JPH03109253A - Production of carbon-containing unburned brick - Google Patents

Production of carbon-containing unburned brick

Info

Publication number
JPH03109253A
JPH03109253A JP1244335A JP24433589A JPH03109253A JP H03109253 A JPH03109253 A JP H03109253A JP 1244335 A JP1244335 A JP 1244335A JP 24433589 A JP24433589 A JP 24433589A JP H03109253 A JPH03109253 A JP H03109253A
Authority
JP
Japan
Prior art keywords
bricks
metal
carbon
weight
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1244335A
Other languages
Japanese (ja)
Inventor
Jusaku Yamamoto
山本 重作
Hirotaka Shintani
新谷 宏隆
Tatsuo Kawakami
川上 辰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP1244335A priority Critical patent/JPH03109253A/en
Publication of JPH03109253A publication Critical patent/JPH03109253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the carbon contg. unburned brick having excellent resistance to oxidation and molten steel erosion by adding respectively prescribed ratios of carbon black and fine powder of metal Cr to refractories consisting of Al2O3 and metal Al and adding a specific binder, thereto, then kneading and molding the mixture and heat treating the molding. CONSTITUTION:The carbon black is added at 2 to 8wt.% and the powder of the metal Cr having <=0.074mm grain size at max. 5wt.% to the refractory material consisting of the Al2O3 and the metal Al. A phenolic resin and/or silicone resin is added as the binder at max. 10wt.% by weight of the resin to this mixture. After the mixture is kneaded and molded, the molding is heat treated at 100 to 700 deg.C. The carboncontg. unburned brick obtd. in such a manner has the above-mentioned characteristics; in addition, the brick suppresses the penetration of the base metal to a sliding surface when an SN plate consisting of an Al2O3-C material is used. The surface roughening is thus lessened and the durability is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製鋼工場において使用されるカーボン含有耐火
物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to carbon-containing refractories used in steel factories.

〔従来の技術〕[Conventional technology]

製鋼工場で使用されるカーボン含有耐火物としては転炉
用Mg0−C系れんが、連鋳用Al2O!−C系れんが
等がある。これらのカーボン含有耐火物は、使用時にお
いて、れんが中のカーボンが雰囲気中または溶鋼中の酸
素により酸化され、あるいは溶鋼またはスラグにより溶
損され、それらの大小がれんがの耐用性に大きく影響し
ているのは周知のことである。以下、例として特に連続
鋳造設備のスライディングノズルプレートれんが(以下
、SNプレートれんがと略称)について述べる。
Carbon-containing refractories used in steel factories include Mg0-C bricks for converters and Al2O for continuous casting. -C type bricks, etc. When these carbon-containing refractories are used, the carbon in the bricks is oxidized by oxygen in the atmosphere or in molten steel, or is eroded by molten steel or slag, and the size of the carbon can greatly affect the durability of the bricks. It is well known that there are. Hereinafter, a sliding nozzle plate brick (hereinafter abbreviated as SN plate brick) for continuous casting equipment will be described as an example.

例えば、SNプレートれんがは使用時においてノズル孔
部は約1550〜1600°Cの溶鋼流による急激な熱
衝撃と摩耗の物理的かつ化学的な侵食作用を受け、従っ
て耐スポーリング性と耐食性が要求される。一方、外周
部は約400〜600℃の温度に昇温するために摺動面
部のカーボンは酸化されやすい状況下にある。カーボン
の酸化によりれんが組織は脆弱化し地金噛み込み時に摩
耗が大きくなり面荒れを生じ易くなる。近年、タンデイ
ツシュの再使用が行われており、それに伴いSNプレー
トれんがも再使用が行われている。再使用に際し、ノズ
ル孔部に付着した地金を除くために、該ノズル孔部に高
温の酸素ジェットを吹付けることにより該地金を溶融・
飛散させて洗浄している。このため、ノズル孔部の酸化
による耐用性の低下が問題になっている。このように、
SNプレートれんがは耐スポーリング性と耐食性ならび
に耐酸化性を具備することが望まれている。
For example, during use of SN plate bricks, the nozzle hole is subject to physical and chemical erosion due to rapid thermal shock and wear due to the flow of molten steel at approximately 1550 to 1600°C, and therefore spalling resistance and corrosion resistance are required. be done. On the other hand, since the temperature of the outer circumferential portion rises to approximately 400 to 600° C., carbon in the sliding surface portion is likely to be oxidized. The oxidation of carbon weakens the brick structure, causing increased wear and surface roughness when the bare metal bites. In recent years, tundishes have been reused, and along with this, SN plate bricks have also been reused. When reusing, in order to remove the base metal attached to the nozzle hole, the base metal is melted and melted by blowing a high temperature oxygen jet into the nozzle hole.
It is washed by scattering. For this reason, there is a problem of reduced durability due to oxidation of the nozzle hole. in this way,
It is desired that SN plate bricks have spalling resistance, corrosion resistance, and oxidation resistance.

従来、カーボンポンド焼成れんがはアルミナ、ムライト
等の耐火材料にカーボンブラックまたはグラファイト等
を添加し、液状フェノールレジンまたはピッチ等を添加
、混練、成形した後コークスプリーズ中の還元雰囲気下
等で1000〜1400℃で焼成されている。近年、れ
んがの製造工程の合理化、製造コスト等の低減のために
不焼成SNプレートれんがが開発され、使用されつつあ
る。
Conventionally, carbon pound fired bricks are made by adding carbon black or graphite to a refractory material such as alumina or mullite, and then adding liquid phenol resin or pitch, kneading, and molding. It is fired at ℃. In recent years, unfired SN plate bricks have been developed and are being used to streamline the brick manufacturing process and reduce manufacturing costs.

この不焼成SNプレートれんがは酸化後のMi織劣化が
焼成品に比べて顕著であり、耐酸化性の向上が種々試み
られている。たとえば、■B4CやBNを添加し、酸化
部でガラス層を形成させる(特公昭63−32097)
、■炭素より酸化親和力の大きい金属アルミニウム粉末
を添加する(特公昭6O−16393)等が行われてい
る。
The deterioration of the Mi texture after oxidation in these unfired SN plate bricks is more pronounced than in fired products, and various attempts have been made to improve the oxidation resistance. For example, ■ B4C or BN is added to form a glass layer in the oxidized part (Japanese Patent Publication No. 63-32097)
, (2) The addition of metallic aluminum powder, which has a higher oxidation affinity than carbon (Japanese Patent Publication No. 6O-16393), has been carried out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

不焼成れんがは通常、耐火材料にフェノールレジン等の
熱硬化性樹脂をバインダーとして添加、混練、成形した
後、150〜700℃で加熱硬化処理して製造されてい
る。以下、SNプレートれんがを例に説明する。
Unfired bricks are usually manufactured by adding a thermosetting resin such as phenol resin as a binder to a refractory material, kneading and molding the material, and then subjecting the mixture to heat curing treatment at 150 to 700°C. Hereinafter, SN plate bricks will be explained as an example.

SNプレートれんがは使用時において、ノズル孔部は約
1550〜1600℃の高温になり、また、同周辺部は
比較的低温(約300〜500”c)であり著しい温度
勾配を生じ大きな熱応力を生じている。不焼成れんがは
一般的に熱衝撃ならびに熱応力に対し組織の柔軟性があ
り、耐スポーリング性に優れるという長所がある。しか
し一方、カーボン含有の不焼成品は使用時にれんが中の
カーボンが酸化消失、すなわち脱炭されるとその部分が
脆弱化し、または酸化防止剤との反応によりガラス層を
形成して溶損や摩耗が顕著になりSNプレートとしての
耐用性が低下するという欠点や、約500〜800″C
に加熱された部分ではバインダーの炭素化に伴い強度低
下を生じ、熱応力による亀裂発生や地金との接触による
摩耗や地金の付着を生じ易いという欠点がある。
When SN plate bricks are used, the nozzle hole reaches a high temperature of approximately 1550 to 1600 degrees Celsius, and the surrounding area is relatively low temperature (approximately 300 to 500"C), creating a significant temperature gradient and causing large thermal stress. Unfired bricks generally have a flexible structure against thermal shock and thermal stress, and have the advantage of being excellent in spalling resistance.However, unfired bricks containing carbon have the advantage that they have a structure that is flexible against thermal shock and thermal stress, and has excellent spalling resistance. When the carbon in the plate is lost by oxidation, that is, decarburized, that part becomes brittle or forms a glass layer due to the reaction with the antioxidant, leading to significant erosion and wear, reducing the durability of the SN plate. Defects and about 500~800″C
In the heated portion, strength decreases due to carbonization of the binder, and there is a drawback that cracks are generated due to thermal stress, wear due to contact with base metal, and base metal adhesion are likely to occur.

この発明は上記従来の事情に鑑みて提案されたものであ
って、不焼成耐火物の耐酸化性ならびに耐溶鋼侵食性の
向上を図ることを目的にしている。
This invention has been proposed in view of the above-mentioned conventional circumstances, and its purpose is to improve the oxidation resistance of unfired refractories and the corrosion resistance of molten steel.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は以下の手段を採用
している。すなわち、不焼成れんがの製造において、■
アルミナ、金属アルミニウムからなる耐火材料に、カー
ボンブラックを2〜8重量%、粒径0゜074鶴以下の
金属クロム粉末を最大5重量%添加し、バインダーとし
てフェノールレジン、シリコーン樹脂液体を単独または
併用して樹脂量として最大10重量%添加、混練、成形
、100〜700℃で熱処理すること、■マグネシア、
金属アルミニウム、黒鉛からなる耐火材料に、粒径0.
074f11以下の金属クロム微粉を最大5重量%添加
し、バインダーとしてフェノールレジン、シリコーン樹
脂液体を単独または併用して樹脂量として最大8重世%
添加、混練、成形、100〜700℃で熱処理をしよう
とするものである。
In order to achieve the above object, the present invention employs the following means. In other words, in the production of unfired bricks, ■
2 to 8% by weight of carbon black and up to 5% by weight of metallic chromium powder with a particle size of 0°074 or less are added to a fireproof material made of alumina and metallic aluminum, and phenol resin and silicone resin liquid are used alone or in combination as a binder. Adding a maximum of 10% by weight of resin, kneading, molding, and heat-treating at 100 to 700°C; ■Magnesia;
A fireproof material made of metal aluminum and graphite with a particle size of 0.
Add up to 5% by weight of metallic chromium fine powder of 074F11 or less, and use phenol resin or silicone resin liquid as a binder alone or in combination to achieve a resin amount of up to 8%.
The purpose is to add, knead, mold, and heat treat at 100 to 700°C.

〔作用〕[Effect]

カーボンブラックはれんが組織内にあって、溶鋼の侵入
を阻止するとともに、組織を還元雰囲気化し、高温下で
金属クロムと後述する反応により炭化クロムを生成し、
以て耐溶鋼侵食性の向上に寄与する。また、カーボンブ
ラックとシリコーン樹脂との反応により、れんが組織内
にSiCボンドを形成し組織の緻密化と強度向上を図り
、耐スポーリング性の向上に寄与する。添加するカーボ
ンブラック量は好ましくは2〜8重量%であり、8重量
%を越えるとれんがマトリックス部で微粉過多となり、
充填性の低下を招き好ましくない。
Carbon black exists within the brick structure and prevents the intrusion of molten steel, creates a reducing atmosphere in the structure, and generates chromium carbide through the reaction described below with metallic chromium at high temperatures.
This contributes to improving the corrosion resistance of molten steel. Furthermore, the reaction between carbon black and silicone resin forms SiC bonds within the brick structure, making the structure denser and stronger, contributing to improved spalling resistance. The amount of carbon black added is preferably 2 to 8% by weight, and if it exceeds 8% by weight, there will be too much fine powder in the brick matrix area.
This is undesirable because it causes a decrease in filling properties.

2重量%以下では添加効果が表れない。If the amount is less than 2% by weight, the effect of addition will not be apparent.

金属クロム微粉はカーボンブラックと反応して炭化クロ
ム(例えばCrzCz)を生成し、該炭化クロムがカー
ボンブラックよりも酸化し難いことかられんがの耐酸化
性を向上せしめ、さらに、前述の炭化クロムが酸化する
と耐食性に優れるCrz Otを生成することにより耐
溶鋼侵食性がさらに向上する効果を発揮する。添加する
金属クロムは好ましくは1〜5重量%であり;5重量%
を越えると、炭化クロム生成に伴う体積変化が顕著にな
り組織の脆弱化を生じる。一方、1重量%以下では添加
の効果が表れない。
Metallic chromium fine powder reacts with carbon black to produce chromium carbide (for example, CrzCz), which improves the oxidation resistance of bricks because it is more difficult to oxidize than carbon black. Then, by producing Crz Ot which has excellent corrosion resistance, the effect of further improving the corrosion resistance of molten steel is exhibited. The amount of metallic chromium added is preferably 1 to 5% by weight; 5% by weight
If this value is exceeded, the volume change associated with the formation of chromium carbide becomes significant, resulting in weakening of the structure. On the other hand, if it is less than 1% by weight, the effect of addition will not be apparent.

バインダーとして使用するシリコーンフェス等はキシレ
ン、トルエン、メタノール等の溶剤で希釈されて製品化
されたもので、従って、添加するバインダー量はそのシ
リコーン樹脂含有量を考慮して添加する。なお、添加さ
れる溶剤成分は混練作業後、坏土の加熱処理を行い揮発
除去される。
The silicone paste used as a binder is manufactured by diluting it with a solvent such as xylene, toluene, methanol, etc. Therefore, the amount of binder to be added is determined by considering the silicone resin content. Note that the added solvent component is volatilized and removed by heating the clay after the kneading operation.

シリコーン樹脂の挙動は、上述のようにカーボンブラッ
クと反応してSiCボンドを形成して強度特性の向上に
寄与することが考えられるが、その他、使用時のれんが
表面の酸化組織部において5in2を生成せしめ焼結促
進ならびに充填効果により酸化層の緻密化を図り酸化の
進行を阻止するとともに、酸化層部の機械的強度の向上
により耐摩耗性を向上させると考えられる。また、れん
が内部の未酸化部においてシリコーン樹脂の分解により
生成する化学的に活性なSiOがカーボンや気相のN、
 、Co、CO2等と化学反応し、炭化珪素や窒化珪素
等を生成しれんがの結合を強化するものと推定される。
As for the behavior of silicone resin, as mentioned above, it is thought that it reacts with carbon black to form SiC bonds and contributes to the improvement of strength properties, but in addition, 5in2 is generated in the oxidized structure on the surface of the brick during use. It is thought that the oxidized layer is densified by promoting sintering and the filling effect to prevent the progress of oxidation, and the wear resistance is improved by improving the mechanical strength of the oxidized layer. In addition, chemically active SiO, which is produced by decomposition of silicone resin in the unoxidized part inside the brick, can cause carbon, gaseous N,
, Co, CO2, etc., forming silicon carbide, silicon nitride, etc., which strengthens the bonds in the bricks.

このような未酸化部が酸化されるとSiO□を生成し上
述したような効果を発揮するものと考えられる。バイン
ダーの添加量はシリコーン樹脂、フェノール樹脂を併用
または単独で使用する場合においては、AIZ03C系
材質では3〜10重量%であり、Mg0−C系材質では
2〜8重景重量あることが好ましい。
It is thought that when such unoxidized portions are oxidized, SiO□ is generated and the above-mentioned effects are produced. When a silicone resin or a phenol resin is used in combination or alone, the amount of binder added is preferably 3 to 10% by weight for AIZ03C-based materials, and 2 to 8% by weight for Mg0-C-based materials.

その添加量がAlt03  C系材質では10重量%、
Mg0−C系材質では8重量%を越えると材料が泥漿化
し練作業性が悪く、れんが組織の充填が不十分となり、
耐食性が低下する。2重量%以下であるとバインダーと
しての結合強度が十分でなく上記の効果が得られない。
The amount added is 10% by weight for Alt03 C-based materials.
For Mg0-C based materials, if it exceeds 8% by weight, the material turns into slurry, poor kneading workability, and insufficient filling of the brick structure.
Corrosion resistance decreases. If it is less than 2% by weight, the binding strength as a binder is insufficient and the above effects cannot be obtained.

〔実施例〕〔Example〕

次に本発明を実施例により具体的に説明するが、本発明
はこれらの実施例に限定されるものではない。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

1)AI! Os −C系 本発明の実施例および比較例のれんがの配合割合を第1
表の上欄に示す。バインダーとしてフェノールレジンな
らびに熱硬化性のシリコーンフェス(溶剤はキシレンを
使用しているので添加率は樹脂量基準で示した)を表記
のように併用あるいは単独添加して混練を行った。なお
、成形時のラミネーション防止と素地強度の確保のため
に坏土は60℃に保持した熱風式乾燥品中で加熱処理を
行いその時の揮発分測定値(揮発分はケラト式水分測定
装置を用いて測定)が第1表に示す値になるようにした
。成形は500トンフリクシヨンプレスを用いてタンデ
イツシュ用SNプレートを成形した。成形体は熱風式乾
燥品中で180℃、1日間保持し樹脂の硬化処理を行っ
た。
1) AI! Os -C system The blending ratio of the bricks of the examples and comparative examples of the present invention was
Shown in the upper column of the table. As a binder, phenol resin and thermosetting silicone face (xylene was used as the solvent, so the addition rate was expressed based on the amount of resin) were used in combination or alone as indicated and kneaded. In addition, in order to prevent lamination during molding and ensure the strength of the base material, the clay was heat-treated in a hot-air drying product kept at 60℃, and the volatile content was measured at that time (the volatile content was determined using a Kerato moisture measuring device). (Measurement) was adjusted to the values shown in Table 1. For molding, a 500 ton friction press was used to mold an SN plate for a tundish. The molded body was kept at 180° C. for 1 day in a hot air dryer to cure the resin.

このようにして作製した試作れんがの品質特性を第1表
の中欄に示す。なお、物性値は耐火物に対する通常法に
よった。特性値は以下の要領により測定した。
The quality characteristics of the trial bricks produced in this manner are shown in the middle column of Table 1. Note that the physical property values were determined by the usual method for refractories. Characteristic values were measured in the following manner.

■酸化層の厚さ:試作れんがより30X30X30n+
の試片を各2個切出し、800℃に保持した空気雰囲気
の電気炉内に試片を入れ3hr加熱処理を行った。酸化
層の厚さは加熱試験時の高さ中央部の切断面部で測定し
た。
■Thickness of oxide layer: 30X30X30n+ from prototype brick
Two specimens of each were cut out, and the specimens were placed in an electric furnace in an air atmosphere maintained at 800° C. and heat treated for 3 hours. The thickness of the oxidized layer was measured at the cut surface at the center of the height during the heating test.

■耐溶鋼侵食指数:高周波炉に試料を内張すして165
0℃で3時間の溶鋼侵食試験を行った後、試料の中央部
を長平方向に切断し切断面における侵食面積を測定し、
比較例1の侵食面積を100とし各試料間の侵食面積の
相対値を耐溶鋼侵食指数とした。
■ Molten steel corrosion resistance index: 165 when the sample is lined in a high frequency furnace
After conducting a molten steel erosion test at 0°C for 3 hours, the central part of the sample was cut in the longitudinal direction and the erosion area on the cut surface was measured.
The erosion area of Comparative Example 1 was set as 100, and the relative value of the erosion area between each sample was taken as the molten steel corrosion resistance index.

比較例1および実施例1〜2の実験結果より、金属クロ
ムの添加量の増加にともなって耐酸化性、熱間強度、な
らびに耐溶鋼侵食性が向上している。
From the experimental results of Comparative Example 1 and Examples 1 and 2, the oxidation resistance, hot strength, and molten steel corrosion resistance improved as the amount of metallic chromium added increased.

実施例3はバインダーとしてシリコーン樹脂のフェスを
単独添加したものであるが、フェノールレジンとの併用
の場合よりさらに優れた耐酸化性を示している。
In Example 3, a silicone resin fess was added alone as a binder, but it showed even better oxidation resistance than when it was used in combination with a phenol resin.

比較例1、実施例1〜3の試作れんが各3セツトをタン
デイツシュ用SNプレートとして実機使用した。実機使
用に当たって、溶鋼鍋1回分く約280トン)のモール
ドへの注入を1チヤージ(以下、chと略称)として5
ch連続注入した後、スラグの排出、酸素ジェットによ
るノズル孔部の洗浄、再使用連続5chの鋳込みを行っ
た(計10ch鋳込)。
Three sets each of the trial bricks of Comparative Example 1 and Examples 1 to 3 were actually used as SN plates for tundishes. When using the actual machine, one charge (hereinafter abbreviated as "ch") is defined as 1 charge (hereinafter abbreviated as "ch") of molten steel (approximately 280 tons) poured into the mold.
After continuous channel injection, the slag was discharged, the nozzle hole was cleaned with an oxygen jet, and 5 channels of reuse were continuously poured (total of 10 channels of casting).

使用後高を回収し観察を行った結果、第1表の下欄に示
す損傷状態であった。金属クロムを添加することにより
耐酸化性ならびに耐溶鋼侵食性の向上を図ることができ
た。この結果、ノズル内面やノズル孔エツジ部の溶損を
軽減でき、摺動面への地金噛み込みを抑えることができ
、面荒れの低減を図ることができた。亀裂の発生状態は
いずれの場合も比較的小さくSNプレートの廃却主因に
はならなかった。ノズル内面やノズル孔エツジ部の溶損
が少なく、摺動面の酸化や面荒れが少ないものが多数回
の鋳込が可能であると言え、この観点から実施例1〜3
は従来品に比べ耐用性が向上したと判断される。
After use, the container was collected and observed, and as a result, it was found to be in a damaged state as shown in the lower column of Table 1. By adding metallic chromium, it was possible to improve oxidation resistance and molten steel corrosion resistance. As a result, it was possible to reduce melting damage on the inner surface of the nozzle and the edge of the nozzle hole, to prevent metal from getting caught in the sliding surface, and to reduce surface roughness. In all cases, the occurrence of cracks was relatively small and did not become the main reason for the scrapping of the SN plates. It can be said that casting can be performed many times if the nozzle inner surface and the nozzle hole edge have little melting damage and the sliding surface has little oxidation or surface roughness, and from this point of view, Examples 1 to 3
is judged to have improved durability compared to conventional products.

2)MgO−C系 本発明の実施例および比較例のれんがの配合割合を第1
表の上欄に示す。比較例2はバインダーとして、フェノ
ールレジンとシリコーン樹脂を各2重量%併用添加して
混練を行ったものである。
2) MgO-C system The blending ratio of bricks of Examples and Comparative Examples of the present invention was
Shown in the upper column of the table. In Comparative Example 2, 2% by weight each of phenol resin and silicone resin were added together as binders and kneaded.

実施例4〜6は実施例1〜3と同様にバインダーとして
熱硬化性のシリコーンフェスをフェノールレジンと併用
または単独添加して混練、成形、素地の熱処理を行った
In Examples 4 to 6, as in Examples 1 to 3, a thermosetting silicone face was added as a binder in combination with phenol resin or alone, and kneading, molding, and heat treatment of the base material were performed.

このようにして作製したれんがの品質特性を第1表の中
欄に示す。
The quality characteristics of the bricks thus produced are shown in the middle column of Table 1.

比較例2および実施例4〜6の実験結果より、金属クロ
ムの添加量の増加にともなって耐酸化性、熱間強度、な
らびに耐溶鋼侵食性が向上することがわかる。実施例6
はバインダーとしてシリコーンフェスを単独添加したも
のであるが、フェノールレジンとの併用の場合よりさら
に優れた耐酸化性を示している。
The experimental results of Comparative Example 2 and Examples 4 to 6 show that the oxidation resistance, hot strength, and molten steel corrosion resistance improve as the amount of metallic chromium added increases. Example 6
Although silicone resin was added alone as a binder, it showed even better oxidation resistance than when it was used in combination with phenol resin.

比較例2、実施例4〜6の試作れんがを転炉のスラクラ
イン部に内張り使用し、使用後高を回収し観察を行った
結果、第1表の下欄に示す損傷状態であった。金属クロ
ム微粉を添加することによりカーボンの酸化ならびに溶
損を抑制することができ、その結果として耐用性の向上
を図ることができた。
The prototype bricks of Comparative Example 2 and Examples 4 to 6 were used to line the slackline part of a converter, and the bricks were recovered after use and observed, and the results showed that the bricks were damaged as shown in the lower column of Table 1. By adding fine metal chromium powder, it was possible to suppress carbon oxidation and melting loss, and as a result, it was possible to improve durability.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は黒鉛またはカーボン含有不焼成れ
んかにおいて、耐火材料に金属クロム微粉を添加するこ
とにより、耐酸化性ならびに耐溶鋼侵食性の向上を図る
ことができた。A I z O3=C系材質のSNプレ
ートの場合には摺動面への地金噛み込みを抑え、面荒れ
の低減を図ることができ、耐用性が高められる効果が得
られた。
As described above, the present invention has been able to improve the oxidation resistance and molten steel corrosion resistance of graphite or carbon-containing unfired bricks by adding metallic chromium fine powder to the refractory material. In the case of the SN plate made of A I z O3=C-based material, it was possible to suppress metal entrapment on the sliding surface, reduce surface roughness, and increase durability.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミナ、金属アルミニウムからなる耐火材料に
、カーボンブラックを2〜8重量%、粒径0.074m
m以下の金属クロム微粉を最大5重量%添加し、バイン
ダーとしてフェノールレジン、シリコーン樹脂液体を単
独または併用して樹脂量として最大10重量%添加、混
練、成形、100〜700℃で熱処理することを特徴と
するカーボン含有不焼成れんがの製造方法。
(1) Add 2 to 8% by weight of carbon black to a fireproof material made of alumina and metal aluminum, particle size 0.074m.
Add up to 5% by weight of metallic chromium fine powder with a particle diameter of less than A method for producing carbon-containing unfired bricks.
(2)マグネシア、金属アルミニウム、黒鉛からなる耐
火材料に、粒径0.074mm以下の金属クロム微粉を
最大5重量%添加し、バインダーとしてフェノールレジ
ン、シリコーン樹脂液体を単独または併用して樹脂量と
して最大8重量%添加、混練、成形、100〜700℃
で熱処理することを特徴とするカーボン含有不焼成れん
がの製造方法。
(2) Up to 5% by weight of metallic chromium fine powder with a particle size of 0.074 mm or less is added to a fireproof material consisting of magnesia, metallic aluminum, and graphite, and phenol resin or silicone resin liquid is used alone or in combination as a binder to make the resin amount Addition of up to 8% by weight, kneading, molding, 100-700℃
A method for producing carbon-containing unfired bricks, which comprises heat-treating the bricks.
JP1244335A 1989-09-19 1989-09-19 Production of carbon-containing unburned brick Pending JPH03109253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1244335A JPH03109253A (en) 1989-09-19 1989-09-19 Production of carbon-containing unburned brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1244335A JPH03109253A (en) 1989-09-19 1989-09-19 Production of carbon-containing unburned brick

Publications (1)

Publication Number Publication Date
JPH03109253A true JPH03109253A (en) 1991-05-09

Family

ID=17117178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1244335A Pending JPH03109253A (en) 1989-09-19 1989-09-19 Production of carbon-containing unburned brick

Country Status (1)

Country Link
JP (1) JPH03109253A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086334A (en) * 1998-09-09 2000-03-28 Kurosaki Refract Co Ltd Brick for sliding nozzle apparatus
WO2006002727A1 (en) * 2004-06-19 2006-01-12 Refractory Intellectual Property Gmbh & Co. Kg Ceramic shaped body
KR100882923B1 (en) * 2007-12-07 2009-02-10 한국과학기술연구원 Economical manufacturing method of cr2alc sintered material having outstanding machinability
JP2020100511A (en) * 2018-12-19 2020-07-02 黒崎播磨株式会社 Method of producing magnesia-carbon brick

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086334A (en) * 1998-09-09 2000-03-28 Kurosaki Refract Co Ltd Brick for sliding nozzle apparatus
WO2006002727A1 (en) * 2004-06-19 2006-01-12 Refractory Intellectual Property Gmbh & Co. Kg Ceramic shaped body
KR100882923B1 (en) * 2007-12-07 2009-02-10 한국과학기술연구원 Economical manufacturing method of cr2alc sintered material having outstanding machinability
JP2020100511A (en) * 2018-12-19 2020-07-02 黒崎播磨株式会社 Method of producing magnesia-carbon brick

Similar Documents

Publication Publication Date Title
JP6279052B1 (en) Magnesia carbon brick and method for producing the same
JP6215409B1 (en) Mug carbon brick and molten steel pan using this
JPH03109253A (en) Production of carbon-containing unburned brick
JP2012192430A (en) Alumina carbon-based slide gate plate
JP2001039776A (en) Refractory batch, formed body produced by using the same and production of the formed body
JP4234804B2 (en) Plate brick for sliding nozzle device
JPH05270889A (en) Carbon-containing refractories
JPH0390271A (en) Non-calcined brick for sliding nozzle plate
JPH0388760A (en) Carbon-containing unfired firebrick
JP7096692B2 (en) Magnesia brick manufacturing method and carbon pickup suppression refining method
JP4471254B2 (en) Magnesia-carbon brick
JPH06321626A (en) Production of mgo-c unburned refractory
JPH03169477A (en) Plate brick for unburnt sliding nozzle
JP2003183083A (en) Unfired brick and its production method
KR101144488B1 (en) Carbon based refractory composition
JPS63157746A (en) Submerged nozzle for continuous casting
JP2020132487A (en) Production method of magnesia carbon brick for lining of steel refining furnace
JPH03205352A (en) Carbon-containing unburned refractory brick
JP2024059450A (en) Manufacturing method of magnesia carbon bricks for vacuum degassing furnace
JPH10338569A (en) Stopper head for tundish
JPH0354172A (en) Production of non-calcined sliding nozzle plate brick
JPH08150467A (en) Manufacture of nozzle for continuous casting
JPH0475184B2 (en)
JPH0283250A (en) Production of carbon-containing calcined refractory
JP2003305563A (en) Sliding nozzle plate refractory