JPH04167809A - At-cut thickness shear crystal resonator - Google Patents

At-cut thickness shear crystal resonator

Info

Publication number
JPH04167809A
JPH04167809A JP29511190A JP29511190A JPH04167809A JP H04167809 A JPH04167809 A JP H04167809A JP 29511190 A JP29511190 A JP 29511190A JP 29511190 A JP29511190 A JP 29511190A JP H04167809 A JPH04167809 A JP H04167809A
Authority
JP
Japan
Prior art keywords
crystal
overtone
crystal chip
axis
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29511190A
Other languages
Japanese (ja)
Inventor
Mitsuaki Koyama
光明 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP29511190A priority Critical patent/JPH04167809A/en
Publication of JPH04167809A publication Critical patent/JPH04167809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To attain the oscillation of overtone through the use of a non- adjustment oscillation circuit by increasing the width of an electrode forming a front and rear face of a crystal chip larger than a specific multiple of the width of the crystal chip and inhibiting chamferring of a major face. CONSTITUTION:The crysta of a rock crystal in an AT-cut thickness shear crystal chip is cut off at a prescribed angle with respect to its crystal axis, the X axis is taken as a broadwise direction and the crystal chip is formed thin and long in the direction of the Z' axis. Then an exciting electrode is formed opposite to a center of a front and rear face of the crystal chip. Then a size B of each exciting electrode in the broadwise direction is selected larger than a multiple of 0.65 of the size A of the crystal chip in the broadwise direction. Moreover, in order to give a hindrance to fundamental wave vibration resulting in facilitating overtone vibration relatively, no chamferring of the major face of the crystal chip 11 is implemented. Through the constitution above, since the equivalent resistance of overtone is made lower than that of a fundamental wave, stable oscillation at an overtone frequency by using a no-adjustment oscillation circuit is attained.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、オーバート−ンの発振を容易に行えるへ′F
カットの厚みずへり水晶振動子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical field of the invention)
Concerning cut thickness edge crystal oscillators.

(発明の技術的背景とその問題点) 一般に水晶振動子の1騒動モートには、屈曲撮動、たわ
み振動、厚み振動等種々の振動モートがある。
(Technical background of the invention and its problems) In general, there are various types of vibration motes of a crystal resonator, such as bending vibration, deflection vibration, and thickness vibration.

そし゛C1共振周波数がMH2ないし十数MHzの水晶
振動子では主に厚みずへり振動モートを使用している。
In a crystal resonator with a C1 resonance frequency of MH2 to 10-odd MHz, a thickness-edge vibration mode is mainly used.

この厚みすべり振動モードで励振する水晶振動子の共振
周波数は水晶片の厚みに逆比例し、たとえば共振周波数
が10MHzの水晶片の厚みは約0.167mtn、共
振周波数が30 M H2の水晶片の厚みは約0 、 
0561’tl mになる。したがりて、共振周波数が
高くなると厚みは著しく薄くなり水晶片の強度、加工上
の問題から製作は極めて困難になる。
The resonant frequency of a crystal resonator excited in this thickness-shear vibration mode is inversely proportional to the thickness of the crystal piece.For example, the thickness of a crystal piece with a resonant frequency of 10 MHz is approximately 0.167 mtn, and the thickness of a crystal piece with a resonant frequency of 30 MH2 is inversely proportional to the thickness of the crystal piece. The thickness is approximately 0,
It becomes 0561'tl m. Therefore, as the resonant frequency increases, the thickness becomes significantly thinner, and manufacturing becomes extremely difficult due to the strength of the crystal piece and processing problems.

このために高い周波数の水晶振動子を必要とする場合は
オーバートーンのモードを使用することが行われている
。オーバート−ンのモードでは、略基本波の共振周波数
の奇数倍の周波数で共振し、一般に3次、5次、7次等
のモードが使用され、次数は発振回路の定数、たとえは
出力側の同調回路の定数によって決定される。
For this reason, when a high frequency crystal oscillator is required, an overtone mode is used. In the overtone mode, resonance occurs at a frequency that is an odd multiple of the resonant frequency of the fundamental wave, and 3rd, 5th, 7th, etc. modes are generally used, and the order is determined by the constant of the oscillation circuit, for example on the output side. is determined by the constant of the tuned circuit.

ところで近年、発振回路を小形化し、無調整化するため
に、たとえは水晶振動子と集積回路な一体化して無調整
発振回路を構成した超小型発振器が大量に製造され、使
用されている。しかして、このような構成の発振回路で
は同調回路を有しないためにオーバートーンのモードを
利用することはできないので発振出力の最高周波数は水
晶片の加工上の限界から、たとえば30MHz程度に制
限されることになる。
In recent years, in order to downsize oscillation circuits and eliminate the need for adjustment, micro-sized oscillators have been manufactured and used in large quantities, for example, by integrating a crystal resonator and an integrated circuit to form a non-adjustment oscillation circuit. However, since an oscillation circuit with such a configuration does not have a tuning circuit, it is not possible to use the overtone mode, so the maximum frequency of the oscillation output is limited to, for example, about 30 MHz due to limitations in the processing of the crystal piece. That will happen.

(発明の目的) 本発明は、1−記の事情に鑑みてなされたもので、基本
波よりもオーバートーンの等価抵抗が低く無調整発振回
路を用いてオーバートーンの周波数で発振することがで
きるATカット0)19みずへり水晶振動子を提供する
ことを目的とするものである。
(Object of the Invention) The present invention has been made in view of the circumstances described in 1- above, and the equivalent resistance of the overtone is lower than that of the fundamental wave, and it is possible to oscillate at the frequency of the overtone using an unadjusted oscillation circuit. The purpose is to provide an AT cut 0)19 water crystal resonator.

(発明の概要) 本発明は、結晶のX軸を幅方向としZ゛軸を長さ方向と
するZ゛軸方向に細長い短冊型のATカットの水晶片に
電極を形成した厚み滑り水晶振動子において、上記水晶
片の表裏板面に形成する電極の幅寸法を水晶片の幅寸法
の0.65倍よりも大きくし、かつ主面の面取りを行わ
ないことを特徴とするものである。
(Summary of the Invention) The present invention provides a thickness-slide crystal resonator in which electrodes are formed on a strip-shaped AT-cut crystal piece elongated in the Z-axis direction, with the X-axis of the crystal being the width direction and the Z-axis being the length direction. In this method, the width of the electrodes formed on the front and back surfaces of the crystal blank is larger than 0.65 times the width of the crystal blank, and the main surface is not chamfered.

(実施例) 以下、本発明の一実施例を第1図に示す1ヴみ方向の寸
法を誇張した水晶片の斜視図を参照して詳細に説明する
(Embodiment) Hereinafter, an embodiment of the present invention will be described in detail with reference to a perspective view of a crystal piece shown in FIG. 1 with exaggerated dimensions in the vertical direction.

図中、11は水晶の結晶をその結晶軸に対して所定角度
に切断してX軸を幅方向とし、Z′軸方向に細長く成形
したATカットの厚みすべり水晶片である。そしてこの
水晶片11の表裏板面の中央部に相対面して励振電極1
2を形成している。
In the figure, reference numeral 11 denotes an AT-cut thickness-sliding crystal piece made by cutting a quartz crystal at a predetermined angle with respect to its crystal axis, making the X-axis the width direction, and forming it into an elongated piece in the Z'-axis direction. The excitation electrode 1 faces oppositely to the center of the front and back surfaces of the crystal blank 11.
2 is formed.

そして各励振電極12から互いに逆方向に水晶片11の
長手方向の端部へ引き出し電極13を導出している。そ
して、この導出端に保持電極14を形成してここを図示
しない保持部材で保持するとともに、この保持部材を介
して上記励振電極12と外部の回路との電気的な接続を
行うようにしている。
Extracting electrodes 13 are led out from each excitation electrode 12 to the ends of the crystal piece 11 in the longitudinal direction in mutually opposite directions. A holding electrode 14 is formed at this lead-out end and is held by a holding member (not shown), and electrical connection is made between the excitation electrode 12 and an external circuit via this holding member. .

なおここで、上記励振電極12の幅方向の寸法Bを水晶
片11の幅方向の寸法Aの0.65倍よりも大きくし、
その上限を1.0倍とするようにしている。
Here, the dimension B in the width direction of the excitation electrode 12 is made larger than 0.65 times the dimension A in the width direction of the crystal piece 11,
The upper limit is set to 1.0 times.

そして基本波振動を阻害し、それによって相対的にオー
バートーンの振動を容易にするために、水晶片11の主
面の面取りを行わないようにしている。  ・ なお水晶片11の幅方向の寸法Aに対して励振電極12
の幅方向の寸法Bを上述のごとく定めた理由は次の通り
である。
In order to inhibit the fundamental wave vibration and thereby make overtone vibration relatively easy, the main surface of the crystal blank 11 is not chamfered.・For the dimension A in the width direction of the crystal piece 11, the excitation electrode 12
The reason for determining the dimension B in the width direction as described above is as follows.

すなわち、サンプルの水晶振動子として、たとえばZ軸
を長手方向として5.0間、X軸を幅方向として1.5
mmの寸法で3次オーバートーンで共振周波数71MH
zのものを用意した。そして、この水晶片の励振電極の
幅Bの寸法を変えたときの等価抵抗(以下CIと称す)
の変化は第2図に示すグラフのようになった。なお第2
図において曲線Fは基本波のCIの変化、曲線Gは3次
のオーバート−ンのCIの変化を示している。そして横
軸は水晶片の幅Aに対する励振電極の幅Bの比13/A
、縦軸はCIの値である。
That is, as a sample crystal oscillator, for example, the Z axis is 5.0 mm in the longitudinal direction, and the X axis is 1.5 mm in the width direction.
Resonant frequency 71MH with 3rd overtone in dimensions of mm
I prepared something for z. The equivalent resistance (hereinafter referred to as CI) when the width B of the excitation electrode of this crystal blank is changed
The changes were as shown in the graph shown in Figure 2. Furthermore, the second
In the figure, curve F shows the change in CI of the fundamental wave, and curve G shows the change in CI of the third-order overtone. The horizontal axis is the ratio of the width B of the excitation electrode to the width A of the crystal piece, 13/A.
, the vertical axis is the CI value.

この結果から明らかなように3次のオーバートーンのC
Iは励振電極の幅に関係なく略一定値である。これに対
して基本波のCIは励振電極の幅の増大(こつれて大き
くなる。
As is clear from this result, the third-order overtone C
I is a substantially constant value regardless of the width of the excitation electrode. On the other hand, the CI of the fundamental wave increases as the width of the excitation electrode increases.

すなわち基本波の共振による変位は板面の全域に広く生
しlるのに対してオーバート−ンのそれは板面の中央部
分に遍在する。したがって励振電極の幅寸法を大きくす
ると質量の付加効果によって基本波の共振は阻害されて
CIは増大し、相対的にオーバートーンの共振に対する
CIは向−にする。
That is, the displacement due to resonance of the fundamental wave occurs widely over the entire surface of the plate, whereas that of the overtone is omnipresent in the central portion of the plate surface. Therefore, when the width of the excitation electrode is increased, the resonance of the fundamental wave is inhibited by the added effect of the mass, and the CI increases, and the CI for the overtone resonance is relatively directed.

また水晶片の主面の面取りを行わないと基本波の共振は
充分なエネルギー閉じこめ効果を得られないためにCI
は増大する。これに対して、オーバートーンの共振は板
面の中央部分に遍在するために主面の面取りを行わない
ことによる影響をほとんど受けないので相対的にCIは
低くなる。
In addition, unless the main surface of the crystal piece is chamfered, the resonance of the fundamental wave will not have a sufficient energy confinement effect, so CI
increases. On the other hand, since the overtone resonance is omnipresent in the central portion of the plate surface, it is hardly affected by not chamfering the main surface, so the CI becomes relatively low.

しかして上述の構成によれば基本波のCIよりもオーバ
ートーンのそれを低くてきるので、たとえばコイルを用
いない無調整発振回路を用い°Cオーバートーンの周波
数で安定に発振させることかでき発振器の小型化、無調
整化を図ることができる。
However, according to the above configuration, since the CI of the overtone is lower than the CI of the fundamental wave, it is possible to stably oscillate at the frequency of the °C overtone using, for example, an unadjusted oscillation circuit that does not use a coil. It is possible to reduce the size and eliminate the need for adjustment.

(発明の効果) 以]二詳述したように本発明によれは、たとえは−6= 無、a整発振回路を用いてオーバート−ンの発振を行う
ことができ、形状か小塑で無調整で高い同波数の発振出
力を得ることかできるA′vカットの厚みすへり水晶振
動子を提供することができる。
(Effects of the Invention) As described in detail below, according to the present invention, it is possible to perform overtone oscillation using an oscillation circuit with -6 = none, a-balanced oscillation circuit, and even if the shape is small or small. It is possible to provide an A'v-cut, thin-thickness crystal resonator that can obtain oscillation output of the same high wave number without adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の水晶振動子を示す斜視図、 第2図はザンブルの水晶振動子の電極幅と水晶)1の幅
の比を横軸に、これ(。二対する基本波および;3次の
オーバート−ンの等価抵抗値を縦軸で示すグラフである
。 11・・・・・水晶片 12・・・・・励振電極 13・・・・・引き出し電極 14・・・・・保持電極 A ・・・・・水晶片の輻 I3  ・・・・・励振電極の幅 占 o幸
FIG. 1 is a perspective view showing a crystal resonator according to an embodiment of the present invention. FIG. It is a graph showing the equivalent resistance values of waves and third-order overtones on the vertical axis. 11...Crystal blank 12...Excitation electrode 13...Extraction electrode 14...・・・Holding electrode A ・・・・Radius I3 of crystal piece ・・・Width measurement of excitation electrode

Claims (1)

【特許請求の範囲】[Claims] 結晶のX軸を幅方向としZ’軸を長さ方向とするZ’軸
方向に細長い短冊型のATカットの水晶片に電極を形成
した厚み滑り水晶振動子において、上記水晶片の表裏板
面に形成する電極の幅寸法を水晶片の幅寸法の0.65
倍よりも大きくし、かつ主面の面取りを行わないことを
特徴とする短冊状のATカットの厚みすべり水晶振動子
In a thickness-slide crystal resonator in which electrodes are formed on a strip-shaped AT-cut crystal piece elongated in the Z'-axis direction, with the X-axis of the crystal being the width direction and the Z'-axis being the length direction, the front and back plate surfaces of the crystal piece are The width of the electrode to be formed is 0.65 of the width of the crystal piece.
A strip-shaped AT-cut thickness-slide crystal resonator characterized by being larger than twice as large and having no chamfering on its main surface.
JP29511190A 1990-10-31 1990-10-31 At-cut thickness shear crystal resonator Pending JPH04167809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29511190A JPH04167809A (en) 1990-10-31 1990-10-31 At-cut thickness shear crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29511190A JPH04167809A (en) 1990-10-31 1990-10-31 At-cut thickness shear crystal resonator

Publications (1)

Publication Number Publication Date
JPH04167809A true JPH04167809A (en) 1992-06-15

Family

ID=17816438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29511190A Pending JPH04167809A (en) 1990-10-31 1990-10-31 At-cut thickness shear crystal resonator

Country Status (1)

Country Link
JP (1) JPH04167809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174630A (en) * 2005-11-28 2007-07-05 Daishinku Corp Crystal oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174630A (en) * 2005-11-28 2007-07-05 Daishinku Corp Crystal oscillator

Similar Documents

Publication Publication Date Title
JP2007158486A (en) Crystal resonator element, crystal resonator, and crystal oscillator
US4306170A (en) AT-Cut quartz resonator, with w/t=2.0 to 2.8, l/t<25
JP4516021B2 (en) SC cut crystal unit
JP3096472B2 (en) SC-cut crystal unit
JPS6013608B2 (en) Thickness sliding piezoelectric vibrator
JPS62230108A (en) Piezoelectric viblator
JPH04123605A (en) Crystal resonator
JP2003060482A (en) Tuning fork crystal oscillating piece
JPH04167809A (en) At-cut thickness shear crystal resonator
JPH0349307A (en) Rectangular crystal resonator for overtone
JPH09139651A (en) Crystal oscillator for overtone
US6924588B2 (en) Piezoelectric crystal material and piezoelectric resonator
JPS59127413A (en) Lithium tantalate oscillator
JP2884569B2 (en) Method of manufacturing rectangular AT-cut quartz resonator for overtone
JPH0888536A (en) Overtone rectangular crystal oscillator
JPS59148421A (en) Piezoelectric resonator
JPH03172012A (en) At-cut thickness-shear crystal oscillator
JPS587702Y2 (en) Width-slip crystal oscillator
JPH0590879A (en) Quartz oscillator
JP2884568B2 (en) Manufacturing method of rectangular AT-cut quartz resonator
JP2002076825A (en) Small-sized rectangular piezoelectric vibrator
JPH08195643A (en) At-cut crystal oscillator
JP2000091878A (en) Piezoelectric vibrator and piezoelectric oscillator
JPS5912805Y2 (en) Width shear oscillator
JPH0463567B2 (en)