JPH04182347A - Production of carbon-containing calcined firebrick - Google Patents

Production of carbon-containing calcined firebrick

Info

Publication number
JPH04182347A
JPH04182347A JP2309028A JP30902890A JPH04182347A JP H04182347 A JPH04182347 A JP H04182347A JP 2309028 A JP2309028 A JP 2309028A JP 30902890 A JP30902890 A JP 30902890A JP H04182347 A JPH04182347 A JP H04182347A
Authority
JP
Japan
Prior art keywords
powder
carbon
calcined
refractory
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2309028A
Other languages
Japanese (ja)
Inventor
Yuji Narita
成田 雄司
Atsumori Mizuguchi
水口 篤盛
Takeshi Muroi
室井 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2309028A priority Critical patent/JPH04182347A/en
Publication of JPH04182347A publication Critical patent/JPH04182347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a carbon-contg. calcined firebrick having superior oxidation and corrosion resistances and superior strength at high temp. by blending a specified carbon-contg. refractory compsn. with a thermosetting resin binder, molding the blend and calcining the molded body while regulating the temp. and atmosphere. CONSTITUTION:Starting material consisting of 11-23wt.% carbonaceous material such as natural graphite, 1-5 wt.% powder of one or more among Mg, Ca, Al-Mg, Ca-Si, Ca-Al and B4C each having >=90% purity and the balance basic refractory aggregate based on MgO, MgO-Al2O3 and/or MgO-CaO is prepd., blended with a thermosetting resin binder and molded. This molded body is calcined by heating to 200-600 deg.C under a reduced pressure of <=10Torr, further heating to 1,000 deg.C in an atmosphere contg. 17-25vol.% oxygen and furnace cooling to 200 deg.C in an inert gaseous atmosphere contg. <=0.1vol.% oxygen to obtain a carbon-contg. calcined firebrick.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は鉄鋼製造プロセスの製鋼炉(転炉、電気炉、平
炉、各種の特殊製鋼炉など)の内張りとして好適な、炭
素含有仮焼耐火れんがの製造方法に関する。本発明によ
り得られる耐火れんがは、特に耐酸化性に極めて優れて
いる。
The present invention relates to a method for manufacturing carbon-containing calcined refractory bricks suitable as linings for steelmaking furnaces (converters, electric furnaces, open hearths, various special steelmaking furnaces, etc.) in the steel manufacturing process. The refractory brick obtained by the present invention has particularly excellent oxidation resistance.

【従来の技術】[Conventional technology]

製鋼炉の耐火煉瓦の内張りは、製鋼作業中に機械的摩耗
、化学的侵食およびスポーリング(表面剥落)を受ける
ため、これらに対する耐久性の高いことが要求される。 人造黒鉛等の炭素物質を含有する炭素含有耐火煉瓦は、
炭素物質の持つ高熱伝導性により良好な耐スポーリング
性を示すと同時に、やはり炭素物質の特性により溶融金
属やスラグに対して濡れ難いという有利な性質を示す。 また、焼成時または使用中に煉瓦中に形成される組織が
炭素結合を形成するため、耐火煉瓦の過焼結を防く性質
も有し、他の耐火骨材との共存状態においても、それら
の骨材の長所を補完するので、製鋼炉に限らず広く冶金
用耐火物として使用されている。 しかし、黒鉛等の炭素物質は酸化性雰囲気下では容易に
酸化し、上述した特性を失うことになる。 従って、炭素含有耐火煉瓦の特性を確実に発揮させるた
めには、黒鉛等の炭素物質の酸化を極力少な(すること
、すなわち、耐酸化性に優れた炭素含有耐火煉瓦にする
ことが実用上極めて重要である。 製鋼炉、特に転炉では、耐食性に優れたMgO−C系の
不焼成の炭素含有耐火煉瓦を従来より使用してきた。し
かるに、最近の溶銑予備処理技術の発達に伴い、転炉に
おける精錬機能は、脱硫、脱燐機能から単なる脱炭と温
度調整機能へと変化してきている。このような機能の変
化は、スラグによる耐火煉瓦の溶損を軽減するが、一方
では2次燃焼比率の増加のため、炉内の酸素分圧が上昇
し、煉瓦中の黒鉛の酸化が促進される。 かかる製鋼炉内雰囲気の変化に対応した内張り耐火煉瓦
の酸化防止手段として、これまでにも種々の試みがなさ
れているが、現象解明が不充分であるため十分に満足す
べきものが得られていない。 例えば、特公昭63−433.12号公報、ならびに特
開昭54−163913号公報、同55−65348号
公報、同55−107749号公報、同56−5966
8号公報および同57−166362号公報においては
、炭素より酸素親和力の大きい金属粉末を添加したMg
0−C系の炭素含有不焼成耐火煉瓦組成物を提案してい
る。しかし、これらは使用過程で煉瓦中に起こる炭化物
の生成に起因した熱間強度の改善による高耐食性を保証
するのみで、内部組織の現象解明が不充分なため、使用
部位に適合した内張りを推奨するものではない。即ち、
内張り炉材の鉄皮側低温域では、煉瓦中の炭素物質の酸
化による強度劣化が顕著で、しばしば座屈した状況を呈
し、炉命が短命に終わっている。 また、炭素粒子を珪酸塩、硼酸塩、燐酸塩などのガラス
質の皮膜で被覆し、酸素、炭酸ガスとの接触を遮断して
酸化を防止させるような物理的手段も提案されているが
、低温域(500〜600℃)での酸化防止に有効であ
るとは言え、溶湯と接する稼動面側の高温域では逆に耐
食性を損なう原因となり、全く不充分である。
The refractory brick lining of a steelmaking furnace is subject to mechanical wear, chemical erosion, and spalling (surface flaking) during steelmaking operations, so it is required to have high durability against these. Carbon-containing firebricks containing carbon materials such as artificial graphite are
The carbon material exhibits good spalling resistance due to its high thermal conductivity, and at the same time exhibits the advantageous property of being difficult to wet with molten metal and slag due to the characteristics of the carbon material. In addition, since the structure formed in bricks during firing or use forms carbon bonds, it has the property of preventing over-sintering of firebricks, and even when coexisting with other fireproof aggregates, they Because it complements the advantages of aggregate, it is widely used not only in steelmaking furnaces but also as a metallurgical refractory. However, carbon materials such as graphite easily oxidize in an oxidizing atmosphere and lose the above-mentioned properties. Therefore, in order to ensure that the characteristics of carbon-containing firebricks are exhibited, it is practically extremely important to minimize the oxidation of carbon materials such as graphite (that is, to make carbon-containing firebricks with excellent oxidation resistance). Important. In steelmaking furnaces, especially converters, MgO-C unfired carbon-containing refractory bricks, which have excellent corrosion resistance, have traditionally been used. However, with the recent development of hot metal pretreatment technology, converter furnaces The refining function of the refining system has changed from desulfurization and dephosphorization functions to simple decarburization and temperature adjustment functions.Such changes in functions reduce the erosion of refractory bricks due to slag, but on the other hand, secondary combustion Due to the increase in the ratio, the oxygen partial pressure inside the furnace increases and the oxidation of graphite in the bricks is promoted. Various attempts have been made, but not enough has been achieved due to insufficient elucidation of the phenomenon.For example, Japanese Patent Publication No. 433.12.1982, Japanese Patent Application Laid-Open No. 163913.1982, No. 55-65348, No. 55-107749, No. 56-5966
In Publication No. 8 and Publication No. 57-166362, Mg to which metal powder has a higher affinity for oxygen than carbon is added.
A 0-C carbon-containing unfired refractory brick composition is proposed. However, these methods only guarantee high corrosion resistance by improving hot strength due to the formation of carbides that occur in the brick during use, and as the phenomenon of the internal structure is not fully understood, it is recommended to use a lining that is suitable for the area where it will be used. It's not something you do. That is,
In the low-temperature region on the skin side of the lining furnace material, strength deterioration due to oxidation of the carbon material in the bricks is significant, often causing buckling and shortening the furnace life. Physical means have also been proposed in which carbon particles are coated with a glassy film of silicates, borates, phosphates, etc. to block contact with oxygen and carbon dioxide gas and prevent oxidation. Although it is effective in preventing oxidation in the low temperature range (500 to 600°C), it is completely insufficient in the high temperature range on the working surface side in contact with the molten metal, as it causes a loss of corrosion resistance.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明者等は、上述した公知の各種金属粉添加?IgO
−C系炭素含有不焼成耐火煉瓦の耐酸化性を改善する目
的で、実験室的な吟味をすると共に、落命後の転炉から
サンプルを採取して性状変化について言周査した。 その結果、特に転炉内張り用のMg0−C系耐火煉瓦の
耐酸化性機能を強化するには、従来の方法では以下の問
題が生ずることが判明した。 1)従来のMg0−C系煉瓦は、いわゆる不焼成煉瓦(
原料を樹脂バインダーと混練し、成形しただけのもの)
であるため、築炉施工後の昇熱・稼動の初期にバインダ
ーの熱分解に伴うlI20を含むガス発生があり、これ
が煉瓦内部に浸透するため、稼動初期の損耗が著しく大
きい。 2)稼動中は、溶湯と接する内側稼動面では、金属粉の
添加効果により、配合された炭素物質の酸化は抑制され
る。一方、鉄皮に接する外側の低温域では、発生ガスの
裏風現象で、炭素物質の酸化が進行し、風化現象が生し
て座屈し易くなる。 一方、別の炭素含有耐火煉瓦としてAl□03−C系に
代表される浸漬ノズルに使用される焼成煉瓦がある。こ
れは金属粉を添加せず、CIPやIIPなどのアイソス
タティックプレスによる成形後、無酸化雰囲気で焼成さ
れるが、金属粉添加の炭素含有耐火組成物では、焼成条
件は確立されていない。 また、カーポンプロンクの製造工程で31を配合する場
合があるが、こればSiCもしくはSiNといった珪素
含有結合組織を形成させることを目的としたバインダー
であり、本発明の趣旨に有益な手段となり得ない。 本発明は、前述した従来のMg0−C系耐火煉瓦におけ
る問題点を解消し、耐食性、特に低温域での耐酸化性に
極めて優れた、製i炉の内張りとして好適な炭素台を耐
火煉瓦の製造方法を提供することを目的とする。
The present inventors have added the various known metal powders mentioned above. IgO
In order to improve the oxidation resistance of -C-based carbon-containing unfired refractory bricks, we carried out laboratory tests, and also collected samples from the converter after it died and examined the changes in properties. As a result, it has been found that the following problems occur with conventional methods, especially in order to strengthen the oxidation-resistant function of Mg0-C refractory bricks for converter lining. 1) Conventional Mg0-C bricks are so-called unfired bricks (
(Simply kneaded raw materials with resin binder and molded)
Therefore, at the initial stage of heating and operation after construction of the furnace, gas containing lI20 is generated due to the thermal decomposition of the binder, and this permeates into the inside of the bricks, resulting in significantly large wear and tear during the initial stage of operation. 2) During operation, oxidation of the blended carbon material is suppressed on the inner working surface in contact with the molten metal due to the effect of adding metal powder. On the other hand, in the outer low-temperature region in contact with the steel shell, oxidation of the carbon material progresses due to the backflow phenomenon of the generated gas, causing a weathering phenomenon and making it easier to buckle. On the other hand, as another carbon-containing refractory brick, there is a fired brick used for immersion nozzles, typified by Al□03-C type. This does not include metal powder, and is fired in a non-oxidizing atmosphere after being formed using an isostatic press such as CIP or IIP, but firing conditions have not been established for carbon-containing refractory compositions with metal powder added. In addition, 31 is sometimes blended in the manufacturing process of Carpon Pronk, but this is a binder for the purpose of forming a silicon-containing connective tissue such as SiC or SiN, and cannot be a useful means for achieving the purpose of the present invention. . The present invention solves the above-mentioned problems with the conventional Mg0-C refractory bricks and uses a carbon base as a refractory brick, which has extremely excellent corrosion resistance, especially oxidation resistance in a low temperature range, and is suitable as the lining of an i-making furnace. The purpose is to provide a manufacturing method.

【課題を解決するための手段】[Means to solve the problem]

本発明者らは、上記目的を達成するため、主にMg0−
C系耐火煉瓦の酸化挙動について、実験的に再現テスト
や実炉からの採取サンプルの調査を行った結果、以下の
知見を得た。 0Mg()−C系耐火組成物にA1、Siまたはこれら
の合金粉を添加するよりも、Mg、 Ca、 Ca−S
i、 Ca −旧、前−MgまたばB、Cの粉末を添加
する方が良好な耐酸化性を示し、これら後者の添加成分
は熱処理(600〜1400℃1大気下)後に酸化物と
なり、表面近傍で未脱炭部と脱炭部との境界に酸化物系
の境界層を形成していた。 ■この境界層は50〜100 μmの幅を有し、MgO
骨材を連結する緻密な組織を有していた。 ■実炉からの採取サンプルについて、Mg、 Ca、、
Ca−5i、 Ca−Al、Al−MgまたはB、Cを
添加したMg0−C系耐火煉瓦の稼動面近傍での元素分
布を求めたところ、同様の酸化物系境界層の形成が認め
られた。また、これら添加成分を配合した煉瓦の強度低
下は軽微で、耐食性も良好であった。しかし、背面鉄皮
側での座屈現象が低温域(推定1000℃未満)で認め
られた。 ■上記の添加成分を配合したMg0−C系耐火煉瓦を電
気炉で仮焼した。その際、100〜600℃の昇温時に
炉内を脱気し、600〜1000℃の間では空気を流入
し、さらに所要時間温度保持した後、N2などの不活性
ガスで雰囲気置換してから常温まで炉冷したサンプルを
観察したところ、同様の酸化物系境界層が形成されてい
た。 ■上記仮焼処理したサンプルを侵食実験した結果、未処
理材より耐食性が良好であった。 ■上記酸化物系境界層の形成状態は、煉瓦中の炭素物質
の配合量で異なっていた。 以上より、組成を特定範囲に調整した)IgO−C系耐
火組成物に対して、前処理として特定条件で仮焼を行う
と、表面近傍に酸化物系境界層が形成されること、この
境界層が通気を遮断するバリアーとして作用し、その内
部の煉瓦中に含まれる炭素物質の酸化を抑制するため、
煉瓦の耐食性と耐酸化性が改善されることが判明し、本
発明を完成した。 本発明の要旨は、重量%で炭素質物質11〜23%と、
・純度90%以上のhg粉、Ca粉、Al−Mg粉、C
a −5i粉、Ca−Al粉およびB4C粉から選ばれ
た1種以上の粉末1〜5%とを含有し、残部力鉗go 
、MgO−ΔI2O3および/またはMgO−CaO系
を主体とする塩基性耐火骨材より成る原料に、熱硬化性
樹脂バインダーを配合した炭素含有耐火組成物を成形後
、■200 ’Cから600 ”Cまでの温度域を10
 Torr以下の減圧下で加熱し、(2)さらに100
0℃までの温度域を酸素分圧を17〜25 vol%に
調整した雰囲気中で加熱し、(3)その後、酸素分圧0
.1 vol%以下の不活性ガス雰囲気中で200℃ま
で炉冷する、という工程により仮焼することを特徴とす
る、炭素含有仮焼耐火煉瓦の製造方法にある。 本発明によれば、転炉等の製鋼炉に用いるMg0−C系
の耐火煉瓦組成物において、成形後、前後に非酸化性雰
囲気下の熱処理を含む仮焼工程を経ることにより、煉瓦
の表面近傍付近に酸化物性の境界層を形成させる。それ
により、転炉の内張り耐火煉瓦層の内外いずれの側につ
いても酸化消耗を防止することができ、転炉の炉命が著
しく改善される。
In order to achieve the above object, the present inventors mainly focused on Mg0-
Regarding the oxidation behavior of C-type refractory bricks, we conducted experimental reproduction tests and investigated samples taken from actual furnaces, and as a result, we obtained the following knowledge. 0Mg, Ca, Ca-S
Adding powders of i, Ca-old, pre-Mg or B and C shows better oxidation resistance, and these latter added components become oxides after heat treatment (600-1400°C in 1 atmosphere), An oxide-based boundary layer was formed near the surface at the boundary between the undecarburized part and the decarburized part. ■This boundary layer has a width of 50 to 100 μm, and MgO
It had a dense structure that connected the aggregates. ■ Regarding the samples collected from the actual reactor, Mg, Ca,...
When the element distribution near the working surface of Mg0-C refractory bricks containing Ca-5i, Ca-Al, Al-Mg, or B and C was determined, the formation of a similar oxide-based boundary layer was observed. . Furthermore, the strength of the bricks containing these additive components was only slightly reduced, and the corrosion resistance was also good. However, a buckling phenomenon on the back side of the iron skin was observed in a low temperature range (estimated to be less than 1000°C). (2) A Mg0-C refractory brick containing the above additive components was calcined in an electric furnace. At that time, the inside of the furnace is degassed when the temperature rises from 100 to 600 degrees Celsius, air is introduced between 600 and 1000 degrees Celsius, and after maintaining the temperature for the required time, the atmosphere is replaced with an inert gas such as N2. When we observed a sample that had been cooled to room temperature, we found that a similar oxide-based boundary layer was formed. (2) As a result of an erosion experiment on the sample subjected to the above calcining treatment, the corrosion resistance was better than that of the untreated material. ■The state of formation of the above oxide boundary layer differed depending on the amount of carbon material blended in the brick. From the above, when an IgO-C refractory composition (with a composition adjusted to a specific range) is calcined under specific conditions as a pretreatment, an oxide boundary layer is formed near the surface. The layer acts as a barrier to block ventilation and suppresses the oxidation of carbon substances contained in the bricks inside.
It was found that the corrosion resistance and oxidation resistance of bricks were improved, and the present invention was completed. The gist of the present invention is that the carbonaceous material is 11 to 23% by weight,
・Hg powder, Ca powder, Al-Mg powder, C with purity of 90% or more
Contains 1 to 5% of one or more powders selected from a-5i powder, Ca-Al powder, and B4C powder, and the remainder is
After molding a carbon-containing refractory composition made by blending a thermosetting resin binder into a raw material consisting of a basic refractory aggregate mainly composed of MgO-ΔI2O3 and/or MgO-CaO, ■200'C to 600''C. Temperature range up to 10
Heating under reduced pressure of Torr or less, (2) further 100
Heating in the temperature range up to 0°C in an atmosphere with an oxygen partial pressure adjusted to 17 to 25 vol%, (3) then reducing the oxygen partial pressure to 0
.. A method for producing a carbon-containing calcined refractory brick, which is characterized by calcining by a step of furnace cooling to 200° C. in an inert gas atmosphere of 1 vol % or less. According to the present invention, in the Mg0-C-based refractory brick composition used in steelmaking furnaces such as converters, the surface of the brick is An oxide boundary layer is formed in the vicinity. Thereby, oxidative consumption can be prevented on both the inside and outside of the refractory lining layer of the converter, and the life of the converter is significantly improved.

【作用】[Effect]

本発明の構成と作用を説明する。なお、以下の説明にお
いて、%は特に指定しない限り重量%である。 本発明で用いる耐火組成物の原料は、塩基性耐火骨材に
、炭素物質と、Mg、  Ca 、 Al  lag、
Ca −5i、 Ca−AlおよびB4Cから選ばれた
少なくとも1種の粉末を配合したものである。 塩基性耐火骨材は、MgO(マグネシア) 、Mg0A
1203  (スピネル)および/またはMgO−Ca
0(ドロマイト)を主体とするものであれば特に限定さ
れない。好ましくは、塩基性耐火骨材はこれらの1種も
しくは2種以上のみからなるが、他の骨材(例、マグネ
サイト)を5%以下程度の量まで配合してもよい。 塩基性耐火骨材の粒径は平均粒径0.5〜0.3 mm
程度が適正範囲であり、最大粒径が2mmを超えること
は好ましくない。骨材の粒径が大きすぎると、本発明に
よる仮焼処理後の煉瓦表面状態は粗面化をまぬがれない
ため、表面の平滑性が失われ、築炉施工性が低下する。 炭素物質の種類は特に制限されず、玉状黒鉛や鱗片状黒
鉛などの天然黒鉛、人造黒鉛、電極屑、カーボンブラッ
ク、キッシュグラファイト、製鉄用等各種コークスなど
が使用できるが、天然黒鉛を使用することが望ましい。 炭素物質の配合量は原料の合割量の11〜23%、望ま
しくは13〜20%の範囲内である。11%未満では、
仮焼後に酸化物系境界層が得られるものの、耐スポーリ
ング性が劣る。23%を超えると、mll火打材対する
体積比が大きくなりすぎ、境界層に期待されるシール効
果が損なわれる。 耐食性改善のために耐火骨材に配合する添加粉末として
はCa、 Mgの単体もしくはこれらを含む合金(At
−Mg、 Ca−5i、 Ca−八1)の粉末と84G
粉末(以下、これらを添加金属粉と総称する)がより有
効に作用することが判明した。これらの添加金属粉の1
種もしくは2種以上を使用することができる。A1、S
iまたはAl−Si合金は、本発明での熱処理(仮焼)
過程での異常膨張に伴う微亀裂発生のため、上記シール
効果が不充分であると共に、得られた仮焼耐火煉瓦の耐
食性を損なう。 添加金属粉の配合量は、原料粉末の合計量の1〜5%、
望ましくは2〜4%の範囲が適当である。 1%未満では耐食性改善効果がほとんどなく、5%を超
えると急激に削スポーリング性が低下する。 また、添加金属粉は純度90%以上のものを使用する。 純度が90%未満であると、耐久ラグ侵食性が低下する
。 なお、炭素物質と添加金属粉は仮焼過程で反応するので
、その粒径は特に限定されないが、粒径が過大であると
均一な原料混合物を得ることができず、仮焼に時間がか
かる。その意味で、平均粒径は炭素物質で1mm以下、
添加金属粉で100メツシユ以下程度が好ましい。 原料の残部は実質的に上記の塩基性耐火骨材からなる。 上記3種類の材料の粉末混合物である原料に液状の樹脂
バインダーを加えて混練し、成形可能な程度に粉末を結
合すると、炭素含有耐火組成物が得られる。 バインダーとしては、不焼成煉瓦に慣用されている任意
の液状熱硬化性樹脂バインダーが使用できる。この種の
代表的な樹脂バインダーはフェノール樹脂であり、本発
明においてもフェノール樹脂を好適に使用することがで
きる。 バインダーの使用量は、原料粉末を成形可能な程度まで
結合するのに必要な量であればよく、特に制限されない
。一般には、原料粉末100重量部に対して5〜10重
量部の範囲内であろう。 この不焼成の炭素含有耐火組成物は、混練後に成形する
と、そのままで不焼成の定形煉瓦として使用することが
できる。しかし、上述したように、この組成物を特定の
条件で熱処理して仮焼することにより、特に耐酸化性に
優れた仮焼煉瓦が得られるので、このような仮焼を経た
仮焼煉瓦として用いることが好ましい。 成形は定法により実施ずれはよい。例えば、成形圧70
0〜1000kg/cm2程度の油圧プレス、真空フリ
クションプレスなどにより成形して、不焼成定形煉瓦を
得ることができる。所望により、成形体を200〜30
0℃に加熱して、樹脂バインダーを熱硬化させてもよい
。 本発明によれば、上記耐火組成物を成形した後の仮焼は
、0200℃から600℃までの温度域の加熱を10 
Torr以下の減圧下で行い、■次いで1000℃まで
の温度域の加熱を酸素分圧を17〜25 vol%に調
整した雰囲気中で行い、(3)その後、酸素分圧Q、l
  vol%以下の不活性雰囲気中で200”Cまで炉
冷する、という3段階で行う。このように、仮焼の前後
で酸素分圧を制限して仮焼を行うことが本発明の特徴で
ある。 即ち、工程■で樹脂バインダーを十分に熱硬化させ、さ
らにその熱分解も終了させて煉瓦組織に炭素結合を形成
させる。その後で、工程■の酸素含有雰囲気中での熱処
理により、添加金属粉を酸化させる。これにより、煉瓦
の表面近傍に既述の酸化物系境界層を確実に形成させる
ことができる。 この境界層が、実炉使用時の煉瓦内外の通気を遮断する
バリアーとなり、煉瓦内部に配合された炭素物質の酸化
を抑制する。工程■で不活性カスに置換してから冷却す
るのは、仮焼により所要の酸化物系境界層が形成された
後の過度の酸化を防止するためである。 この仮焼に用いる焼成炉としでは、雰囲気調整の可能な
電気炉を用いることができる。即ち、吸排気が可能で1
0 Torr以下の真空度が得られる炉を使用する。従
って、トンネルキルン等のガスバーナーを存する炉は、
適当ではない。 仮焼の第一段階は200〜600℃の温度域を意味する
。200 ’Cまでの昇温過程で10 Torr以下の
真空度への排気を完了させる。この排気を確認した後、
1.OTorr以下の真空度を保持したまま200℃か
ら600℃まで昇温させ、樹脂バインダーの熱硬化、分
解および炭化を生じさせる。この時の昇温速度は10°
f:/min以下が好ましい。昇温速度が10’(:/
minを超えると、煉瓦内部と表面との温度差が大きく
なり、亀裂を生ずることがある。この昇温時、酸素分圧
を早期に減するために、コークス粉等の炭素源の床敷き
や、計、+12等の不活性ガスの封入を併用してもよい
。 仮焼の第二段階は600〜1000℃の温度域での熱処
理である。この熱処理はPo2を17〜25 vol%
に調整した雰囲気中で行い、添加金属粉を酸化させて、
酸化物系境界層を形成させる。そのため、第一段階の終
了後、好ましくは0.5〜1.Ohr以内に上記酸素分
圧の酸化雰囲気に置換する。例えば、酸素分圧計で監視
してPo2が17〜25 vol%の範囲になるよう空
気と酸素ガスを炉に吹込む。ガスの吹込み量は炉の容積
に依存する。置換が完了した時点で、好ましくは100
℃/hr以下の速度で1000℃まで昇温させて添加金
属粉の溶融と酸化を進行させる。Po2が17 vol
%を下回ると、煉瓦中に境界層が十分に形成されず、耐
酸化性が低下する。 一方、Po2が25 vol%を超えると、煉瓦内部の
劣化が著しくなる。昇温速度]00℃/hr以上では、
煉瓦表面の酸化が促進され、脱炭層が大きくなりすぎる
場合がある。また、煉瓦表面層を均熱し、同等の酸素分
圧の雰囲気に曝露するため、空隙率80〜90%の道具
煉瓦を用い供試煉瓦を段積みすることが好ましい。 1000℃に到達した時点で、均熱のために、酸素ガス
の吹込みを中断し、Po2が10〜20 vol%の範
囲で1時間程度1000℃に温度保持することが好まし
い。 仮焼の第三段階は、1000℃からの冷却過程を意味す
る。この冷却は、PO2が0.1vol%以下の不活性
ガス雰囲気中で行い、冷却中の過度の酸化進行を抑制す
る。例えば、1000’Cでの温度保持終了後、直ちに
排気して、10 Torr以下程度の真空度にした後、
N2等の不活性ガスを封入して、酸素を排除する。Po
2が0.1  vol%以下となったことを確認してか
ら200 ’Cまで炉冷する。炉冷雰囲気のPO2濃度
が0.1  vol%を超えると、酸化が進みすぎ、耐
スポーリング性が低下する。この時の降温速度は4°I
:/min以下とすることが好ましい。その後、炉を解
放して放冷すると、所望の炭素含有仮焼耐火煉瓦が得ら
れる。 なお、得られた耐火煉瓦は表層に1〜2mm程度の厚さ
の脱炭層を存し、表面が粗面化している。 特に、築炉施工時に要求される施工性あるいは目地のシ
ール性を向上させるために、ワックス、タール、ピッチ
、または樹脂を煉瓦に含浸させて、表面の平滑性を高め
ることが好ましい。この含浸処理は短時間のドブ漬けて
十分であるが、含浸液剤中の水分は1%以下にし、実炉
昇温過程での水和反応を抑止することが望ましい。また
、角欠は等の防止を目的とする場合には、上記液剤の塗
布だけで充分である。
The structure and operation of the present invention will be explained. In addition, in the following description, % is weight % unless otherwise specified. The raw materials for the refractory composition used in the present invention include basic refractory aggregate, carbon material, Mg, Ca, Al lag,
It contains at least one powder selected from Ca-5i, Ca-Al and B4C. Basic refractory aggregates include MgO (magnesia) and Mg0A.
1203 (spinel) and/or MgO-Ca
It is not particularly limited as long as it is mainly composed of 0 (dolomite). Preferably, the basic refractory aggregate consists of only one or more of these, but other aggregates (eg, magnesite) may be blended in an amount of about 5% or less. The average particle size of the basic refractory aggregate is 0.5 to 0.3 mm.
The degree is within an appropriate range, and it is not preferable that the maximum particle size exceeds 2 mm. If the particle size of the aggregate is too large, the surface condition of the bricks after the calcination treatment according to the present invention will inevitably become rough, resulting in loss of surface smoothness and poor furnace construction workability. The type of carbon material is not particularly limited, and natural graphite such as beaded graphite and flaky graphite, artificial graphite, electrode scrap, carbon black, quiche graphite, and various types of coke for steel manufacturing can be used, but natural graphite is used. This is desirable. The blending amount of the carbon material is within the range of 11 to 23%, preferably 13 to 20% of the total amount of the raw materials. Below 11%,
Although an oxide boundary layer is obtained after calcination, the spalling resistance is poor. If it exceeds 23%, the volume ratio to ml flint becomes too large, and the sealing effect expected of the boundary layer is impaired. Additive powders to be added to refractory aggregates to improve corrosion resistance include Ca, Mg alone or alloys containing these (At
-Mg, Ca-5i, Ca-81) powder and 84G
It has been found that powders (hereinafter collectively referred to as additive metal powders) act more effectively. One of these additive metal powders
One species or two or more species can be used. A1, S
i or Al-Si alloy is heat treated (calcined) in the present invention.
Due to the generation of microcracks due to abnormal expansion during the process, the above-mentioned sealing effect is insufficient and the corrosion resistance of the obtained calcined refractory brick is impaired. The amount of added metal powder is 1 to 5% of the total amount of raw material powder,
Desirably, a range of 2 to 4% is appropriate. If it is less than 1%, there is almost no effect of improving corrosion resistance, and if it exceeds 5%, the cutting and spalling properties will decrease rapidly. Further, the additive metal powder used has a purity of 90% or more. If the purity is less than 90%, durable lag erosion properties will be reduced. Note that the carbon material and the added metal powder react during the calcination process, so the particle size is not particularly limited, but if the particle size is too large, it will not be possible to obtain a uniform raw material mixture, and the calcination will take a long time. . In that sense, the average particle size of carbon materials is 1 mm or less,
The amount of added metal powder is preferably about 100 meshes or less. The remainder of the raw material consists essentially of the basic refractory aggregate described above. A carbon-containing refractory composition is obtained by adding a liquid resin binder to the raw material, which is a powder mixture of the three types of materials mentioned above, and kneading the mixture to bind the powder to a moldable extent. As the binder, any liquid thermosetting resin binder commonly used for unfired bricks can be used. A typical resin binder of this type is a phenol resin, and a phenol resin can also be suitably used in the present invention. The amount of the binder to be used is not particularly limited as long as it is the amount necessary to bind the raw material powder to a moldable extent. Generally, it will be in the range of 5 to 10 parts by weight per 100 parts by weight of the raw powder. When this unfired carbon-containing refractory composition is molded after kneading, it can be used as is as an unfired shaped brick. However, as mentioned above, by heat-treating and calcining this composition under specific conditions, calcined bricks with particularly excellent oxidation resistance can be obtained. It is preferable to use Molding is carried out using a standard method, with no deviations. For example, molding pressure 70
Unfired shaped bricks can be obtained by molding using a hydraulic press, vacuum friction press, etc. at a pressure of about 0 to 1000 kg/cm2. If desired, the molded body may be
The resin binder may be thermoset by heating to 0°C. According to the present invention, calcination after molding the refractory composition involves heating in a temperature range of 0200°C to 600°C for 10
(1) Heating in the temperature range up to 1000°C in an atmosphere with an oxygen partial pressure adjusted to 17 to 25 vol%; (3) After that, the oxygen partial pressure Q, l
It is carried out in three stages: furnace cooling to 200"C in an inert atmosphere of vol% or less. In this way, a feature of the present invention is that calcination is performed by limiting the oxygen partial pressure before and after calcination. That is, in step (2), the resin binder is sufficiently thermally cured, and its thermal decomposition is also completed to form carbon bonds in the brick structure.Thereafter, in step (2), heat treatment in an oxygen-containing atmosphere removes the additive metal. The powder is oxidized. This ensures the formation of the aforementioned oxide boundary layer near the surface of the brick. This boundary layer acts as a barrier to block air flow inside and outside the brick during use in an actual furnace. Suppresses the oxidation of the carbon material blended inside the brick. Cooling after replacing with inert scum in step ① prevents excessive oxidation after the required oxide boundary layer is formed by calcination. As the firing furnace used for this calcination, an electric furnace that can control the atmosphere can be used.
Use a furnace that can provide a degree of vacuum of 0 Torr or less. Therefore, furnaces with gas burners such as tunnel kilns,
It's not appropriate. The first stage of calcination means a temperature range of 200-600°C. During the temperature raising process to 200'C, evacuation to a vacuum level of 10 Torr or less is completed. After checking this exhaust,
1. The temperature is raised from 200° C. to 600° C. while maintaining a vacuum degree of OTorr or less to cause thermosetting, decomposition, and carbonization of the resin binder. The temperature increase rate at this time is 10°
f:/min or less is preferable. The heating rate is 10' (:/
If the temperature exceeds min, the temperature difference between the inside and the surface of the brick becomes large and cracks may occur. During this temperature rise, in order to quickly reduce the oxygen partial pressure, a carbon source such as coke powder may be placed on the bed, and an inert gas such as +12 gas may be filled in combination. The second stage of calcination is heat treatment in a temperature range of 600 to 1000°C. This heat treatment reduces Po2 to 17-25 vol%
It is carried out in an atmosphere adjusted to oxidize the added metal powder,
Forms an oxide boundary layer. Therefore, after the end of the first stage, preferably 0.5 to 1. The atmosphere is replaced with an oxidizing atmosphere having the above oxygen partial pressure within Ohr. For example, air and oxygen gas are blown into the furnace so that Po2 is in the range of 17 to 25 vol% as monitored by an oxygen partial pressure meter. The amount of gas blown depends on the volume of the furnace. When the replacement is completed, preferably 100
The temperature is raised to 1000° C. at a rate of less than° C./hr to advance melting and oxidation of the added metal powder. Po2 is 17 vol
If it is less than %, a boundary layer will not be sufficiently formed in the brick, resulting in a decrease in oxidation resistance. On the other hand, when Po2 exceeds 25 vol%, the inside of the brick deteriorates significantly. Temperature increase rate] At 00℃/hr or more,
Oxidation of the brick surface may be promoted and the decarburized layer may become too large. Further, in order to uniformly heat the brick surface layer and expose it to an atmosphere with the same oxygen partial pressure, it is preferable to stack the test bricks using tool bricks with a porosity of 80 to 90%. When the temperature reaches 1000°C, it is preferable to stop blowing in oxygen gas for soaking, and maintain the temperature at 1000°C for about 1 hour while Po2 is in the range of 10 to 20 vol%. The third stage of calcination means a cooling process from 1000°C. This cooling is performed in an inert gas atmosphere containing 0.1 vol % or less of PO2 to suppress excessive progress of oxidation during cooling. For example, after the temperature is maintained at 1000'C, the vacuum is immediately evacuated to a degree of vacuum of 10 Torr or less, and then
Inert gas such as N2 is filled in to exclude oxygen. Po
After confirming that 2 is 0.1 vol% or less, the furnace is cooled to 200'C. When the PO2 concentration in the furnace cooling atmosphere exceeds 0.1 vol%, oxidation progresses too much and spalling resistance decreases. The temperature decreasing rate at this time is 4°I
:/min or less is preferable. Thereafter, the furnace is opened and allowed to cool, yielding the desired carbon-containing calcined refractory brick. Note that the obtained refractory brick has a decarburized layer with a thickness of about 1 to 2 mm on the surface layer, and the surface is roughened. In particular, in order to improve the workability or joint sealing required during furnace construction, it is preferable to impregnate the bricks with wax, tar, pitch, or resin to improve the surface smoothness. This impregnation treatment can be carried out by soaking in a drain for a short time, but it is desirable to keep the water content in the impregnating liquid to 1% or less to suppress the hydration reaction during the heating process of the actual furnace. Furthermore, if the purpose is to prevent corner breakage, etc., application of the above liquid agent is sufficient.

【実施例】【Example】

以下、本発明を実施例によって具体的に説明する。 実画I鉗1 配合比が重量比で1:1の電融マグネシアクリンカ−と
焼結マグネシアクリンカ−の混合物を塩基性耐火骨材と
して用いた。平均粒径0.8 mmに整粒したこの骨材
に、第1表に記載の量の平均粒径0.5 mmに整粒し
た鱗片状黒鉛と、粒度150メツシユ以下、純度90%
以上のAl−Mg粉末とを配合して原料粉末を調整した
。この原料粉末に、ノボラック型液状フェノール樹脂を
45〜6.5%添加し、50〜80℃の温度て混練した
後、800 kg/cmZの圧力で油圧プレスを用いて
亜型サイズに成形して、Mg0−C系の不焼成耐火組成
物を得た。この不焼成の成形煉瓦から、直径100 m
m、長さ65mmの円柱を抜き取りサンプルとした。な
お、比較のために、添加金属粉としてAl−5i粉を用
いて、同様に不焼成の成形煉瓦を製作し、サンプルを得
た。 この成形煉瓦のサンプルを、排気型電気炉で本発明の方
法により3段階の熱処理により仮焼して、仮焼耐火煉瓦
のサンプルを得た。この仮焼工程において、不活性ガス
として窒素ガスを用い、200’C→600℃への昇温
速度は4℃/min、圧力約10Torr ; 600
℃→1000℃への昇温速度は600℃/hr、Po2
約21 vol%; 1000℃での温度保持時間は1
時間、Po2約17 vol%; 1000℃→200
゛Cへの炉冷速度は4℃/min 、 POz 0.1
vol%以下とした。 得られた仮焼耐火煉瓦および不焼成成形煉瓦のサンプル
をさらに熱処理し、脱炭状況と強度を求めた。即ち、P
o7−15νof%に調整した電気炉内で1200°(
:X3hrの熱処理を行った後、形成された脱炭層の厚
さを求めると共に、このサンプルから直径50mm、長
さ50mmの試験片を切り抜き、圧縮強度を求めた。 脱炭層の厚さの測定結果を第1図に、圧縮強度試験結果
を第2図にそれぞれ示す。第1図に示した脱炭量比は、
1200℃熱処理後のザンプル表面での白色変化層厚さ
を指標化したもので、最も悪い果を100として比較し
たものである。この脱炭量比は、煉瓦中炭素の酸化の程
度を示すものであり、の結果を100とした相対値であ
る。 第1図および第2図に示した結果から、Al−Mg合金
粉末を含有するMgO−C系耐火組成物を本発明の方法
により仮焼した耐火煉瓦が強度および耐酸化性のいずれ
も比較材に比して大幅に改善されていることが判る。 配合重量比が1:1の電融マグネシアクリンカ−と焼結
マグネシアクリンカ−の混合物を実施例1と同様に整粒
した塩基性耐火骨材用い、これに鱗片状黒鉛を17%、
および添加金属粉としていずれも粒度150メンシユ以
下、純度90%以上のCa−Al粉、Al−Mg粉、M
g粉、Ca−5i粉、またはB、C粉を3%添加して、
原料粉末とした。この原料粉末にノボラック型液状フェ
ノール樹脂を7%添加し、50〜80℃で温風混練した
後、油圧プレスで1000kg/cm2の圧力で、亜型
サイズに成形して、MgO−C系耐火組成物の不焼成成
形煉瓦を製作した。 仮焼工程は、実施例1と同様の条件で3段階で行い、各
3個ずつの成形煉瓦を熱処理し、脱炭層厚1.5〜2.
2 mmの供試煉瓦を得た。 供試煉瓦より15mm立方の稼動面脱炭層を含むサンプ
ルを切出すと共に、直径30 X 140闘の脱炭層を
含まぬサンプルを切出し、無酸化雰囲気下(Arガス)
で3点曲げ強さを1200℃で測定した。 また、稼動面脱炭層を含む15mm厚さの煉瓦サンプル
を内張すしたルツボにスラグを含む溶鋼を入れ、高周波
誘導炉で1700’CX 1 hrのスラグ侵食を行い
、煉瓦の侵食量を測定した。この試験に用いた溶鋼量は
50 kg 、スラグ量は2.5 kgであり、溶鋼中
のスラグ塩基度(C/S)は3であった。 なお、比較材としてΔ1粉、S】粉添加仮焼煉瓦を同様
の手順で製作したものを同様に試験した。また、従来材
として仮焼処理を行わなかった煉瓦の結果も併せて示し
た。 試験結果を第2表にまとめて示す。第2表の数値は、第
1表と同様に、最も悪い結果を示した例(AI添加の不
焼成煉瓦)の数値を100 さした場合の相対値である
。 第2表に示した結果から明らかなように、本発明による
Kg−CaあるいはBを含むMg0−C系仮焼煉瓦では
、1200℃での熱履歴をを受けても、配合黒鉛の酸化
は軽微で、安定して高い強度が得られていることが判る
。 ! 第2表 実施例3 実施例2の結果をもとに、Al−Mg粉添加のMg0−
C系仮焼煉瓦を製作し実炉に使用した。原料粉末の配合
割合および粒度は実施例2と同様であり、この原料粉末
にノボランク型液状フェノール樹脂を5%添加して温風
混練し、真空フリクションプレスで長さ720 mmの
転炉用煉瓦を成形し、実施例1と同様の仮焼処理し、ワ
ンクスを塗布した。 内張すした部位は、250トン転炉のトラニオン側の直
胴部である。従来はAI粉添加のMgC1−C系不焼成
煉瓦を使用していた。炉稼動300チャージ目から60
0チヤージ目までの損耗状況を整理したところ、従来は
1チヤージ当たりの損耗量が0.8mmであったが、本
発明品を使用した結果、損耗量が0.32 mmに低下
した。従って、炉命を倍以上に延長できるものと推測さ
れる。この転炉は2800チヤージで落命したが、解体
調査では本発明品の鉄皮側での座屈は全くないことが認
められた。
Hereinafter, the present invention will be specifically explained with reference to Examples. Actual picture I: A mixture of fused magnesia clinker and sintered magnesia clinker in a weight ratio of 1:1 was used as the basic refractory aggregate. To this aggregate sized to an average particle size of 0.8 mm, flaky graphite sized to an average particle size of 0.5 mm in the amount listed in Table 1 and a particle size of 150 mesh or less and a purity of 90% are added.
A raw material powder was prepared by blending the above Al-Mg powder. 45 to 6.5% of novolac type liquid phenolic resin was added to this raw material powder, and after kneading at a temperature of 50 to 80°C, it was molded into a sub-mold size using a hydraulic press at a pressure of 800 kg/cmZ. , an Mg0-C based unfired refractory composition was obtained. From this unfired molded brick, a diameter of 100 m
A cylinder with a length of 65 mm was sampled. For comparison, unfired molded bricks were similarly produced using Al-5i powder as the additive metal powder, and samples were obtained. This molded brick sample was calcined by the method of the present invention in a three-step heat treatment in an exhaust type electric furnace to obtain a calcined refractory brick sample. In this calcination step, nitrogen gas was used as an inert gas, the temperature increase rate from 200'C to 600°C was 4°C/min, and the pressure was about 10 Torr;
The temperature increase rate from °C to 1000 °C is 600 °C/hr, Po2
Approximately 21 vol%; Temperature holding time at 1000°C is 1
Time, Po2 approx. 17 vol%; 1000℃→200
Furnace cooling rate to ゛C is 4℃/min, POz 0.1
It was made vol% or less. Samples of the obtained calcined refractory bricks and unfired molded bricks were further heat treated to determine the decarburization status and strength. That is, P
1200° (
: After heat treatment for 3 hours, the thickness of the decarburized layer formed was determined, and a test piece with a diameter of 50 mm and a length of 50 mm was cut out from this sample and its compressive strength was determined. Figure 1 shows the measurement results of the thickness of the decarburized layer, and Figure 2 shows the results of the compressive strength test. The decarburization ratio shown in Figure 1 is
The thickness of the white change layer on the surface of the sample after heat treatment at 1200° C. is expressed as an index, and the worst result is set as 100 for comparison. This decarburization ratio indicates the degree of oxidation of carbon in the brick, and is a relative value with the result of 100. From the results shown in FIGS. 1 and 2, it is clear that the refractory bricks prepared by calcining the MgO-C refractory composition containing Al-Mg alloy powder by the method of the present invention have better strength and oxidation resistance than the comparative ones. It can be seen that it is significantly improved compared to . A mixture of fused magnesia clinker and sintered magnesia clinker with a blending weight ratio of 1:1 was used as basic refractory aggregate sized in the same manner as in Example 1, and 17% of flaky graphite was added to this.
And as additive metal powders, Ca-Al powder, Al-Mg powder, M
Add 3% of g powder, Ca-5i powder, or B, C powder,
It was made into a raw material powder. 7% of novolac type liquid phenol resin was added to this raw material powder, and after kneading with warm air at 50 to 80°C, it was molded into a sub-mold size with a pressure of 1000 kg/cm2 using a hydraulic press to form an MgO-C based fire-resistant composition. Manufactured unfired molded bricks. The calcination process was performed in three stages under the same conditions as in Example 1, and three molded bricks each were heat treated to obtain a decarburized layer thickness of 1.5 to 2.
A 2 mm test brick was obtained. A 15 mm cubic sample containing a decarburized layer on the working surface was cut out from the test brick, and a 30 mm x 140 mm diameter sample without a decarburized layer was cut out, and the samples were heated under a non-oxidizing atmosphere (Ar gas).
The three-point bending strength was measured at 1200°C. In addition, molten steel containing slag was placed in a crucible lined with a 15 mm thick brick sample containing a decarburized layer on the working surface, and slag erosion was performed for 1700'CX 1 hr in a high frequency induction furnace, and the amount of erosion of the brick was measured. . The amount of molten steel used in this test was 50 kg, the amount of slag was 2.5 kg, and the slag basicity (C/S) in the molten steel was 3. As a comparative material, calcined bricks containing Δ1 powder and S] powder were manufactured in the same manner and tested in the same manner. Also shown are the results for conventional bricks that were not subjected to calcining treatment. The test results are summarized in Table 2. Similar to Table 1, the values in Table 2 are relative values obtained by subtracting the value of the example showing the worst results (unfired brick with AI added) by 100. As is clear from the results shown in Table 2, in the Mg0-C based calcined bricks containing Kg-Ca or B according to the present invention, even when subjected to thermal history at 1200°C, the oxidation of the blended graphite is slight. It can be seen that stable and high strength is obtained. ! Table 2 Example 3 Based on the results of Example 2, Mg0-
C-type calcined bricks were manufactured and used in an actual furnace. The blending ratio and particle size of the raw material powder were the same as in Example 2, and 5% of Novolanc type liquid phenol resin was added to this raw material powder, which was kneaded with warm air, and converted into converter bricks with a length of 720 mm using a vacuum friction press. It was molded, calcined in the same manner as in Example 1, and coated with Wanx. The lined part is the straight body part on the trunnion side of the 250-ton converter. Conventionally, MgC1-C unfired bricks containing AI powder have been used. 60 from the 300th charge of furnace operation
When the wear condition up to the 0th charge was summarized, the amount of wear per charge was 0.8 mm in the conventional product, but as a result of using the product of the present invention, the amount of wear was reduced to 0.32 mm. Therefore, it is estimated that the reactor life can be more than doubled. This converter failed at 2,800 charges, but a disassembly investigation revealed that there was no buckling at all on the steel shell side of the product of the present invention.

【発明の効果】【Effect of the invention】

本発明のMg0−C系耐火組成物および仮焼耐火煉瓦は
、従来品に比較して著しく耐酸化性が改善されたことに
より、高温下で安定した強度を維持し、耐食性が良好で
ある。そのため、これを転炉等の製鋼炉に内張すするこ
とにより、内張り寿命の延長が可能となり、産業上奏さ
れる総合的な経済効果は極めて大きい。
The Mg0-C-based refractory composition and calcined refractory brick of the present invention have significantly improved oxidation resistance compared to conventional products, so they maintain stable strength at high temperatures and have good corrosion resistance. Therefore, by lining a steelmaking furnace such as a converter with this material, the life of the lining can be extended, and the overall economic effect on the industry is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、炭素物質として黒鉛を種々の量で含有する本
発明および比較用のMg0−C系不焼成および仮焼煉瓦
の1200℃で酸化試験した後の脱炭量を示すグラフ、
および 第2図は、前記煉瓦の1200℃での酸化試験後の圧縮
強度を示すグラフである。
FIG. 1 is a graph showing the amount of decarburization after an oxidation test at 1200° C. of the present invention and comparative Mg0-C based unfired and calcined bricks containing various amounts of graphite as a carbon material;
and FIG. 2 is a graph showing the compressive strength of the brick after an oxidation test at 1200°C.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で炭素質物質11〜23%と、純度90%
以上のMg粉、Ca粉、Al−Mg粉、Ca−Si粉、
Ca−Al粉およびB_4C粉から選ばれた1種以上の
粉末1〜5%とを含有し、残部がMgO、MgO−Al
_2O_3および/またはMgO−CaO系を主体とす
る塩基性耐火骨材より成る原料に、熱硬化性樹脂バイン
ダーを配合した炭素含有耐火組成物を成形後、(1)2
00℃から600℃までの温度域を10Torr以下の
減圧下で加熱し、(2)さらに1000℃までの温度域
を酸素分圧を17〜25vol%に調整した雰囲気中で
加熱し、(3)その後、酸素分圧0.1vol%以下の
不活性ガス雰囲気中で200℃まで炉冷する、という工
程により仮焼することを特徴とする、炭素含有仮焼耐火
煉瓦の製造方法。
(1) Carbonaceous material 11-23% by weight and purity 90%
The above Mg powder, Ca powder, Al-Mg powder, Ca-Si powder,
Contains 1 to 5% of one or more powders selected from Ca-Al powder and B_4C powder, and the remainder is MgO and MgO-Al powder.
After molding a carbon-containing refractory composition in which a thermosetting resin binder is blended into a raw material consisting of a basic refractory aggregate mainly composed of _2O_3 and/or MgO-CaO, (1)2
Heating in the temperature range from 00°C to 600°C under reduced pressure of 10 Torr or less, (2) further heating in the temperature range up to 1000°C in an atmosphere with an oxygen partial pressure adjusted to 17 to 25 vol%, (3) A method for producing a carbon-containing calcined refractory brick, which is then calcined by a step of furnace cooling to 200° C. in an inert gas atmosphere with an oxygen partial pressure of 0.1 vol% or less.
(2)仮焼後、得られた煉瓦にワックス、タール、ピッ
チまたは樹脂を塗布または含浸することを特徴とする、
請求項1記載の方法。
(2) After calcination, the resulting brick is coated or impregnated with wax, tar, pitch or resin;
The method according to claim 1.
JP2309028A 1990-11-15 1990-11-15 Production of carbon-containing calcined firebrick Pending JPH04182347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2309028A JPH04182347A (en) 1990-11-15 1990-11-15 Production of carbon-containing calcined firebrick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2309028A JPH04182347A (en) 1990-11-15 1990-11-15 Production of carbon-containing calcined firebrick

Publications (1)

Publication Number Publication Date
JPH04182347A true JPH04182347A (en) 1992-06-29

Family

ID=17988012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2309028A Pending JPH04182347A (en) 1990-11-15 1990-11-15 Production of carbon-containing calcined firebrick

Country Status (1)

Country Link
JP (1) JPH04182347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021226A (en) * 2016-07-26 2018-02-08 品川リフラクトリーズ株式会社 Lining method of converter injection wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021226A (en) * 2016-07-26 2018-02-08 品川リフラクトリーズ株式会社 Lining method of converter injection wall

Similar Documents

Publication Publication Date Title
US4471059A (en) Carbon-containing refractory
JP4634263B2 (en) Magnesia carbon brick
JPH0545546B2 (en)
JP6600729B1 (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank
KR860001649B1 (en) Refractory brick
JPH04182347A (en) Production of carbon-containing calcined firebrick
EP0116194A1 (en) A carbon-containing refractory
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
KR20200025788A (en) The compisition for RH snorkel refractory
JP6315037B2 (en) Lined refractories for continuous casting tundish
JPH09295857A (en) Carbon-containing brick containing aluminum oxycarbide
JPH01305849A (en) Magnesia-carbon brick
JPS5815072A (en) Magnesia-carbon low temperature baking refractory brick
KR930009349B1 (en) Refractory brick of mgo-c matrix
JP4340051B2 (en) Method for evaluating the structure of carbon-containing basic bricks for converters
JPS6141861B2 (en)
KR830001463B1 (en) Manufacturing method of fire brick
JPH08119719A (en) Brick containing carbon and aluminum silicon carbide
JPH03109253A (en) Production of carbon-containing unburned brick
JPH0585805A (en) Carbon-containing fire-resistant material
KR100931157B1 (en) Magnesia-chromium refractory brick impregnation resin solution and vacuum impregnated magnesia-chromium refractory brick manufacturing method using the same
KR20200057293A (en) Unburned MgO-C bricks with excellent anti-oxidation
JP2000327401A (en) Plate for slide gate
JPH0421625B2 (en)
JPH05301772A (en) Carbon-containing brick