, and the two methods can be selected depending on the type of ceramic raw material, the purpose of use of the sintered body, etc.

【実施例】【Example】

以下、本発明を実施例により詳細に説明する。 但し、本発明は下記実施例により制限されるものでない
。 実施例1 焼結助剤を添加した窒化珪素(5iJ4)粉末と第1表
に示した組成比を有し、且つ第2表に示した各性状を有
する有機バインダーとを体積比で5゜150となるよう
に混合し、更に連続混練押出機にで混練して射出成形用
原料をペレット状で得た。 (以下、余白) 第2表 射出成形は名機製作所株製rM−200A−PM」射出
成形機を用い、上記のようにして得たペレット状射出成
形用原料をその成形金型に充填して、金型温度40゛C
1材料温度70″Cで翼径75■φのターボチャージャ
ーロータに成形した。 得られた成形体をアルミナ粉末中に埋込み、大型の脱脂
炉内に静置し、最高温度480°Cで10時間保持する
1サイクル8日の脱脂を行った。脱脂後、脱脂成形体の
表面を実体顕微鏡(40倍)で観察してマイクロクラッ
クの有無を検査した。 その結果、マイクロクラックの発生はなく、修正は不要
であった。 上記の方法と同様にして200本のターボチャージャー
ロータを射出成形して脱脂した結果、脱脂歩留99.0
%の高率で、マイクロクランクのない脱脂成形体を得る
ことができた。 脱脂成形体は、更に静水圧プレスにてプレス後、窒素雰
囲気中、常圧で1650°Cで1時間焼成して焼結体を
得た。 得られた焼結体の切出強度(kg/mm2)は、室温7
88、6〜99.6 テあり、1000 ’Cテア 6
.8〜87.3であった。 比較例1 実施例1で用いた有機バインダーの代りに、第2図にそ
のベンゼン溶液のGCによる分析結果を、また、第2表
にその性状を示した従来から用いられているパラフィン
ワックス(P−wax)を用いて実施例1と同様にして
、ペレット状の射出成形用原料を得た。得られた射出成
形用原料を用いて、実施例1と同様に射出成形、脱脂を
を行った。 その結果、得られた脱脂成形体には、大きな割れが生し
、その後の工程に進むことができなかった。脱脂歩留は
Oであった。 比較例2 脱脂工程の日数を16日とした以外は、比較例1と全く
同様に、射出成形用原料の調製、射出成形、脱脂を行い
200本の脱脂成形体を得た。得られた脱脂成形体の表
面を実施例1と同様にマイクロクラックの発生を観察し
たところ、全数の脱脂成形体にマイクロクラックの発生
が見出され、その修正には1本当たり約2分の時間を要
した。 また、修正後の脱脂歩留は93%であった。 マイクロクラックを修正後、実施例1と同様にして静水
圧プレス、焼成を実施した。その結果、得られた焼結体
の切出強度(kg/mm2)は、室温で85.0〜98
.3であり、1000 ’Cで72.3〜84.4であ
った。 上記の実施例及び比較例より明らかなように、本発明の
有機バインダーを用いて調製したセラミック射出成形用
原料により射出成形した成形体は、最終的に得られた焼
結体の強度から短い脱脂工程時間でも十分に脱脂され、
且つ従来の有機バインダーを用いた場合に発生が避けら
れなかった脱脂成形体表面のマイクロクラ・ツクも抑制
されることが分かる。
Hereinafter, the present invention will be explained in detail with reference to Examples. However, the present invention is not limited to the following examples. Example 1 Silicon nitride (5iJ4) powder added with a sintering aid and an organic binder having the composition ratio shown in Table 1 and each property shown in Table 2 were mixed in a volume ratio of 5°150. The mixture was mixed in such a manner that the raw materials for injection molding were obtained in the form of pellets by further kneading in a continuous kneading extruder. (Hereinafter, blank space) For the second injection molding, the injection molding machine "rM-200A-PM" manufactured by Meiki Seisakusho Co., Ltd. was used, and the pellet-shaped raw material for injection molding obtained as described above was filled into the mold. , mold temperature 40°C
1 It was molded into a turbocharger rotor with a blade diameter of 75 mm at a material temperature of 70"C. The molded body obtained was embedded in alumina powder, left standing in a large degreasing furnace, and heated at a maximum temperature of 480 °C for 10 hours. Degreasing was carried out for 8 days per holding cycle.After degreasing, the surface of the degreased molded product was observed with a stereomicroscope (40x magnification) to check for the presence of microcracks. As a result of injection molding and degreasing 200 turbocharger rotors in the same manner as above, the degreasing yield was 99.0.
%, it was possible to obtain a degreased molded body free of microcranks. The degreased molded body was further pressed using a hydrostatic press and then fired at 1650° C. for 1 hour at normal pressure in a nitrogen atmosphere to obtain a sintered body. The cutting strength (kg/mm2) of the obtained sintered body was 7 at room temperature.
88, 6~99.6 Te, 1000'C tare 6
.. It was 8-87.3. Comparative Example 1 Instead of the organic binder used in Example 1, conventionally used paraffin wax (P In the same manner as in Example 1, a pellet-shaped raw material for injection molding was obtained using (-wax). Using the obtained raw material for injection molding, injection molding and degreasing were performed in the same manner as in Example 1. As a result, large cracks appeared in the obtained degreased molded product, and it was not possible to proceed to the subsequent steps. The degreasing yield was O. Comparative Example 2 200 degreased molded bodies were obtained by preparing raw materials for injection molding, injection molding, and degreasing in exactly the same manner as in Comparative Example 1, except that the number of days for the degreasing process was changed to 16 days. When the surface of the obtained degreased molded products was observed for the occurrence of microcracks in the same manner as in Example 1, it was found that microcracks were generated in all the degreased molded products, and it took about 2 minutes per product to correct them. It took time. Moreover, the degreasing yield after correction was 93%. After correcting microcracks, hydrostatic pressing and firing were carried out in the same manner as in Example 1. As a result, the cutting strength (kg/mm2) of the obtained sintered body was 85.0 to 98 at room temperature.
.. 3 and 72.3 to 84.4 at 1000'C. As is clear from the above Examples and Comparative Examples, molded bodies injection molded using the raw material for ceramic injection molding prepared using the organic binder of the present invention have a short degreasing time due to the strength of the final sintered body. It is sufficiently degreased even during the process time,
Furthermore, it can be seen that microcracks on the surface of the degreased molded product, which were unavoidable when conventional organic binders were used, were also suppressed.

【発明の効果】【Effect of the invention】

本発明の射出成形用の有機バインダー及びそれを用いた
セラミ・ツク焼結体の製造方法においては、脱脂工程で
焼結体特性を低下させるマイクロクラ・7りの発生がな
く、且つ脱脂スケジュールが簡単で脱脂時間も短縮する
ことができる。
In the organic binder for injection molding and the method for producing a ceramic sintered body using the organic binder of the present invention, there is no generation of microcracks that deteriorate the properties of the sintered body in the degreasing process, and the degreasing schedule can be adjusted. It's easy and can shorten degreasing time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機バインダーのガスクロマトグラフ
、第2図は従来の有機バインダーのガスクロマトグラフ
である。
FIG. 1 is a gas chromatograph of the organic binder of the present invention, and FIG. 2 is a gas chromatograph of a conventional organic binder.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミック射出成形用の有機バインダーであって
、主成分として炭素数C_1_8〜C_3_5のパラフ
ィンを有し、炭素数C_2_3〜C_2_7成分が最大
含有率を示し、炭素数C_3_1成分がC_3_0成分
より多く炭素数C_3_3成分がC_3_2成分より多
いことを特徴とするセラミック射出成形用バインダー。
(1) An organic binder for ceramic injection molding, which has paraffin with a carbon number of C_1_8 to C_3_5 as a main component, with a carbon number of C_2_3 to C_2_7 components showing the maximum content, and a carbon number of C_3_1 component being larger than a C_3_0 component. A binder for ceramic injection molding, characterized in that the number of carbon atoms in the C_3_3 component is greater than the C_3_2 component.
(2)請求項(1)記載のセラミック射出成形用バイン
ダーとセラミックスとを体積比40/60〜55/45
で混合したセラミック射出成形用原料を用い、射出成形
工程、脱脂工程及び焼成工程からなることを特徴とする
セラミック焼結体の製造方法。
(2) The binder for ceramic injection molding according to claim (1) and the ceramics are mixed in a volume ratio of 40/60 to 55/45.
A method for producing a ceramic sintered body, comprising an injection molding step, a degreasing step, and a firing step, using a raw material for ceramic injection molding mixed in the above.
JP2319269A 1990-11-22 1990-11-22 Binder for injection molding of ceramic and production of sintered ceramic using the same Pending JPH04187558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2319269A JPH04187558A (en) 1990-11-22 1990-11-22 Binder for injection molding of ceramic and production of sintered ceramic using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2319269A JPH04187558A (en) 1990-11-22 1990-11-22 Binder for injection molding of ceramic and production of sintered ceramic using the same

Publications (1)

Publication Number Publication Date
JPH04187558A true JPH04187558A (en) 1992-07-06

Family

ID=18108324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2319269A Pending JPH04187558A (en) 1990-11-22 1990-11-22 Binder for injection molding of ceramic and production of sintered ceramic using the same

Country Status (1)

Country Link
JP (1) JPH04187558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483056A (en) * 2019-08-30 2019-11-22 中国兵器科学研究院宁波分院 A kind of preparation method of silicon carbide ceramics ball

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483056A (en) * 2019-08-30 2019-11-22 中国兵器科学研究院宁波分院 A kind of preparation method of silicon carbide ceramics ball

Similar Documents

Publication Publication Date Title
US5993726A (en) Manufacture of complex shaped Cr3 C2 /Al2 O3 components by injection molding technique
CN102173815B (en) Method for preparing ceramic material by process steps of powder green body dipping and precursor cracking
US20070191209A1 (en) Ceramic optical parts and production methods thereof
JP2016523799A (en) Binder for injection molding composition
JP2002523630A (en) Powder metal injection molding method for manufacturing products from nickel-based superalloy "Hastelloy X"
WO2010135859A1 (en) Accurate shaping method for metal ceramic material
JP4904465B2 (en) Ceramic optical component and manufacturing method thereof
KR102277881B1 (en) Binder for injection moulding compositions
Rak New trends in powder injection moulding
JPH03173706A (en) Manufacture of the compact body consisting of a plurality of intermetallic compounds by sintering
JPH04187558A (en) Binder for injection molding of ceramic and production of sintered ceramic using the same
CN108620574A (en) Forming agent, feeding and preparation method thereof, green body and preparation method thereof
KR101000702B1 (en) Binder for metal injection molding
JPS62113765A (en) Manufacture of silicon carbide formed body
KR101742144B1 (en) Method of fabricating titanium or titanium alloy sintered body
JPH0820803A (en) Production of sintered compact
KR100503352B1 (en) A method for preparing dense silicon carbide ceramics
JP2997180B2 (en) Manufacturing method of ceramic products
JPH0641601B2 (en) Molding composition
KR100554216B1 (en) Water soluble high strength binder for powder injection molding
KR100503351B1 (en) A method for preparing dense silicon carbide/titanium diboride composite
JPH08290975A (en) Ceramic composition, core material and production of ceramic product
KR100340590B1 (en) Bonding agent for powder injection molding and a method of manufacturing by using it
JPS62241863A (en) Injection forming material
JPH0246121B2 (en) SERAMITSUKUSUSHOKETSUTAINOSEIZOHOHO