JPH04186152A - Semiconductor biochemical sensor - Google Patents

Semiconductor biochemical sensor

Info

Publication number
JPH04186152A
JPH04186152A JP2313834A JP31383490A JPH04186152A JP H04186152 A JPH04186152 A JP H04186152A JP 2313834 A JP2313834 A JP 2313834A JP 31383490 A JP31383490 A JP 31383490A JP H04186152 A JPH04186152 A JP H04186152A
Authority
JP
Japan
Prior art keywords
film
enzyme
biochemical sensor
semiconductor
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2313834A
Other languages
Japanese (ja)
Inventor
Yuji Miyahara
裕二 宮原
Keiji Tsukada
啓二 塚田
Yasuhisa Shibata
康久 柴田
Yoshio Watanabe
渡辺 吉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2313834A priority Critical patent/JPH04186152A/en
Publication of JPH04186152A publication Critical patent/JPH04186152A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accomplish a biochemical sensor in a small size and with possibility of high sensitivity measurement at a high concentration of buffer liquid by putting an ammonium ion sensitive film and a fixation enzyme film one over the other. CONSTITUTION:A source 2 and a drain 3 are provided on a Si base board 1, whereover a SiO2 film 4 and a protective insulation film 5 are formed, and further thereover an ammonium sensitive film 6 and a fixation enzyme film 7 are laminated. When a matrix substance exists in a specimen solution, the substance reacts peculiarly with the enzyme in fixed state in the enzyme film 7 to produce ammonium ions. Because the oxygen film 7 is put on the sensitive film 6, the produced ammonium ions are sensed by the sensitive film 6, and a film potential is generated. This film potential is impedance converted by an FET. Because the ammonium ions produced through enzyme-matrix reactions are sensed in this manner, a small-sized sensor can be configured which is free from influence of the buffer action of the specimen solution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は医用生化学分析装置の中の生化学センサに関わ
り、特に小形な半導体生化学センサの構造及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a biochemical sensor in a medical biochemical analyzer, and more particularly to the structure of a small semiconductor biochemical sensor and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、固定化酵素膜と半導体イオンセンサを組み合わせ
た生化学センサについては、センサーズアンドアクチュ
エーターズ、7 (1985年)第233頁から第24
4頁において論しられている。。
Conventionally, biochemical sensors that combine an immobilized enzyme membrane and a semiconductor ion sensor have been described in Sensors and Actuators, 7 (1985), pp. 233-24.
Discussed on page 4. .

該文献では固定化グルコースオキシダーゼ膜とpH感応
性電界効果トランジスタを組み合わせたグルコースセン
サが構成され、その特性が議論されている。
In this document, a glucose sensor is constructed by combining an immobilized glucose oxidase membrane and a pH-sensitive field effect transistor, and its characteristics are discussed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、酵素反応により生じたpH変化をp 
H感応性半導体化学センサで検出するという原理であっ
たので、センサの応答が使用する緩衝液の濃度に依存し
、緩衝液濃度が高くなると感度が小さくなるという問題
があった。
The above-mentioned conventional technology uses pH changes caused by enzyme reactions to
Since the principle of detection was to use an H-sensitive semiconductor chemical sensor, there was a problem in that the response of the sensor depended on the concentration of the buffer used, and as the buffer concentration increased, the sensitivity decreased.

本発明は、緩衝液の濃度に依存しない応答を示す、小型
で使い易い半導体生化学センサを提供することを目的と
する。
The present invention aims to provide a compact and easy-to-use semiconductor biochemical sensor that exhibits a response that is independent of buffer concentration.

〔課題を解決するための手段〕[Means to solve the problem]

」二記目的を達成するために、アンモニウムイオン感応
性電界効果トランジスタを用い、アンモニウムイオン感
応膜に固定化酵素膜を積層し、酵素反応で生じたアンモ
ニウムイオンを検出する方式%式% 試料溶液中に基質が存在すると、固定化酵素膜に固定化
されている酵素と特異的に反応し、アンモニウムイオン
を生成する。固定化酵素膜はアンモニウムイオン感応膜
」二に積層されており、生じたアンモニウムイオンは、
アンモニウムイオン感応膜で検知され、膜電位を発生す
る。生じた膜電位は電界効果トランジスタでインピーダ
ンス変換される。以上のように、本発明は酵素−基質反
応で生じたアンモニウムイオンを検出するので、試料溶
液の緩衝作用の影響を受けない小型センサを構成するこ
とができる。
In order to achieve the second objective, an ammonium ion sensitive field effect transistor is used, an immobilized enzyme membrane is laminated on an ammonium ion sensitive membrane, and ammonium ions generated by the enzyme reaction are detected using a method % formula % in a sample solution. When a substrate is present, it reacts specifically with the enzyme immobilized on the immobilized enzyme membrane, producing ammonium ions. The immobilized enzyme membrane is layered on an ammonium ion-sensitive membrane, and the generated ammonium ions are
It is detected by an ammonium ion sensitive membrane and generates a membrane potential. The resulting membrane potential is impedance converted by a field effect transistor. As described above, since the present invention detects ammonium ions generated in an enzyme-substrate reaction, it is possible to construct a compact sensor that is not affected by the buffering effect of the sample solution.

〔実施例〕〔Example〕

本発明を実施例に基づき詳細に説明する。 The present invention will be explained in detail based on examples.

第1図は本発明の第コ−の実施例断面図である。FIG. 1 is a cross-sectional view of an embodiment of the second core of the present invention.

シリコン基板1にソース2及び1〜レイン3を設け、シ
リコン基板表面に二酸化シリコン膜4及び保護絶縁膜5
を形成した。該保護絶縁上にアンモニウムイオン感応膜
6及び固定化酵素膜7を積層した。
Sources 2 and 1 to 3 are provided on a silicon substrate 1, and a silicon dioxide film 4 and a protective insulating film 5 are provided on the surface of the silicon substrate.
was formed. An ammonium ion sensitive membrane 6 and an immobilized enzyme membrane 7 were laminated on the protective insulation.

二酸化シリコン膜4及び保護絶縁膜5の膜厚はそれぞれ
100人〜2000人及び500人−3000人が望ま
しい。又、アンモニウムイオン感応膜6及び固定化酵素
膜7の膜厚はそれぞれ50μm〜300μm及び1μm
〜500μmが望ましい。
The thicknesses of the silicon dioxide film 4 and the protective insulating film 5 are preferably 100 to 2000 and 500 to 3000, respectively. Further, the film thicknesses of the ammonium ion sensitive membrane 6 and the immobilized enzyme membrane 7 are 50 μm to 300 μm and 1 μm, respectively.
~500 μm is desirable.

第2図は本発明の第2の実施例断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

シリコン基板1にウェハ8を設け、ウェハの中にソース
2及びドレイン3を形成した。その他の部分は第1の実
施例と同じである。本実施例のようにウェハを設けると
、複数の電界効果1〜ランジスタを1個のシリコン基板
に集積化した場合、個々の電界効果トランジスタを電気
的に分離することができ、相互干渉のない信号が得られ
る。
A wafer 8 was provided on a silicon substrate 1, and a source 2 and a drain 3 were formed in the wafer. The other parts are the same as the first embodiment. When a wafer is provided as in this example, when a plurality of field effect transistors are integrated on one silicon substrate, it is possible to electrically separate the individual field effect transistors, allowing signals to be transmitted without mutual interference. is obtained.

第3図は本発明の第3の実施例断面図である。FIG. 3 is a sectional view of a third embodiment of the present invention.

サファイア基板9の上にシリコン膜10を形成し、該シ
リコン膜の中にソース2及びドレイン3を設けたもので
ある。その他の部分は第1の実施例と同しである。本実
施例ではシリコン膜の側面を絶縁膜4及び5で覆うこと
ができ、試料溶液に浸した場合でもシリコン膜を試料溶
液から保護することができ、センサのパッケージングが
簡単になる。
A silicon film 10 is formed on a sapphire substrate 9, and a source 2 and a drain 3 are provided in the silicon film. The other parts are the same as the first embodiment. In this embodiment, the side surfaces of the silicon film can be covered with the insulating films 4 and 5, and even if the silicon film is immersed in the sample solution, the silicon film can be protected from the sample solution, making packaging of the sensor simple.

第4図は本発明の第4の実施例断面図である。FIG. 4 is a sectional view of a fourth embodiment of the present invention.

シリコン基板1にウェル8a及び8bを設け、その中に
それぞれソース2a、2b、 ドレイン3a。
Wells 8a and 8b are provided in the silicon substrate 1, and sources 2a, 2b and drain 3a are provided therein, respectively.

3bを形成した。シリコン表面に二酸化シリコン膜4.
保護MA縁膜を形成し、各々のウェハのソースとトレイ
ンの間にアンモニラ11イオン感応膜6a及び6bを設
けた。そして、1つのアンモニウムイオン感応膜6a上
に固定化酵素膜7を形成した生化学センサとし、他のア
ンモニウムイオン感応膜6b上には何も形成せず、参照
用センサとした。試料溶液中の基質の測定は、生化学セ
ンサと参照用センサの信号の差を出力する。差動測定で
は、バックグラウンドに存在するアンモニラ11イオン
を相殺することができ、酵素反応に基づくアンモニウム
イオン濃度変化のみを検出することができる。
3b was formed. 4. Silicon dioxide film on silicon surface.
A protective MA rim was formed and ammonia-11 ion sensitive membranes 6a and 6b were provided between the source and train of each wafer. Then, a biochemical sensor was obtained in which the immobilized enzyme membrane 7 was formed on one ammonium ion-sensitive membrane 6a, and nothing was formed on the other ammonium ion-sensitive membrane 6b, which was used as a reference sensor. The measurement of the substrate in the sample solution outputs the difference between the signals of the biochemical sensor and the reference sensor. In differential measurement, ammonium 11 ions existing in the background can be canceled out, and only changes in ammonium ion concentration caused by enzyme reactions can be detected.

第5図は本発明の半導体生化学センサを実装したときの
断面図である。半導体生化学センサチップ11をプリン
ト基板12にマウントし、ワイヤー]3でチップと銅配
線14を接続した。銅配線の他端には、外部回路に接続
するためのリード線15を設けた。そして固定化酵素膜
7、及びリード線15を残して耐水性の優れた絶縁材料
16で覆ったものである。該絶縁材料16としては、工
ポキシ樹脂又はシリコーン樹脂が望ましい。
FIG. 5 is a sectional view when the semiconductor biochemical sensor of the present invention is mounted. A semiconductor biochemical sensor chip 11 was mounted on a printed circuit board 12, and the chip and copper wiring 14 were connected with a wire]3. A lead wire 15 for connection to an external circuit was provided at the other end of the copper wiring. Then, the immobilized enzyme membrane 7 and the lead wires 15 are left and covered with an insulating material 16 having excellent water resistance. The insulating material 16 is preferably made of engineered poxy resin or silicone resin.

第6図は第5図に示した実装した半導体生化学センサの
測定システムを示したものである。実装した半導体生化
学センサ17と参照電極18を試料溶液19に浸漬した
。参照電極はアースに接続され、生化学センサのソース
及びトレインの信号線20及び2」はそれぞれ演算増幅
器22の入力及び演算増幅器23の出力に接続されてい
る。該演算増幅器22及び23は定電流源24.25及
び抵抗26と共に膜電位測定回路を構成しており、該回
路の出力27は直接膜電位変化を示し、記録計28に記
録される。
FIG. 6 shows a measurement system for the semiconductor biochemical sensor mounted as shown in FIG. The mounted semiconductor biochemical sensor 17 and reference electrode 18 were immersed in a sample solution 19. The reference electrode is connected to ground, and the source and train signal lines 20 and 2'' of the biochemical sensor are connected to the input of operational amplifier 22 and the output of operational amplifier 23, respectively. The operational amplifiers 22 and 23 constitute a membrane potential measuring circuit together with constant current sources 24, 25 and a resistor 26, and the output 27 of this circuit directly indicates a change in membrane potential and is recorded on a recorder 28.

第7図は本発明の効果を示したものである。第4の実施
例と、従来のp T(変化測定方式に基づく半感体生化
学センサを比較したものである。保護絶縁膜には厚さ1
000人の窒化シリコンを用い、γアミノプロピルトリ
エトキシシランで表面を化学修飾して固定化酵素膜との
接着性を高めた。アンモニウムイオン感応膜にはポリ塩
ビニル、ノナクチン/モナクチン、ジオクチルアジペイ
1−(DOA)、固定化酵素膜にはI−リアセチルセル
ロース、グルタルアルデヒ1−1牛血清アルブミン、ウ
レアーゼの混合膜を用いた。試料溶液はp l−17,
0,10mMの1〜リス−塩酸バッファに各種濃度の尿
素を溶解させて調製した。第7図より本発明の生化学セ
ンサは1 ’o m Mの緩衝液中でも高い感度を有し
ており、緩衝液濃度に応答が依存しない。
FIG. 7 shows the effect of the present invention. This is a comparison between the fourth embodiment and a conventional semi-sensitive biochemical sensor based on the pT (change measurement method).The protective insulating film has a thickness of 1
Using 000 silicon nitride, the surface was chemically modified with γ-aminopropyltriethoxysilane to improve adhesion to the immobilized enzyme membrane. The ammonium ion-sensitive membrane uses polyvinyl chloride, nonactin/monactin, and dioctyl adipei 1-(DOA), and the immobilized enzyme membrane uses a mixed membrane of I-lyacetyl cellulose, glutaraldehyde 1-1 bovine serum albumin, and urease. there was. The sample solution was p l-17,
Various concentrations of urea were dissolved in 0.10 mM 1-Lis-HCl buffer to prepare. As can be seen from FIG. 7, the biochemical sensor of the present invention has high sensitivity even in a 1' om M buffer, and the response does not depend on the buffer concentration.

以上より本発明の半導体化学センサは緩衝液濃度に応答
が依存せず、小型で使い易い。
As described above, the semiconductor chemical sensor of the present invention has a response that does not depend on the buffer concentration, is small in size, and easy to use.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、酵素一基板反応で生成したアンモニウ
ムイオンをアンモニウムイオン感応性電界効果トランジ
スタて検出するので、試料溶液中の緩i液濃度に依存し
ない応答が得られ、緩衝液濃度が高くても高感度測定が
できる。また半導体技術を用いて製作されるので小型で
使い易い生化学センサを提供することができる。
According to the present invention, ammonium ions generated in an enzyme-substrate reaction are detected using an ammonium ion-sensitive field effect transistor, so a response that does not depend on the concentration of the slow ionic solution in the sample solution can be obtained, and even when the buffer concentration is high, can also perform highly sensitive measurements. Furthermore, since it is manufactured using semiconductor technology, it is possible to provide a biochemical sensor that is small and easy to use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図はそれぞれ本発明の第
1.第2.第3.第4の実施例を示す図、第5図は本発
明を実装した断面図、第6図は本発明の測定回路図、第
7図は本発明の効果を示した図である。 1・・シリコン基板、2・ソース、3・・ドレイン、4
 二酸化シリコン、5・保護絶縁膜、6・・アンモニウ
ムイオン感応膜、7・・・固定化酵素膜、8・・・ウェ
ル、9・サファイア基板、1o・・シリコン膜、11・
半導体生化学センサチップ、12・・プリン1一基板、
13・・・ワイヤー、14・・銅配線、15リード線、
16 耐水性絶縁物、17・・実装半感体生学化センサ
チップ、18・・・参照電極、19 ・試料溶液、2o
・・・ソースリード線、21・・・ドレインリード線、
22.23・・演算増幅器、24゜25・定電流源、2
6・・抵抗、27・・・出方、28つ 旧く鈑−巨
FIGS. 1, 2, 3, and 4 respectively represent the first embodiment of the present invention. Second. Third. FIG. 5 is a cross-sectional view of the fourth embodiment, FIG. 6 is a measurement circuit diagram of the present invention, and FIG. 7 is a diagram showing the effects of the present invention. 1. Silicon substrate, 2. Source, 3. Drain, 4
Silicon dioxide, 5. Protective insulating film, 6. Ammonium ion sensitive membrane, 7. Immobilized enzyme membrane, 8. Well, 9. Sapphire substrate, 1o. Silicon membrane, 11.
Semiconductor biochemical sensor chip, 12...purine 1 substrate,
13...Wire, 14...Copper wiring, 15 Lead wire,
16 Water-resistant insulator, 17... Mounted semi-sensor biochemical sensor chip, 18... Reference electrode, 19 - Sample solution, 2o
... Source lead wire, 21... Drain lead wire,
22.23...Operation amplifier, 24゜25・Constant current source, 2
6...resistance, 27...how to appear, 28 old plates - huge

Claims (1)

【特許請求の範囲】 1、二酸化シリコンに保護絶縁膜を積層した二層ゲート
絶縁膜から成る電界効果トランジスタにおいて、該保護
絶縁膜上にアンモニウムイオン感応膜を設け、該アンモ
ニウムイオン感応膜上に固定化酵素膜を積層したことを
特徴とする半導体生化学センサ。 2、請求項第1項記載の保護絶縁膜は、窒化シリコン(
Si_3N_4)、酸化アルミニウム(Al_2O_3
)、酸化タンタル(Ta_2O_5)であることを特徴
とする半導体生化学センサ。 3、請求項第1項記載のアンモニウムイオン感応膜は、
ポリ塩ビニル(PVC)及び可塑剤及びモナクチン又は
ノナクチンの混合物であることを特徴とする半導体生化
学センサ。4、請求項第1項記載の固定化酵素膜は例え
ばアセチルセルロース又はポリビニルアルコール又はポ
リアクリルアミド等のマトリックスに、アルブミン等の
タンパク質及びグルタルアルデヒド及び酵素を混合した
ものであることを特徴とする半導体生化学センサ。 5、請求項第1項記載の保護絶縁膜表面を、アミノ基を
有するシランカップリング剤で化学修飾したことを特徴
とする半導体生化学センサ。
[Claims] 1. In a field effect transistor consisting of a two-layer gate insulating film in which a protective insulating film is laminated on silicon dioxide, an ammonium ion sensitive film is provided on the protective insulating film, and fixed on the ammonium ion sensitive film. A semiconductor biochemical sensor characterized by a laminated enzyme membrane. 2. The protective insulating film according to claim 1 is made of silicon nitride (
Si_3N_4), aluminum oxide (Al_2O_3
), tantalum oxide (Ta_2O_5), a semiconductor biochemical sensor. 3. The ammonium ion sensitive membrane according to claim 1,
A semiconductor biochemical sensor characterized in that it is a mixture of polyvinyl chloride (PVC), a plasticizer, and monactin or nonactin. 4. The immobilized enzyme membrane according to claim 1 is a semiconductor product in which a protein such as albumin, glutaraldehyde, and an enzyme are mixed in a matrix such as acetyl cellulose, polyvinyl alcohol, or polyacrylamide. chemical sensor. 5. A semiconductor biochemical sensor, characterized in that the surface of the protective insulating film according to claim 1 is chemically modified with a silane coupling agent having an amino group.
JP2313834A 1990-11-21 1990-11-21 Semiconductor biochemical sensor Pending JPH04186152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2313834A JPH04186152A (en) 1990-11-21 1990-11-21 Semiconductor biochemical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313834A JPH04186152A (en) 1990-11-21 1990-11-21 Semiconductor biochemical sensor

Publications (1)

Publication Number Publication Date
JPH04186152A true JPH04186152A (en) 1992-07-02

Family

ID=18046071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313834A Pending JPH04186152A (en) 1990-11-21 1990-11-21 Semiconductor biochemical sensor

Country Status (1)

Country Link
JP (1) JPH04186152A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2722294A1 (en) * 1994-07-07 1996-01-12 Lyon Ecole Centrale Analysis of specific binding components using semiconductor derivatised with ligand
US6355436B1 (en) 1996-05-17 2002-03-12 L'ecole Centrale De Lyon Method for analyzing biological substances in a conductive liquid medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2722294A1 (en) * 1994-07-07 1996-01-12 Lyon Ecole Centrale Analysis of specific binding components using semiconductor derivatised with ligand
US5869244A (en) * 1994-07-07 1999-02-09 Martin; Jean-Rene Procedure for the analysis of biological substances in a conductive liquid medium
US6150106A (en) * 1994-07-07 2000-11-21 Martin; Jean-Rene Method for analyzing biological substances in a conductive liquid medium
US6355436B1 (en) 1996-05-17 2002-03-12 L'ecole Centrale De Lyon Method for analyzing biological substances in a conductive liquid medium
US6562577B2 (en) 1996-05-17 2003-05-13 L'ecole Centrale De Lyon Procedure for the analysis of biological substances in a conductive liquid medium
US6803229B2 (en) 1996-05-17 2004-10-12 L'ecole Centrale De Lyon Procedure for the analysis of biological substances in a conductive liquid medium

Similar Documents

Publication Publication Date Title
EP0228259B1 (en) Enzyme immobilized membrane for a semiconductor sensor and method for producing same
US5445920A (en) Fabrication process of biosensor
US4739380A (en) Integrated ambient sensing devices and methods of manufacture
Poghossian et al. An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime
US7794584B2 (en) pH-change sensor and method
US4874499A (en) Electrochemical microsensors and method of making such sensors
Kimura et al. An integrated SOS/FET multi-biosensor
US7435610B2 (en) Fabrication of array pH sensitive EGFET and its readout circuit
EP0315790B1 (en) Chemical sensors and their divided parts
JPH04254750A (en) Measuring circuit for biosensor utilizing ion sensitive field-effect transistor
US20090145776A1 (en) Penicillin g biosensor, systems comprising the same, and measurement using the systems
Poghossian Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure
US20070262358A1 (en) Sensor and Method for the Production Thereof
JPH0479650B2 (en)
EP0235024B1 (en) Enzyme sensor and method of manufacture same
JPS6029658A (en) Urea sensor
Gotoh et al. Micro-FET biosensors using polyvinylbutyral membrane
JPH04186152A (en) Semiconductor biochemical sensor
JP3167022B2 (en) Gas sensor
US8148756B2 (en) Separative extended gate field effect transistor based uric acid sensing device, system and method for forming thereof
US8410530B2 (en) Sensitive field effect transistor apparatus
JPH0469338B2 (en)
JPS62132160A (en) Biosensor using separation gate type isfet
JP2855718B2 (en) Potentiometric sensor
JP3026012B2 (en) Chlorine ion sensor and its divided parts