JPH04177778A - Discharge excitation type pulse laser equipment - Google Patents

Discharge excitation type pulse laser equipment

Info

Publication number
JPH04177778A
JPH04177778A JP30521190A JP30521190A JPH04177778A JP H04177778 A JPH04177778 A JP H04177778A JP 30521190 A JP30521190 A JP 30521190A JP 30521190 A JP30521190 A JP 30521190A JP H04177778 A JPH04177778 A JP H04177778A
Authority
JP
Japan
Prior art keywords
capacitor
voltage
discharge
peaking
peaking capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30521190A
Other languages
Japanese (ja)
Inventor
Akihiro Suzuki
昭弘 鈴木
Hitoshi Iwata
仁志 岩田
Takeo Haruta
春田 健雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30521190A priority Critical patent/JPH04177778A/en
Priority to US07/757,419 priority patent/US5305338A/en
Priority to GB9119426A priority patent/GB2250131B/en
Priority to DE4131949A priority patent/DE4131949C2/en
Publication of JPH04177778A publication Critical patent/JPH04177778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To lengthen the life of main electrodes, by using a peaking capacitor made of barium titanate as a voltage-dependent type capacitor whose capacitance decreases to one-half as compared with the value before charge when charging is performed up to the charging voltage. CONSTITUTION:Energy stored in a capacitor 4 for pulse generation is transferred to a peaking capacitor 10 via a switch 5. Main electrodes 1, 2 discharge the energy which has been transferred to the peaking capacitor 10, and outputs laser light. As the peaking capacitor 10, a voltage-dependent type capacitor C2 is used, whose capacitance decreases in accordance with the increase of charging voltage. As the voltage-dependent capacitor, a peaking capacitor 10 made of barium titanate is used, whose capacitance decreases to about one-half as compared with the value before charge when charging is performed up to the charging voltage. Hence, when the capacitor C1 for pulse generation/ the peaking capacitor C2 is increased, the current after starting discharge is restrained, and arcing is eliminated, so that the life of the main electrodes can be lengthened.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は充電電圧を増加して多くの電力を投入できる
放電励起型パルスレーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a discharge-excited pulsed laser device that can input more power by increasing the charging voltage.

〔従来の技術〕[Conventional technology]

第7図は、例えば電気学会技術報告(II部)第217
号(短波長レーザの現状)第5頁(昭和61年4月発行
)に示された従来の放電励起型パルスレーザ装置の電気
回路図であり、図において1.2は相対する一対の主放
電電極、3は前記主放電電極1.2に並列に取(t B
ツられS r T i O3(チタン酸ストロンチュー
ム)から成るピーキングコンデンサC2,4はパルス発
生用コンデンサC1で、一方の端子は主放電電極1に接
続さ、+1でいる。また、5はパルス発生用コンデンサ
4の他端と主放電電極2との間に接続されたスイッチて
ザイシトロンが採用されている。6はピーキングコンデ
ンサ3に並列に挿入された充電用リアクトル、7は高電
圧電源、8.9は回路中に含まれるインダクタンスであ
る。
Figure 7 shows, for example, IEEJ Technical Report (Part II) 217
This is an electrical circuit diagram of a conventional discharge-excited pulsed laser device shown in the issue (Current status of short wavelength lasers), page 5 (published in April 1986), and in the figure, 1.2 is a pair of opposing main discharges. Electrode 3 is connected in parallel to the main discharge electrode 1.2 (t B
Peaking capacitors C2 and C4 made of twisted SrTiO3 (strontium titanate) are pulse generating capacitors C1, one terminal of which is connected to the main discharge electrode 1 and is at +1. Moreover, 5 is a switch connected between the other end of the pulse generation capacitor 4 and the main discharge electrode 2, and a Zycitron is employed. 6 is a charging reactor inserted in parallel with the peaking capacitor 3, 7 is a high voltage power supply, and 8.9 is an inductance included in the circuit.

次に動作について説明する。まず、高電圧電源7からパ
ルス発生用コンデンサ4に正の高電圧か印加されると充
電用リアクトル6を通じて充電電流11が流れパルス発
生用コンデンサ4か図示の極性に充電される。ここで、
スイッチ5がONするとパルス発生用コンデンサ(C,
)4の電荷がスイッチ5を経てピーキングコンデンサ(
C2)3にパルス電流j2となって流入し電荷の移行が
行われる。引続いて、主放電電極1,2間で放電が開始
され放電電流j3が矢印の方向に流れる。
Next, the operation will be explained. First, when a positive high voltage is applied from the high voltage power supply 7 to the pulse generating capacitor 4, a charging current 11 flows through the charging reactor 6, and the pulse generating capacitor 4 is charged to the polarity shown. here,
When switch 5 is turned on, the pulse generation capacitor (C,
) 4 passes through switch 5 to the peaking capacitor (
A pulse current j2 flows into C2)3, and the charge is transferred. Subsequently, a discharge is started between the main discharge electrodes 1 and 2, and a discharge current j3 flows in the direction of the arrow.

エキシマレーザでは、この主放電に先立って予備放電が
行われるが、この場合の電極及び電気回路は省略しであ
る。ピーキングコンデンサ(C2)3からエネルギーが
注入されると主放電電極112間で発生する主放電によ
りレーザ発振が行われる。エキシマレーザの如(放電抵
抗の小さい(例えば、0.2Ω)レーザにおいては、ピ
ーキングコンデンサC23の両端の電圧は第9図(a)
の如(振動電圧波形となり逆極Jハの電圧が発生ずる。
In the excimer laser, a preliminary discharge is performed prior to this main discharge, but the electrodes and electric circuit in this case are omitted. When energy is injected from the peaking capacitor (C2) 3, a main discharge generated between the main discharge electrodes 112 causes laser oscillation. In a laser such as an excimer laser (with a small discharge resistance (for example, 0.2Ω)), the voltage across the peaking capacitor C23 is as shown in Figure 9(a).
(The voltage waveform becomes an oscillating voltage, and a voltage with the opposite polarity J is generated.

その逆極性の電圧Vrが第9図(b)の如(反転電流(
アフタカレント)となってアーキングをおこし、その結
果、主放電電極1,2及びレーザガスの寿命を大幅に低
減させる。
The voltage Vr with the opposite polarity is as shown in FIG. 9(b) (reversal current (
After current), arcing occurs, and as a result, the lifespan of the main discharge electrodes 1 and 2 and the laser gas is significantly reduced.

第8図はピーキングコンデンサ(C2)3にSr T 
i 03を用いた場合のDC電圧とコンデンサ容量変化
との特性図を示したもので定格電圧近くまで充電電圧を
上げても容量が余り変らない。
Figure 8 shows Sr T in peaking capacitor (C2) 3.
This is a characteristic diagram of DC voltage and capacitor capacitance change when i03 is used, and the capacitance does not change much even if the charging voltage is increased to near the rated voltage.

このことは放電開始後にピーキングコンデンサ(C2)
3にエネルギーが残留電圧として残存し、これがアフタ
カレントによるアーク放電の原因となることを示してい
る。
This means that after the start of discharge, the peaking capacitor (C2)
3 shows that energy remains as a residual voltage, which causes arc discharge due to aftercurrent.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の放電励起型パルスレーザ装置は以上のように構成
されているので、ピーキングコンデンサC2にSrTi
O3を用いると定格電圧近くまで電圧を上昇しても容量
変化は余り生じないため、放電用開始後に、該ピーキン
グコンデンサンC2にエネルギーが残存し、これがアフ
タカレントによる放電の原因となる等の課題があった。
Since the conventional discharge-excited pulsed laser device is configured as described above, the peaking capacitor C2 is made of SrTi.
When O3 is used, even if the voltage is increased to near the rated voltage, the capacitance does not change much, so there are problems such as energy remaining in the peaking capacitor C2 after the start of discharging, and this causing discharge due to after current. was there.

また、容量移行型回路において、スイッチに高電圧電源
から印加する印加電圧■。よりも高い電圧を放電部にか
けたい時にC1/C2の比を太き(すると、印加電圧■
。の2倍までの電圧を印加できるが、この場合にも放電
開始後にピーキングコンデンサに残る電荷量が多(なっ
てアフタカレントによるアーク放電が生じ易いという課
題があった。
In addition, in a capacitance transfer type circuit, the applied voltage ■ is applied to the switch from a high voltage power supply. When you want to apply a higher voltage to the discharge section, increase the ratio of C1/C2 (then the applied voltage
. However, even in this case, there is a problem that the amount of charge remaining in the peaking capacitor after the start of discharge is large (and arc discharge due to after current is likely to occur).

この発明は上記のような課題を解消するためになされた
もので、C,/C2の比を太き(してもアフタカレント
を少くでき、放電部の電圧をより低いスイッチ部電圧で
高効率に達成できる放電励起型パルスレーザ装置を得る
ことを目的とする。
This invention was made in order to solve the above-mentioned problems. Even if the ratio of C and /C2 is made thicker, the after current can be reduced, and the voltage of the discharge part can be lowered to achieve high efficiency with a lower switch part voltage. The purpose of this invention is to obtain a discharge-excited pulsed laser device that can achieve this goal.

[課題を解決するだめの手段] この発明に係る放電励起型パルスレーザ装置は、パルス
発生用コンデンサに充電されたエネルギーをスイッチを
介して移行するピーキングコンデンサと、そのピーキン
グコンデンサに移行したエネルギーを放電してレーザ光
を出力する主放電電極と、前記ピーキングコンデンサと
して充電電圧の増加に伴い容量が減少する電圧依存形コ
ンデンサを設けたものである。
[Means for Solving the Problem] The discharge-excited pulsed laser device according to the present invention includes a peaking capacitor that transfers energy charged in a pulse generation capacitor via a switch, and a peaking capacitor that transfers energy charged in a pulse generation capacitor via a switch, and a device that discharges energy transferred to the peaking capacitor. The main discharge electrode outputs a laser beam, and the peaking capacitor is a voltage-dependent capacitor whose capacity decreases as the charging voltage increases.

[作用] この発明における電圧依存形コンデンサどしてのチタン
酸バリウム製のピーキングコンデンサは、定格電圧まで
充電する容量が充電前の約半分に減少するので、C,/
C2を高くしても放電開始後のアフタカレントが抑制さ
れ、アーキングをな(して主放電電極の寿命を延命する
。また、同じ放電部の電圧をより低いスイッチ部の電圧
で達成できるので、固体素子スイッチの直列数を減少で
きる。
[Function] In the barium titanate peaking capacitor used as the voltage dependent capacitor in this invention, the capacity to charge up to the rated voltage is reduced to about half of that before charging, so C,/
Even if C2 is increased, the aftercurrent after the start of discharge is suppressed, preventing arcing and extending the life of the main discharge electrode.Also, since the same voltage at the discharge section can be achieved with a lower voltage at the switch section, The number of solid-state switches connected in series can be reduced.

[実施例] 以下、この発明の一実施例を図について説明する。図中
、第7図と同一の部分は、同一の符号をもって図示した
第1図及び第2図において、10は電圧依存形コンデン
サで、例えばB a T i、 03(チタン酸バリウ
ム)で構成されたピーキングコンデンサC2,11は例
えばFET (電界効果形トランジスタ)モジュールを
直並列に接続して構成した固体素子スイッチである。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. In FIGS. 1 and 2, the same parts as in FIG. 7 are shown with the same reference numerals. In FIGS. The peaking capacitors C2 and C11 are, for example, solid-state switches constructed by connecting FET (field effect transistor) modules in series and parallel.

次に動作について説明する。最初に回路上の動作につい
ては、第7図の従来例で述べたものと同一であるので説
明は省略する。ここで、第1図に用いたピーキングコン
デンサ(C2)10のDC電圧とコンデンサ容量変化の
特性図を第3図を参照して以下に述べる。ピーキングコ
ンデンサ(C2)10にB a T i Osを用いる
と充電電圧が定格電圧近傍に達したとき、その容量は充
電前の約半分近くまで減少する。一般に主放電電極1゜
2の寿命は化学反応による劣化は別として、均一でアー
ク無しの放電をいかに行うか否かにかかっている。また
、スパッタリングによる劣化を防ぐためにはアフタカレ
ントを最小限に抑えなければならない。従って、信頼性
を高め、長寿命化するためには、放電開始後にピーキン
グコンデンサに現われる逆電圧を減少させる必要がある
Next, the operation will be explained. First, the operation on the circuit is the same as that described in the conventional example shown in FIG. 7, so a description thereof will be omitted. Here, a characteristic diagram of the DC voltage and capacitance change of the peaking capacitor (C2) 10 used in FIG. 1 will be described below with reference to FIG. 3. When B a T i Os is used for the peaking capacitor (C2) 10, when the charging voltage reaches the vicinity of the rated voltage, the capacitance decreases to about half of the value before charging. In general, the life of the main discharge electrode 1.2, apart from deterioration due to chemical reactions, depends on how uniform and arc-free discharge can be performed. Furthermore, in order to prevent deterioration due to sputtering, aftercurrent must be minimized. Therefore, in order to improve reliability and extend service life, it is necessary to reduce the reverse voltage that appears on the peaking capacitor after discharge starts.

関係があり、2Vo =V211 (CI +C2) 
/C+で表わされる。ここでγ=C,/C2である。
There is a relationship, 2Vo = V211 (CI + C2)
/C+. Here, γ=C,/C2.

第6図はC,/C2とV 2Mとの関係を表わし、C,
/C2の比を次第に大き(すると印加電圧■oの2倍ま
でピーキングコンデンサc2の電圧を高めることができ
る。しかも、ピーキングコンデンサにB a T i 
Oaを用いると、放電開始時に容量が最小となり、放電
開始後にピーキングコンデンサの容量が増すので放電部
との整合条件に近づき、放電により多くのエネルギーが
投入されて、ビーキングコンデンサに残るエネルギーが
減少する。このため、第4図(a)に具体的特性図を示
したように、ピーキングコンデンサ(C2)10の振動
電圧波形の逆極性の電圧V r l:I第9図の従来例
に比して極めて小さ(なるので、同図(1〕)に示ず如
くアフタカレントも小さくなってアーク放電の心配もな
くなる。第5図は放電電圧の振動波形を示したもので、
第1ピーク電圧V211に達していることがわかる。ま
た、第2図に示したように実際上は固体素子スイッチ1
1を採用するとザイラトロンよりも放電時のインダクタ
ンスが大幅に低(抑えられるので、応答が速くなり第5
図に示す電圧波形は、より急峻に変化して高出力か得ら
れるようになる。
Figure 6 shows the relationship between C, /C2 and V 2M;
/C2 ratio (by doing so, the voltage of the peaking capacitor c2 can be increased to twice the applied voltage
When Oa is used, the capacitance becomes minimum at the start of discharge, and the capacitance of the peaking capacitor increases after the start of discharge, approaching the matching condition with the discharge section, and more energy is input into the discharge, reducing the energy remaining in the peaking capacitor. do. Therefore, as shown in the specific characteristic diagram in FIG. 4(a), the voltage V r l:I of the opposite polarity of the oscillating voltage waveform of the peaking capacitor (C2) 10 is higher than that of the conventional example shown in FIG. 9. As the after current becomes extremely small (as shown in Figure 1), there is no need to worry about arc discharge. Figure 5 shows the oscillating waveform of the discharge voltage.
It can be seen that the first peak voltage V211 has been reached. In addition, as shown in FIG. 2, in practice, the solid state element switch 1
1, the inductance during discharge is significantly lower than that of Zyratron, so the response is faster and the fifth
The voltage waveform shown in the figure changes more steeply, allowing higher output to be obtained.

[発明の効果] 以上のようにこの発明によれば、充電電圧まで充電する
と容量が充電前の約半分に減少する電圧依存形コンデン
サとしてチタン酸バリウム製のビーキングコンデンサを
用いたので、アフタカレントによるアーク放電が発生し
な(なって主放電電極の長寿命化が図れる。また同じ放
電部の電圧をより低いスイッチ部の電圧で達成できるの
で、固体素子スイッチを用いた場合には直列数を減らす
ことができる効果がある。
[Effects of the Invention] As described above, according to the present invention, a beaking capacitor made of barium titanate is used as a voltage-dependent capacitor whose capacity decreases to approximately half of that before charging when it is charged to the charging voltage, so that the after current is reduced. This eliminates the occurrence of arc discharge (this makes it possible to extend the life of the main discharge electrode).Also, the same voltage at the discharge section can be achieved with a lower voltage at the switch section, so when using a solid-state switch, the number of series connections can be reduced. There are effects that can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す放電励起型パルスレ
ーザ装置の電気回路図、第2図はこの発明の他の実施例
を示す同上電気回路図、第3図はB a T 103の
電圧−容量特性図、第4図(a)(b)はこの発明のピ
ーキングコンデンサの電圧及び電流波形図、第5図は最
大放電電圧の振動波形図、第6図はコンデンサC,/C
2の比とコンデンサ電圧最大値との相関関係図、第7図
は従来の放電励起パルスレーザ装置の電気回路図、第8
図はS r T i 03の電圧−容量特性図、第9図
(a)(b)は5rTiOaのピーキングコンデンサの
電圧及び電流波形図である。 図において、1.2は主放電電極、3はピーキングコン
デンサ、4はパルス発生用コンデンサ、5はスイッチ、
10はピーキングコンデンサとしての電圧依存形コンデ
ンサ(BaTi03)である。 なお、図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is an electric circuit diagram of a discharge-excited pulsed laser device showing one embodiment of the present invention, Fig. 2 is an electric circuit diagram of the same as the above showing another embodiment of the invention, and Fig. 3 is an electric circuit diagram of the B a T 103. Voltage-capacitance characteristic diagram, Figures 4(a) and (b) are voltage and current waveform diagrams of the peaking capacitor of the present invention, Figure 5 is an oscillation waveform diagram of the maximum discharge voltage, and Figure 6 is the capacitor C, /C.
Fig. 7 is an electrical circuit diagram of a conventional discharge-excited pulsed laser device;
The figure is a voltage-capacitance characteristic diagram of S r Ti 03, and FIGS. 9(a) and 9(b) are voltage and current waveform diagrams of a 5rTiOa peaking capacitor. In the figure, 1.2 is the main discharge electrode, 3 is the peaking capacitor, 4 is the pulse generation capacitor, 5 is the switch,
10 is a voltage dependent capacitor (BaTi03) as a peaking capacitor. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] パルス発生用コンデンサに充電されたエネルギーをスイ
ッチを介して移行するピーキングコンデンサと、前記ピ
ーキングコンデンサに移行したエネルギーを放電してレ
ーザ光を出力する主放電電極と、前記ピーキングコンデ
ンサとして充電電圧の増加に伴い容量が減少する電圧依
存形コンデンサを備えた放電励起型パルスレーザ装置。
A peaking capacitor that transfers the energy charged in the pulse generation capacitor via a switch, a main discharge electrode that discharges the energy transferred to the peaking capacitor and outputs a laser beam, and a main discharge electrode that serves as the peaking capacitor to increase the charging voltage. A discharge-excited pulsed laser device equipped with a voltage-dependent capacitor whose capacitance decreases accordingly.
JP30521190A 1990-09-25 1990-11-09 Discharge excitation type pulse laser equipment Pending JPH04177778A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30521190A JPH04177778A (en) 1990-11-09 1990-11-09 Discharge excitation type pulse laser equipment
US07/757,419 US5305338A (en) 1990-09-25 1991-09-10 Switch device for laser
GB9119426A GB2250131B (en) 1990-09-25 1991-09-11 Switch device for laser
DE4131949A DE4131949C2 (en) 1990-09-25 1991-09-25 Switching devices for a discharge-excited pulse laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30521190A JPH04177778A (en) 1990-11-09 1990-11-09 Discharge excitation type pulse laser equipment

Publications (1)

Publication Number Publication Date
JPH04177778A true JPH04177778A (en) 1992-06-24

Family

ID=17942390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30521190A Pending JPH04177778A (en) 1990-09-25 1990-11-09 Discharge excitation type pulse laser equipment

Country Status (1)

Country Link
JP (1) JPH04177778A (en)

Similar Documents

Publication Publication Date Title
KR100346940B1 (en) Method and apparatus for eliminating reflected energy due to stage mismatch in nonlinear magnetic compression modules
JPH04177778A (en) Discharge excitation type pulse laser equipment
US5084800A (en) Ignition transformer secondary winding by-pass apparatus
JPS62249493A (en) Eximer laser device provideo with automatic preliminary ionization
JPH07245549A (en) High voltage pulse generator
JP2747109B2 (en) Pulse laser power supply
JP2001274492A (en) Pulsed laser power supply
JPH04349677A (en) Pulse laser power source
JP2002289950A (en) Pulse laser power source
JP4612234B2 (en) Pulse power supply
JP4570752B2 (en) Power supply
JP3441218B2 (en) Semiconductor switch device and electric device using the same
SU813829A1 (en) Device for igniting gas-discharge tube
JPH0855669A (en) Pulse corona discharge circuit
JP3271711B2 (en) Laser discharge circuit of gas laser device
JPH11276842A (en) Gas purification apparatus
JP2799029B2 (en) Double voltage charging circuit
JPH04197083A (en) Voltage doubler type charging circuit
SU1450086A1 (en) Voltage pulse generator
SU1251300A1 (en) Thyrsitor pulse generator
JP2698867B2 (en) High frequency high voltage power supply for nonlinear capacitive load
JPH027873A (en) Pulse discharging circuit
JP2001268945A (en) Pulse laser power supply
SU450327A1 (en) Multistage pulse voltage generator
JP3456289B2 (en) Transistor inverter