JPH04176850A - Production of superalloy thin strip - Google Patents

Production of superalloy thin strip

Info

Publication number
JPH04176850A
JPH04176850A JP17031890A JP17031890A JPH04176850A JP H04176850 A JPH04176850 A JP H04176850A JP 17031890 A JP17031890 A JP 17031890A JP 17031890 A JP17031890 A JP 17031890A JP H04176850 A JPH04176850 A JP H04176850A
Authority
JP
Japan
Prior art keywords
superalloy
strip
ribbon
thin strip
superplasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17031890A
Other languages
Japanese (ja)
Inventor
Masao Yukimoto
正雄 行本
Michiharu Ozawa
小沢 三千晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17031890A priority Critical patent/JPH04176850A/en
Publication of JPH04176850A publication Critical patent/JPH04176850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a superalloy thin strip having superplasticity by quenching a molten superalloy into a thin strip having a specified thickness with a couple of cooling rolls and ageing the strip while specifying the treating temp. and time. CONSTITUTION:A superalloy is melted in a melting furnace 1 in vacuum or in an inert atmosphere, and the melt 2 is injected into the gap between a couple of cooling rolls 3 and 3' aranged horizontally in parallel and rotating in opposite directions through a nozzle 1a fixed to the lower part of the furnace 1, quenched, solidified and rolled to obtain the thin strip 5 having <=1mm thickness. Consequently, the grain diameter of the strip 5 is controlled to <= about 3mum. The strip 5 is then aged at 900-1000 deg.C for 15-25hr. The strip 5 having superplasticity is obtained in a short time in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ハニカム構造のコアー等に供して好適な超
合金薄帯に関し、特にかかる製品への加工の際に望まれ
る超塑性特性をそなえる薄帯を、有利に製造する方法を
提案しようとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a superalloy ribbon suitable for use as a core of a honeycomb structure, etc., and in particular, a superalloy ribbon having superplastic properties desired when processed into such products. The present invention is intended to propose a method for manufacturing thin ribbons advantageously.

(従来の技術) 近年の進歩に伴う高速化の要請から、ガスタービンエン
ジン用、ディーゼルエンジン用をはじめ連続的に過酷な
高温ガス流に曝される機械部品が増大し、良好な高温強
度、耐熱性をもつ合金の使とする超合金である。このよ
うな超合金は、従来の鍛造法においては、加工が難しい
ことから、超塑性を利用して鍛造成形しようとする方法
が開発された。
(Conventional technology) Due to the demand for higher speeds accompanying recent advances, the number of mechanical parts that are continuously exposed to harsh high-temperature gas flows, such as those for gas turbine engines and diesel engines, has increased. It is a superalloy that is used as an alloy with properties. Since such superalloys are difficult to process using conventional forging methods, a method of forging using superplasticity has been developed.

ここで超塑性現象は、結晶粒度と密接な関連があり、結
晶粒径が小さいほど優れた超塑性が現れることから、近
年、粒径が小さなものを得る手段として、ガスアトマイ
ズ、メルトスピニング等により急冷した粉末を用いる技
術が提案されている。
Here, the superplastic phenomenon is closely related to the crystal grain size, and the smaller the crystal grain size, the better the superplasticity. Therefore, in recent years, rapid cooling using gas atomization, melt spinning, etc. A technique using powdered powder has been proposed.

例えば、特開昭58−87204号公報では、超合金粉
末をガスアトマイズ法により作製し、これを熱間静水圧
プレス処理(HIP)L、恒温鍛造により超合金成形品
を得る方法が提案されている。また特開昭58−849
04号公報には、ガスアトマイズ溶滴を型で捕集し、得
られたプレフォームを再結晶温度以下に加熱処理し、H
IPにより緻密化する方法が提案されている。
For example, JP-A-58-87204 proposes a method in which a superalloy powder is produced by gas atomization, and then a superalloy molded product is obtained by hot isostatic pressing (HIP) and isothermal forging. . Also, JP-A-58-849
No. 04 discloses that gas atomized droplets are collected in a mold, the obtained preform is heat-treated to a temperature below the recrystallization temperature, and H
A method of densification using IP has been proposed.

これらの方法はいずれも、適切な急冷条件を選定するこ
とにより粒径を小さくでき、HIP後に超塑性を得るこ
とは可能であるが、HIPにより固化し熱処理した際、
予め微細化した粒が局所的に成長して粒径がばらつく他
、恒温鍛造時のパウダー粒界の残存など、超塑性化を阻
害する材質上の問題があった。また超合金プリフォーム
を得るためにHIP等の多(のプロセスが必要となって
経済的とは言えない。さらに超合金薄帯とするためには
、より多くのプロセスを経る必要があるばかりか、得ら
れた薄帯が超塑性をそなえているとは限らなかった。
In all of these methods, it is possible to reduce the particle size by selecting appropriate quenching conditions and obtain superplasticity after HIP, but when solidified by HIP and heat treated,
In addition to local growth of pre-refined grains, resulting in variation in grain size, there were also material-related problems that inhibited superplasticization, such as residual powder grain boundaries during constant-temperature forging. Furthermore, in order to obtain a superalloy preform, multiple processes such as HIP are required, which is not economical.Furthermore, in order to obtain a superalloy ribbon, it is not only necessary to undergo many more processes. However, the obtained ribbon did not necessarily have superplasticity.

また特開昭63−309360号公報には、金lli溶
湯を急冷凝固させて金属薄帯板を得るメルトスピニング
法を用いて超合金薄帯板を製造する方法が提案されてい
る。この方法では、HIP等の多くのプロセスを経るこ
となく、超合金薄帯を製造することが可能であるが、時
効処理としてHIP固化固化様同様えば950℃、2時
間次いで1050℃、25時間といった2度、3度の熱
処理が必要となり、経済的でなく、かつ粒成長の要因と
なってしまう。
Further, Japanese Patent Application Laid-Open No. 63-309360 proposes a method for producing a superalloy thin strip using a melt spinning method in which a metal thin strip is obtained by rapidly solidifying a gold molten metal. With this method, it is possible to produce superalloy ribbons without going through many processes such as HIP, but as with HIP solidification, aging treatment is performed at 950°C for 2 hours and then at 1050°C for 25 hours. Heat treatment is required two or three times, which is not economical and causes grain growth.

また金属間化合物を生成するAI、 Ti、 Ta、 
Nb、 M。
Also, AI, Ti, Ta, which generates intermetallic compounds
Nb, M.

などの活性金属成分を含有した溶融金属超合金の薄板は
、酸化しやすく表面性状が悪い。このため連続的に広幅
の超合金薄帯は得難かった。さらに得られた薄帯が超塑
性をそなえているとは限らなかった。
Thin sheets of molten metal superalloys containing active metal components such as molten metal superalloys are susceptible to oxidation and have poor surface properties. For this reason, it has been difficult to obtain a continuous wide superalloy ribbon. Furthermore, the obtained ribbon did not always have superplasticity.

(発明が解決しようとする課題) 多数の製造プロセスを経ることなどの問題を有利に解決
して、かつ超塑性特性をそなえた超合金薄帯の製造方法
を提案することがこの発明の目的である。
(Problems to be Solved by the Invention) It is an object of the present invention to propose a method for manufacturing a superalloy ribbon that advantageously solves problems such as going through a large number of manufacturing processes and has superplastic properties. be.

(課題を解決するための手段) 上述した各問題を解決すべく超合金薄帯を双ロール法に
よって製造するこの発明は、真空又は不活性雰囲気中で
溶解した超合金組成の溶湯を、板厚に相当する間隙を隔
てて横軸平行配置した、互いに向かい合って回転させる
一対の冷却用ロールの上部からこれらのロール間隙に向
け注入して、急冷凝固・圧延することで板厚1■以下の
急冷薄帯とした後、この急冷薄帯に処理温度900〜1
000℃、処理時間15〜25時間の時効処理を施すこ
とで微細結晶粒超塑性特性を有する超合金薄帯の製造方
法である。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention manufactures a superalloy ribbon by a twin roll method. A pair of cooling rolls, which are arranged parallel to each other on the horizontal axis with a gap equivalent to After forming into a thin ribbon, the quenched ribbon was subjected to a processing temperature of 900 to 1
This is a method for producing a superalloy ribbon having fine grain superplastic properties by performing an aging treatment at 000°C for a treatment time of 15 to 25 hours.

(作 用) 以下この発明に従う超合金薄帯の製造方法を具体的に説
明する。
(Function) The method for producing a superalloy ribbon according to the present invention will be specifically explained below.

第1図に、この発明を実施するための双ロール法による
薄帯製造装置の一例を示す0図中1は溶解炉、2は超合
金組成の溶湯、3は冷却用ロール、4は圧力調整器、5
は超合金薄帯である。溶解炉1内にて、AI、 Ti、
 Ta5Nb又はMO等の活性金属成分を含有す、る超
合金をアルゴン雰囲気中で溶解し、この溶湯を収容する
。第1図では、Arリザーバー6からアルゴンガスを供
給して溶解炉1中をアルゴン雰囲気としているが、この
発明ではアルゴン雰囲気に限ることはなく、不活性雰囲
気、又は真空雰囲気とする。真空雰囲気の場合は、真空
ポンプなどを用いればよい。
Fig. 1 shows an example of a ribbon manufacturing apparatus using a twin roll method for carrying out the present invention. vessel, 5
is a superalloy ribbon. In the melting furnace 1, AI, Ti,
A superalloy containing an active metal component such as Ta5Nb or MO is melted in an argon atmosphere and the molten metal is contained. In FIG. 1, argon gas is supplied from the Ar reservoir 6 to create an argon atmosphere in the melting furnace 1, but the present invention is not limited to an argon atmosphere, and may be an inert atmosphere or a vacuum atmosphere. In the case of a vacuum atmosphere, a vacuum pump or the like may be used.

次に溶解炉l内に収容した超合金組成の溶湯2を、溶解
炉1の下部に取りつけたノズル1aを通じて超合金組成
の溶湯2を横軸平行配置にした、互いに向かい合って回
転させる一対の冷却用ロール3.3′のロール間隙に向
け注入し、急冷凝固・圧延する。この冷却用ロール3.
3′には、所定の圧下刃が加わるようになっていて、圧
力調整器4.4′によりこの圧下刃が調整される。かか
る圧下刃は、板厚1m以下の薄帯を作るために必要であ
る。例えば1,1〜10 tがよい。
Next, the molten metal 2 of the superalloy composition housed in the melting furnace 1 is cooled through a nozzle 1a attached to the lower part of the melting furnace 1, and the molten metal 2 of the superalloy composition is rotated facing each other with horizontal axes parallel to each other. It is injected into the gap between the rolls 3 and 3', and is rapidly solidified and rolled. This cooling roll 3.
A predetermined reduction blade is applied to 3', and this reduction blade is adjusted by a pressure regulator 4.4'. Such a reduction blade is necessary to make a thin strip with a thickness of 1 m or less. For example, 1.1 to 10 t is good.

冷却用ロール3.3′によって急冷凝固・圧延して得ら
れる超合金薄帯は、冷却速度103°C/s以上を得て
、均一に急冷凝固させるために板厚が1m+以下である
ことが必要である。かくして急冷された超合金薄帯の粒
径は、3μm以下となって、超塑性特性を得るのに十分
に細かい粒径となる。
The superalloy ribbon obtained by rapid solidification and rolling by the cooling roll 3.3' must have a thickness of 1 m+ or less in order to obtain a cooling rate of 103 ° C / s or more and to achieve uniform rapid solidification. is necessary. The grain size of the superalloy ribbon thus quenched is 3 μm or less, which is sufficiently fine to obtain superplastic properties.

ところでNi基超超合金おいて、超塑性現象が出現する
ためには、オーステナイト相(γ)へ、中間相であるT
′相が析出することが必須とされている。その理由は、
T′相は微細析出相であって、耐熱性があり、さらに時
効処理により微細等軸晶となり変形中も粒界を維持する
からである。ここでこの発明に従う双ロール法による板
厚1rm以下の急冷凝固材は、冷却速度も10″″C/
s以上と大きく、さらに圧延による歪の導入、二次冷却
での復熱時効効果により第2図(a)に透過電子顕微鏡
による鋳造ままの材料の金属組織写真を、同図(b)に
そのX線写真を示すように、鋳造ままの材料で、規則格
子であるT′相が析出している。また薄帯の両表面は、
冷却用ロールによる急冷凝固・圧延時の酸化が少なく、
欠陥も少ない。
By the way, in order for the superplastic phenomenon to appear in Ni-based superalloys, the intermediate phase T
It is essential that the ' phase precipitates. The reason is,
This is because the T' phase is a fine precipitated phase and has heat resistance, and furthermore, it becomes fine equiaxed crystals by aging treatment and maintains grain boundaries even during deformation. Here, the rapidly solidified material with a plate thickness of 1 rm or less produced by the twin roll method according to the present invention has a cooling rate of 10''C/
Due to the introduction of strain due to rolling and the recuperative aging effect during secondary cooling, the metallographic structure of the as-cast material is shown in Figure 2 (a) using a transmission electron microscope, and in Figure 2 (b). As shown in the X-ray photograph, the T' phase, which is an ordered lattice, is precipitated in the as-cast material. Also, both surfaces of the thin strip are
Less oxidation during rapid solidification and rolling with cooling rolls,
There are few defects.

しかしこの鋳造ままの材料は、第3図(a)に金属組織
写真を、同図(b)にM23C6を同定するために行っ
たE D X (Energy Dispersion
 X−ray )分析のチャート図を示すように、粒界
にMz、C6の微細な炭化物が析出していて、この鋳造
ままの材料自身の超塑性特性の出現を阻害してしまう、
そこでこの発明では、時効熱処理を、均質化を目的とし
て900〜1000℃、15〜25時間の時効処理条件
を急冷凝固した鋳造ままの薄板に適用すること乙こより
析出物のうち特に炭化物は固溶させ、一方T′相は粗大
化させることがないので、超塑性を出現させることが可
能となるのである。
However, this as-cast material was subjected to an energy dispersion (ED
As shown in the X-ray) analysis chart, fine carbides of Mz and C6 are precipitated at the grain boundaries, which inhibits the appearance of superplastic properties of the as-cast material itself.
Therefore, in this invention, aging heat treatment is applied to an as-cast thin plate that has been rapidly solidified under aging treatment conditions of 900 to 1000°C for 15 to 25 hours for the purpose of homogenization. On the other hand, since the T' phase is not coarsened, it is possible to exhibit superplasticity.

ここに時効処理温度が900°Cに満たないと炭化物が
固溶しない不利があり、また1000°Cを超えるとT
′相が再結晶し粗大化するという問題点がある。同様に
時効処理時間が15時間に満たないと炭化物が完全固溶
しないといった不利があり、また25時間を超えると粒
径粗大化という問題点があるので、時効処理条件は、処
理温度900〜1000°C2処理時間15〜25時間
とする。
Here, if the aging treatment temperature is less than 900°C, there is a disadvantage that the carbide does not dissolve into solid solution, and if it exceeds 1000°C, T
There is a problem that the ' phase recrystallizes and becomes coarse. Similarly, if the aging treatment time is less than 15 hours, there is a disadvantage that carbides are not completely dissolved, and if it exceeds 25 hours, there is a problem of coarsening of the grain size. Therefore, the aging treatment conditions are as follows: The treatment time at °C2 is 15 to 25 hours.

なお従来知られている超合金の時効熱処理としては、固
溶化処理後の熱処理として例えば900〜1100″C
13〜6時間次いで800〜1000°Cで18〜22
時間の2段処理が知られている。
In addition, conventionally known aging heat treatment for superalloys includes heat treatment at 900 to 1100''C after solution treatment.
13-6 hours then 18-22 at 800-1000°C
Two-stage processing of time is known.

またこの発明に適用する超合金としては、ニッケル基超
合金としてIN 600、IN 713、IN 100
、lN617、Mar−M247等が、またコバルト基
超合金としてMar−M322等が代表例として挙げら
れるが、これらにかぎるものではない。
In addition, examples of superalloys applicable to this invention include IN 600, IN 713, and IN 100 as nickel-based superalloys.
, IN617, Mar-M247, etc., and cobalt-based superalloys such as Mar-M322, but are not limited to these.

(実施例) 以下この発明にしたがい双ロール法により超合金薄帯を
製造した実施例を、比較例とともに述べる。
(Example) Hereinafter, an example in which a superalloy ribbon was manufactured by the twin roll method according to the present invention will be described together with a comparative example.

超合金材料として、表1に示す各成分になる4種の超合
金を用意した。
Four types of superalloys having the respective components shown in Table 1 were prepared as superalloy materials.

表1 これらの超合金をAr雰囲気中で熔解し、溶湯温度16
50℃で以下に示す各急冷プロセスで薄板を製造した。
Table 1 These superalloys were melted in an Ar atmosphere and the molten metal temperature was 16
Sheets were produced at 50° C. with each of the quenching processes described below.

(1)双ロール法・・・回転冷却用ロールは600φ、
ロール周速を3〜7+++/sに設定した。
(1) Twin roll method...rotating cooling roll is 600φ,
The roll circumferential speed was set at 3 to 7+++/s.

(2)メルトスピニング法・・・冷却用ロールは、1o
ooφ、ロール周速は25〜35m/sに設定した。
(2) Melt spinning method...cooling roll is 1o
ooφ, and the roll circumferential speed was set at 25 to 35 m/s.

(3)ガスアトマイズ法・・・アルゴンガス、圧力10
kgf/mI2、その後固化HIPして鍛造加工かくし
て得られた超合金薄帯の板厚及び施した熱処理について
表2にまとめて示す。
(3) Gas atomization method...Argon gas, pressure 10
kgf/mI2, followed by solidification HIP and forging. Table 2 summarizes the plate thickness and heat treatment of the thus obtained superalloy ribbon.

表  2 これらの試料について、1050°C歪速度0.021
/minで引張り試験を行って、超塑性特性を調べた。
Table 2 For these samples, 1050°C strain rate 0.021
A tensile test was carried out at /min to examine the superplastic properties.

なお超塑性特性は、1050°Cでの引張り試験での伸
びが800%を超す延性で評価した。
The superplastic properties were evaluated based on the ductility, where the elongation exceeded 800% in a tensile test at 1050°C.

その結果、この発明に従い双ロール法によって板厚1■
以下(冷却速度103°C/s以上)の薄帯を製造し、
900〜1000°C515〜25時間の範囲の種々の
時効処理を行ったNo、 1〜5は、鋳造のままの材料
のT′相の析出相を保持したまま、炭化物時効処理をお
こなったために超塑性が安定して得られた。一方、板厚
又は時効処理条件がこの発明を満足しない試料No、 
6〜工2は、超塑性が得られなかった。さらにメルトス
ピニング法を用いた試料No、 13〜16、アトマイ
ズ法を用いた試料k17、インゴット法で試作した試料
No、18は、いずれも超塑性が得られなかった。
As a result, according to the present invention, a plate thickness of 1 cm was obtained using the twin roll method.
Producing a ribbon with the following (cooling rate of 103 ° C / s or more),
Nos. 1 to 5, which were subjected to various aging treatments in the range of 900 to 1000°C for 515 to 25 hours, were super-aged because the carbide aging treatment was performed while retaining the precipitated T' phase of the as-cast material. Stable plasticity was obtained. On the other hand, sample No. whose plate thickness or aging treatment conditions do not satisfy the present invention,
In Steps 6 to 2, superplasticity was not obtained. Furthermore, samples Nos. 13 to 16 using the melt spinning method, sample k17 using the atomizing method, and sample No. 18 using the ingot method did not exhibit superplasticity.

(発明の効果)′ かくしてこの発明によれば、超合金薄帯を双ロール法に
より製造することから、以下のような効果を得ることが
できる。
(Effects of the Invention) According to the present invention, since the superalloy ribbon is manufactured by the twin roll method, the following effects can be obtained.

(1)溶湯から直接製板することにより、プロセスの省
略さらには時間短縮を図ることができる。
(1) By directly manufacturing the plate from the molten metal, it is possible to eliminate processes and shorten the time.

(2)双ロール法により、薄帯の表面性状の劣化(酸化
、欠陥)が阻止される。また鋳造ままの材料でT′相の
析出が可能となり、時効熱処理はオーステナイト材の粒
界析出炭化物の固溶処理のみで2段時効を行わずに済み
、プロセスの省略を図ることができる。
(2) The twin roll method prevents deterioration (oxidation, defects) of the surface properties of the ribbon. Further, it is possible to precipitate the T' phase in the as-cast material, and the aging heat treatment is only a solid solution treatment of grain boundary precipitated carbides of the austenitic material, eliminating the need for two-stage aging, making it possible to omit the process.

(3)急冷効果である粒径の微細化が維持でき、優れた
超塑性を得ることができる。
(3) Fine grain size, which is a quenching effect, can be maintained and excellent superplasticity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を実施するための双ロール法による
薄帯製造装置の一例の説明図、第2図(a)は、透過電
子顕微鏡による鋳造ままの材料の金属組織写真、同図(
b)はその鋳造ままの材料のX線写真、 第3図(a)はMzsCbの金属組織写真、同図(b)
はこのM23C6を同定するために行ったEDX分析の
チャート図である。 1・・・溶解炉      1a・・・ノズル2・・・
超合金組成の溶湯 3・・・冷却用ロール4・・・圧下
力調整装置  5・・・超合金薄帯6・・・Arガスリ
ザーバー
FIG. 1 is an explanatory diagram of an example of a ribbon manufacturing apparatus using a twin-roll method for carrying out the present invention, and FIG.
b) is an X-ray photograph of the as-cast material, Figure 3 (a) is a photograph of the metallographic structure of MzsCb, and Figure 3 (b) is a photograph of the metallographic structure of MzsCb.
is a chart of EDX analysis performed to identify this M23C6. 1... Melting furnace 1a... Nozzle 2...
Molten metal of superalloy composition 3... Cooling roll 4... Reduction force adjustment device 5... Superalloy ribbon 6... Ar gas reservoir

Claims (1)

【特許請求の範囲】[Claims] 1、真空又は不活性雰囲気中で溶解した超合金組成の溶
湯を、板厚に相当する間隙を隔てて横軸平行配置した、
互いに向かい合って回転させる一対の冷却用ロールの上
部からこれらのロール間隙に向け注入して、急冷凝固・
圧延することで板厚1mm以下の急冷薄帯とした後、こ
の急冷薄帯に処理温度900〜1000℃、処理時間1
5〜25時間の時効処理を施すことを特徴とする超合金
薄帯の製造方法。
1. Molten metal having a superalloy composition melted in a vacuum or an inert atmosphere is arranged parallel to the horizontal axis with a gap corresponding to the thickness of the plate.
The injection is injected from the top of a pair of cooling rolls that rotate facing each other into the gap between these rolls to rapidly solidify and solidify.
After being rolled into a quenched ribbon with a thickness of 1 mm or less, the quenched ribbon is subjected to a treatment temperature of 900 to 1000°C and a treatment time of 1.
A method for producing a superalloy ribbon, characterized by subjecting it to an aging treatment for 5 to 25 hours.
JP17031890A 1990-06-29 1990-06-29 Production of superalloy thin strip Pending JPH04176850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17031890A JPH04176850A (en) 1990-06-29 1990-06-29 Production of superalloy thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17031890A JPH04176850A (en) 1990-06-29 1990-06-29 Production of superalloy thin strip

Publications (1)

Publication Number Publication Date
JPH04176850A true JPH04176850A (en) 1992-06-24

Family

ID=15902738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17031890A Pending JPH04176850A (en) 1990-06-29 1990-06-29 Production of superalloy thin strip

Country Status (1)

Country Link
JP (1) JPH04176850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017221965A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Ni-BASED HEAT-RESISTANT ALLOY WELD METAL
CN114559001A (en) * 2022-03-08 2022-05-31 太原科技大学 High-temperature alloy double-roller casting and rolling process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017221965A (en) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Ni-BASED HEAT-RESISTANT ALLOY WELD METAL
CN114559001A (en) * 2022-03-08 2022-05-31 太原科技大学 High-temperature alloy double-roller casting and rolling process
CN114559001B (en) * 2022-03-08 2024-04-12 太原科技大学 High-temperature alloy twin-roll casting and rolling process

Similar Documents

Publication Publication Date Title
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
US3920489A (en) Method of making superalloy bodies
JP7049312B2 (en) Ribbons and powders from high-strength corrosion-resistant aluminum alloys
WO2021004579A1 (en) Nckel base alloy for powder and method for producing a powder
EP0460234B1 (en) Sheet of titanium-aluminum intermetallic compound and process for producing the same
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
US5028277A (en) Continuous thin sheet of TiAl intermetallic compound and process for producing same
JPH04176850A (en) Production of superalloy thin strip
JPS6362582B2 (en)
JPH05277656A (en) Thin plate of alloy containing ti3al group intermetallic compound and manufacture thereof
JPS6283453A (en) Manufacture of aluminum alloy ingot for extrusion
US4481034A (en) Process for producing high hafnium carbide containing alloys
JPS60238460A (en) Manufacture of superplastic aluminum alloy
JP2958792B2 (en) Method for producing TiA1 intermetallic compound sheet
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
CN117403154A (en) Heat treatment process suitable for laser near-net forming nickel-titanium shape memory alloy
JP3694341B2 (en) TiAl intermetallic compound based alloy material with excellent high temperature characteristics and method for producing the same
JP2901345B2 (en) Titanium-aluminum intermetallic compound sheet and method for producing the same
JPH11216556A (en) Manufacture of semi finished steel or nickelous system alloy
JP2954779B2 (en) Method for producing high-strength nickel-based alloy
JPH02224803A (en) Production of sheet of intermetallic compound
Yoshizawa et al. Characterization of Nickel Base Superalloy Consolidated From Rapidly Solidified Ribbons
JPH0237416B2 (en)
JPH05287453A (en) Sheet of alloy containing fe3al base intermetallic compound and its production
JPH0621327B2 (en) Manufacturing method of metal consolidated material