JPH04171990A - Piezoelectric ceramic sintered body - Google Patents

Piezoelectric ceramic sintered body

Info

Publication number
JPH04171990A
JPH04171990A JP2300866A JP30086690A JPH04171990A JP H04171990 A JPH04171990 A JP H04171990A JP 2300866 A JP2300866 A JP 2300866A JP 30086690 A JP30086690 A JP 30086690A JP H04171990 A JPH04171990 A JP H04171990A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
glass
sintered body
ceramic
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2300866A
Other languages
Japanese (ja)
Inventor
Kunihiro Nagata
永田 邦裕
Masakatsu Kiyohara
正勝 清原
Kenichi Kato
憲一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2300866A priority Critical patent/JPH04171990A/en
Publication of JPH04171990A publication Critical patent/JPH04171990A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a piezoelectric ceramic whose resistivity is high and which can be polarized even when it is baked in a reducing atmosphere by a method wherein a glass composed of a component whose coefficient of thermal expansion is nearly equal to that of the piezoelectric ceramic and which is hardly reacted with the piezoelectric ceramic is added to a piezoelectric ceramic sintered body. CONSTITUTION:An actuator composed of a piezoelectric ceramic sintered body is formed in such a way that electrode layers 2,... connected to a + terminal and electrode layers 3,... connected to a-terminal are formed between many piezoelectric ceramic layers 1,.... In order to manufacture the actuator, a glass and, as required, a bivalent metal compound such as SrO3, CaCO3, BaCO3 or the like or manganese carbonate are added to a ferro-electric ceramic material such as PZT or the like; they are kneaded; a sheetlike ceramic green sheet is formed; an electrode-material paste of Cu or Ni is printed on the surface of the sheet; and the sheet is baked in a reducing atmosphere such as nitrogen or the like. A component which is composed of PbO, SiO2 or the like is used as the component of the glass to be added. Thereby, its coefficient of thermal expansion can be made nearly equal to that of a ceramic, it is possible to prevent a crack from being produced, and a solid solution is not formed by a reaction with the ceramic.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアクチュエータ或いはセンサ等として使用する
圧電セラミック焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a piezoelectric ceramic sintered body used as an actuator, a sensor, or the like.

(従来の技術) 最近では強誘電性のセラミック(圧電セラミック)を用
いたアクチュエータ等が実際に応用されている。
(Prior Art) Recently, actuators and the like using ferroelectric ceramics (piezoelectric ceramics) have been actually applied.

このアクチュエータは、チタン酸ジルコン酸鉛(PZT
)等の強誘電性セラミックのグリーンシートに内部電極
となるptやPd−Agペーストを印刷し、このグリー
ンシートを積層して1100〜1200℃の大気中で焼
成して作製している。
This actuator is made of lead zirconate titanate (PZT).
), etc., are printed with PT or Pd-Ag paste to serve as internal electrodes, and the green sheets are laminated and fired in the atmosphere at 1100 to 1200°C.

(発明が解決しようとする課題) 上記したように従来にあっては、電極材料として高温の
大気中でセラミックを焼成する際に酸化しないptやP
d−Agを用いているが、Pt電極は極めて高価であり
量産に向かず、またPd−Ag電極はAgがイオン化し
て電極周囲のセラミック表面に析出し最終的には2つの
電極か導通してしまうマイグレーションを引き起こす不
利がある。
(Problems to be Solved by the Invention) As mentioned above, in the past, electrode materials such as PT and P, which do not oxidize when firing ceramics in high-temperature atmosphere, have been used as electrode materials.
d-Ag is used, but Pt electrodes are extremely expensive and are not suitable for mass production.Also, with Pd-Ag electrodes, Ag ionizes and precipitates on the ceramic surface around the electrodes, eventually causing electrical conduction between the two electrodes. This has the disadvantage of causing migration.

そこで、電極材料として安価で且つマイグレーションを
起こさないCuやNiを用いることが考えられるか、C
uやNiは酸化しやすいので還元性雰囲気で焼成しなけ
ればならず、還元性雰囲気で焼成すると今度はセラミッ
クの圧電特性が劣化する。
Therefore, it may be possible to use Cu or Ni, which is inexpensive and does not cause migration, as an electrode material.
Since u and Ni are easily oxidized, they must be fired in a reducing atmosphere, and if fired in a reducing atmosphere, the piezoelectric properties of the ceramic will deteriorate.

(課題を解決するための手段) 上記課題を解決すべく本発明は、圧電セラミック素材中
に熱膨張係数が圧電セラミックと略等しく且つ圧電セラ
ミックと反応しにくい成分からなるガラスを添加した状
態で焼成するようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a piezoelectric ceramic material in which a glass having a coefficient of thermal expansion approximately equal to that of the piezoelectric ceramic and containing a component that is difficult to react with the piezoelectric ceramic is added and fired. I decided to do so.

(作用) 圧電セラミック中に所定の特性を有するガラスを所定量
添加すれば、還元性雰囲気で焼成しても抵抗率は高く分
極可能で、しかもクラック等の発生もなく強度的にも向
上する。
(Function) If a predetermined amount of glass having predetermined characteristics is added to the piezoelectric ceramic, the resistivity is high and polarization is possible even when fired in a reducing atmosphere, and the strength is also improved without the occurrence of cracks.

(実施例) 以下に本発明の実施例を添付図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の圧電セラミック焼結体からなるアクチ
ュエータの断面図であり、このアクチュエータは多数の
圧電セラミック層1・・・の間に。
FIG. 1 is a sectional view of an actuator made of a piezoelectric ceramic sintered body according to the present invention, and this actuator is arranged between a large number of piezoelectric ceramic layers 1.

端子につなかる電極層2・・・と一端子につなかる電極
層3・・・を形成して成る。
An electrode layer 2 connected to a terminal and an electrode layer 3 connected to one terminal are formed.

ここで、上記のアクチュエータを作製するには、PZT
等の強誘電性セラミック材料にガラス及びヒラようにお
うじて、5rC03、CaCO3、BaCO3等の2価
の金属化合物や炭酸マンガン又は酸化マンガンを添加し
、これを混練してシート状としたセラミックグリーンシ
ート表面にCuまたはNiの電極材料ペーストを印刷し
、窒素或いは水素混合窒素等の還元性雰囲気において焼
成することで作成する。
Here, in order to manufacture the above actuator, PZT
Ceramic green sheets are made into sheets by adding divalent metal compounds such as 5rC03, CaCO3, BaCO3, manganese carbonate or manganese oxide to ferroelectric ceramic materials such as glass and fillet, and kneading the mixture. It is created by printing a Cu or Ni electrode material paste on the surface and firing it in a reducing atmosphere such as nitrogen or hydrogen mixed with nitrogen.

第2図は強誘電性セラミック材料に対し2価の金属イオ
ンを過剰に置換した場合、及びMnC0aとガラスを添
加添加した場合の抵抗率を示すグラフであり、強誘電性
セラミック材料としては次式%式% また、実験は上記の材料を十分に混合粉砕して直径が1
5〜30n++nで厚さが2〜5 mmの成形体とし、
この成形体を大気中、窒素及び水素混合窒素雰囲気で1
100〜1150℃で焼成し、電気的性質を測定する場
合には厚さを1 mに研磨した後、両面に金をスパッタ
して電極とし、分極は80°Cのシリコン油中で、3k
v/mmの電界を30分間印加して行なった。
Figure 2 is a graph showing the resistivity when divalent metal ions are substituted excessively for the ferroelectric ceramic material and when MnC0a and glass are added. % formula % In addition, the experiment was conducted by thoroughly mixing and pulverizing the above materials until the diameter was 1
5 to 30n++n and a thickness of 2 to 5 mm,
This molded body was placed in the atmosphere, nitrogen and hydrogen in a mixed nitrogen atmosphere for 1 hour.
After firing at 100 to 1150°C and polishing to a thickness of 1 m when measuring electrical properties, gold is sputtered on both sides to form electrodes, and polarization is determined at 3k in silicone oil at 80°C.
The test was carried out by applying an electric field of v/mm for 30 minutes.

また機械的強度を測定する場合には、試料を断面2X1
.5mmで長さが25mmの角柱状に加工して支持間隔
が10mmの小型3点曲試験機で測定した。
In addition, when measuring mechanical strength, the sample should be
.. It was processed into a prismatic shape with a length of 5 mm and a length of 25 mm, and measured using a small three-point bending tester with a support interval of 10 mm.

第2図から明らかなように、セラミック材料のAサイト
にSr、Ba、Ca等の2価イオンを3at%過剰に置
換しても抵抗率はそれ程高くならないが、ガラスを添加
すると、還元性雰囲気で焼成しても抵抗率が1012Ω
・印以上になった。
As is clear from Figure 2, even if the A site of the ceramic material is replaced with an excess of 3 at% of divalent ions such as Sr, Ba, Ca, etc., the resistivity does not increase that much, but when glass is added, the reducing atmosphere Resistivity is 1012Ω even when fired with
・It has become more than a mark.

そこで、どのような特性のガラスを用いるべきかを実験
した結果を以下の[表コに示す。
Therefore, the results of an experiment to find out what kind of glass should be used are shown in the table below.

[表] 上記の[表]から、添加するガラスの成分としてはPb
O,SiO2,ZnO,B2O3,Al2O3からなる
ものとすることで、熱膨張係数をセラミックと路間−の
ものとすることができ、クラックの発生を防げ且つセラ
ミックと反応して固溶体を形成することもない。
[Table] From the above [Table], the glass component to be added is Pb.
By using O, SiO2, ZnO, B2O3, and Al2O3, the coefficient of thermal expansion can be made equal to that of the ceramic, preventing the occurrence of cracks and forming a solid solution by reacting with the ceramic. Nor.

また第3図は上記成分のガラスの添加量と電気機械結合
係数及び圧電歪定数との関係を示すグラフであり、この
グラフからガラスを添加しないで還元性雰囲気で焼成す
ると、電気機械結合係数及び圧電歪定数は大巾に低下し
てアクチュエータとしての性能を発揮できないが、ガラ
スを添加することで両者とも大気中で焼成した場合の値
に近くなる。つまり、ガラスの添加割合を0.2〜2 
、1wt%にすれば十分にアクチュエータとして使用し
得る特性の圧電セラミック焼成体が得られる。
In addition, Figure 3 is a graph showing the relationship between the amount of glass added as the above component and the electromechanical coupling coefficient and piezoelectric strain constant.From this graph, it can be seen that when firing in a reducing atmosphere without adding glass, the electromechanical coupling coefficient and Although the piezoelectric strain constant drops significantly and cannot demonstrate its performance as an actuator, by adding glass, both values become close to those obtained when fired in the atmosphere. In other words, the addition ratio of glass is 0.2 to 2.
, 1 wt%, a piezoelectric ceramic fired body with sufficient characteristics to be used as an actuator can be obtained.

第4図は上記成分のガラスの添加量と抗折強度のワイブ
ル特性との関係を示すグラフであり、このグラフからガ
ラスの添加量が増加するにしたがって抗折強度が向上す
ることが分る。
FIG. 4 is a graph showing the relationship between the amount of glass added as the above component and the Weibull characteristic of transverse strength. From this graph, it can be seen that as the amount of glass added increases, the transverse strength improves.

第5図は上記成分のガラスの添加量と誘電損失との関係
を示すグラフであり、このグラフからガラスの添加量が
増加するにしたがって誘電損失か大巾に減少することが
分る。
FIG. 5 is a graph showing the relationship between the amount of glass added and the dielectric loss, and it can be seen from this graph that as the amount of glass added increases, the dielectric loss decreases significantly.

尚、実施例にあってはセラミックグリーンシートを積層
して焼成したアクチュエータを示したが、積層タイプ以
外に片面に2つ以上の電極を形成したSWAフィルタ(
表面弾性波フィルタ)等としても本願の圧電セラミック
焼成体を用いることかできる。
In addition, in the example, an actuator made by laminating and firing ceramic green sheets was shown, but in addition to the laminated type, SWA filters with two or more electrodes formed on one side (
The fired piezoelectric ceramic body of the present application can also be used as a surface acoustic wave filter (surface acoustic wave filter) or the like.

(効果) 以上に説明したように本発明によれば、PZT等の強誘
電性セラミックを還元性雰囲気で焼成するにあたり、5
rCOs、Ca COs、B aCOs等の2価の金属
化合物や炭酸マンガン又は酸化マンガンを添加するよう
にしたので、抵抗率が高くなり分極を容易に行え、更に
誘電損失を減少させることができる。
(Effects) As explained above, according to the present invention, when firing a ferroelectric ceramic such as PZT in a reducing atmosphere,
Since divalent metal compounds such as rCOs, CaCOs, and BaCOs, manganese carbonate, or manganese oxide are added, resistivity is increased, polarization can be easily performed, and dielectric loss can be further reduced.

そして、添加するガラスとして熱膨張係数がセラミック
の熱膨張係数とほぼ等しく且つセラミックと反応しない
ものを選定したので、クラックの発生や固溶体の生成が
なく、機械的な強度が向上する。
Since a glass to be added has a coefficient of thermal expansion almost equal to that of the ceramic and does not react with the ceramic, the mechanical strength is improved without cracking or solid solution formation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の圧電セラミック焼結体からなるアクチ
ュエータの断面図、第2図は2価の金属化合物及びガラ
スの添加と抵抗率との関係を示すグラフ、第3図はガラ
スの添加量と電気機械結合係数及び圧電歪定数との関係
を示すグラフ、第4図はガラスの添加量と抗折強度のワ
イブル特性との関係を示すグラフ、第5図はガラスの添
加量と誘電損失との関係を示すグラフである。 尚、図面中1は圧電セラミック層、2.3は電極層であ
る。 特 許 出 願 人  東隣機器 株式会社永1)邦裕
Figure 1 is a cross-sectional view of an actuator made of the piezoelectric ceramic sintered body of the present invention, Figure 2 is a graph showing the relationship between the addition of divalent metal compounds and glass and resistivity, and Figure 3 is the amount of glass added. Figure 4 is a graph showing the relationship between the amount of glass added and the Weibull characteristic of bending strength, and Figure 5 is the relationship between the amount of glass added and the dielectric loss. It is a graph showing the relationship between. In the drawings, 1 is a piezoelectric ceramic layer, and 2.3 is an electrode layer. Patent applicant Higashirin Kiki Co., Ltd. 1) Kunihiro

Claims (4)

【特許請求の範囲】[Claims] (1)CuまたはNi電極層を形成することでアクチュ
エータ或いはセンサ等として使用する圧電セラミック焼
結体において、この圧電セラミック焼結体中には熱膨張
係数が圧電セラミックと略等しく且つ圧電セラミックと
反応しにくい成分からなるガラスを添加していることを
特徴とする圧電セラミック焼結体。
(1) In a piezoelectric ceramic sintered body used as an actuator or sensor by forming a Cu or Ni electrode layer, the piezoelectric ceramic sintered body has a coefficient of thermal expansion approximately equal to that of the piezoelectric ceramic and reacts with the piezoelectric ceramic. A piezoelectric ceramic sintered body characterized by the addition of glass, which is made of a component that is difficult to oxidize.
(2)前記圧電セラミック焼結体中にはガラスの他に2
価の金属化合物が添加されていることを特徴とする請求
項1に記載の圧電セラミック焼結体。
(2) In addition to glass, the piezoelectric ceramic sintered body contains two
2. The piezoelectric ceramic sintered body according to claim 1, wherein a valent metal compound is added.
(3)前記圧電セラミック焼結体中には、ガラスの他に
2価の金属化合物及び酸化マンガン又は炭酸マンガンが
添加されていることを特徴とする請求項1に記載の圧電
セラミック焼結体。
(3) The piezoelectric ceramic sintered body according to claim 1, wherein a divalent metal compound and manganese oxide or manganese carbonate are added to the piezoelectric ceramic sintered body in addition to glass.
(4)前記ガラスの添加割合は0.2〜2.1wt%以
下としたことを特徴とする請求項1または2に記載の圧
電セラミック焼結体。
(4) The piezoelectric ceramic sintered body according to claim 1 or 2, wherein the addition ratio of the glass is 0.2 to 2.1 wt% or less.
JP2300866A 1990-11-06 1990-11-06 Piezoelectric ceramic sintered body Pending JPH04171990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300866A JPH04171990A (en) 1990-11-06 1990-11-06 Piezoelectric ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300866A JPH04171990A (en) 1990-11-06 1990-11-06 Piezoelectric ceramic sintered body

Publications (1)

Publication Number Publication Date
JPH04171990A true JPH04171990A (en) 1992-06-19

Family

ID=17890054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300866A Pending JPH04171990A (en) 1990-11-06 1990-11-06 Piezoelectric ceramic sintered body

Country Status (1)

Country Link
JP (1) JPH04171990A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595644A1 (en) * 1992-10-29 1994-05-04 Nec Corporation Flat packaged piezoelectric device using glass-ceramic composite material comprising forsterite
WO2001024287A2 (en) * 1999-09-30 2001-04-05 Robert Bosch Gmbh Internal electrodes for a stacked piezoactuator and method for producing the same
WO2001045138A2 (en) * 1999-12-16 2001-06-21 Epcos Ag Piezoelectric component
US6960271B2 (en) * 2000-12-28 2005-11-01 Denso Corporation Laminate-type dielectric device, a production method and an electrode paste material
US6972060B2 (en) * 2002-04-05 2005-12-06 Nippon Soken, Inc. Method for producing stacked ceramic body
KR100966194B1 (en) * 2006-09-26 2010-06-25 가부시끼가이샤 도시바 Ultrasonic probe

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595644A1 (en) * 1992-10-29 1994-05-04 Nec Corporation Flat packaged piezoelectric device using glass-ceramic composite material comprising forsterite
WO2001024287A2 (en) * 1999-09-30 2001-04-05 Robert Bosch Gmbh Internal electrodes for a stacked piezoactuator and method for producing the same
WO2001024287A3 (en) * 1999-09-30 2002-04-04 Bosch Gmbh Robert Internal electrodes for a stacked piezoactuator and method for producing the same
WO2001045138A2 (en) * 1999-12-16 2001-06-21 Epcos Ag Piezoelectric component
WO2001045138A3 (en) * 1999-12-16 2002-03-14 Epcos Ag Piezoelectric component
DE10062672B4 (en) * 1999-12-16 2010-01-21 Epcos Ag Piezoelectric component
US7855488B2 (en) 1999-12-16 2010-12-21 Epcos Ag Piezoceramic device
US8209828B2 (en) 1999-12-16 2012-07-03 Epcos Ag Method for making a piezoceramic device
DE10062672B9 (en) * 1999-12-16 2012-07-12 Epcos Ag Piezoelectric component
US6960271B2 (en) * 2000-12-28 2005-11-01 Denso Corporation Laminate-type dielectric device, a production method and an electrode paste material
US6972060B2 (en) * 2002-04-05 2005-12-06 Nippon Soken, Inc. Method for producing stacked ceramic body
KR100966194B1 (en) * 2006-09-26 2010-06-25 가부시끼가이샤 도시바 Ultrasonic probe

Similar Documents

Publication Publication Date Title
KR100284605B1 (en) Piezoelectric Ceramic and Method for Producing Piezoelectric Ceramic Element
US20080129154A1 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JPWO2006100807A1 (en) Piezoelectric element and method for manufacturing piezoelectric element
JP4466652B2 (en) Piezoelectric ceramic and piezoelectric ceramic element
US20070222341A1 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP4752156B2 (en) Piezoelectric ceramic composition for laminated piezoelectric element, laminated piezoelectric element, method for producing laminated piezoelectric element, and laminated piezoelectric device
JP5876974B2 (en) Method for producing piezoelectric / electrostrictive porcelain composition
JP2002114570A (en) Piezoelectric porcelain composition, piezoelectric resonator, piezoelectric transformer and piezoelectric actuator
JP4748291B2 (en) Laminate displacement element
JPH04171990A (en) Piezoelectric ceramic sintered body
JP3894112B2 (en) Piezoelectric / electrostrictive membrane element
JP2005281013A (en) Piezoelectric composition and method for producing the same
JP4202657B2 (en) Piezoelectric ceramic composition and piezoelectric device
JP3119139B2 (en) Piezoelectric ceramic and manufacturing method thereof
KR100363196B1 (en) Piezoelectric Ceramic Composition, Buzzer and Actuator using the same
JP3106365B2 (en) Functionally graded piezoelectric
KR20030062262A (en) Method of manufacturing monolithic piezoelectric ceramic device
JP3781317B2 (en) Piezoelectric ceramic material
JP5196091B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4009417B2 (en) Piezoelectric and piezoelectric devices
JP3867320B2 (en) Piezoelectric ceramic composition
JPH08333158A (en) Piezoelectric ceramic composition and production of piezoelectric resonator using the same
JP2003012369A (en) Piezoelectric compact of ceramic composition
JP2003277142A (en) Piezoelectric ceramics and piezoelectric actuator
JPH07232962A (en) Piezoelectric porcelain