JPH0416550B2 - - Google Patents

Info

Publication number
JPH0416550B2
JPH0416550B2 JP57015397A JP1539782A JPH0416550B2 JP H0416550 B2 JPH0416550 B2 JP H0416550B2 JP 57015397 A JP57015397 A JP 57015397A JP 1539782 A JP1539782 A JP 1539782A JP H0416550 B2 JPH0416550 B2 JP H0416550B2
Authority
JP
Japan
Prior art keywords
electroless copper
copper plating
copper
polyethylene glycol
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57015397A
Other languages
Japanese (ja)
Other versions
JPS58133365A (en
Inventor
Akishi Nakaso
Kyoshi Yamanoi
Toshiro Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1539782A priority Critical patent/JPS58133365A/en
Publication of JPS58133365A publication Critical patent/JPS58133365A/en
Publication of JPH0416550B2 publication Critical patent/JPH0416550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は無電解銅めつき方法、詳しくは、高い
引張り強度と優れた耐折疲労強度をもつめつき銅
が容易に得られる無電解銅めつき方法に関する。 (従来の技術) 無電解銅めつき液から得られるめつき銅の機械
的特性を向上させるための開発研究は、これまで
にも盛んに行われてきており、又現在でも理由の
1つは、この無電解銅めつき技術をプリント配線
板の回路形成に応用すると大きな効果が生まれる
からである。すなわち、プリント配線板の回路は
年々高密度化しており、違つた面の回路を導通さ
せるスルホール径は増々小さくなつてきている。
このような傾向において、電気めつき方法に比べ
て、平面部分とスルホール内壁面のめつき厚さに
差の生じにくい無電解銅めつきが期待されている
わけである。 また無電解銅めつき、電気銅めつきをおこな
い、回路以外の銅をエツチング除去する方法にお
いては、エツチングによりアンダーカツト(銅の
厚さ方向において、表面部分はエツチングレジス
トの膜で寸法が保持されるものの、基板近傍では
エツチングが、より進行するために回路断線が逆
台形になる。)が生じるため細線回路をつくるの
は難しい。これに対して、無電解銅めつきでは回
路部分だけをめつきで付与するのでアンダーカツ
トの問題がなく回路の細線化に有利である。 しかし、これまでの多くの無電解銅めつき液か
ら得られるめつき銅は一般にプリント配線板の回
路形成に用いられるピロリン酸銅電気めつきから
得られる銅び比べ引張り強度および後に述べる方
法で測定した耐折疲労強度に於て劣つているため
にプリント配線板に部品搭載後、半田あげによる
加熱などで回路が切断しやすいなどの欠点があ
る。 ピロリン酸銅電気めつきから得られる銅の引張
り強度は一般に50〜60Kg/mm2、また耐折疲労強度
は2000〜3000回である。 これに対し、工業的なレベルで使用されている
無電解銅めつきから得られる銅の引張り強度は約
30Kg/mm2、また耐折疲労強度は800〜1100回であ
る。 このような問題を解決するために種々の開発研
究がされ、通常の銅塩、錯化剤、還元剤およびPH
調整剤を含む無電解銅めつき液に、ポリエチレン
グリコール・アルキルアミン系非イオン界面活性
剤と金属モノ硫化物を添加する方法が特公昭55−
51028号公報によつて知られており、また、非反
応生樹脂族重合体とNi,Co,PbおよびSnの金属
塩の少なくとも一種を添加する方法が特開昭52−
20339号公報によつて知られている。 (発明が解決しようとする課題) ところで、前述の添加剤を含まない従来の無電
解銅めつき液は、前記した理由で配線の高密度化
には有利であつても、機械的特性が劣つており接
続信頼性が低いので、ほとんど使用されていない
のが現状である。 また、このような従来の無電解銅めつき液に、
ポリエチレングリコール・アルキルアミン系非イ
オン界面活性剤と金属モノ硫化物を添加する方法
は、金属モノ硫化物の硫黄がめつきの触媒毒とし
て作用するので、その添加量の制御は極めて困難
なものとなる。さらに、非反応性脂肪族重合体と
Ni,Co,PbおよびSnの金属塩の少なくとも一種
を添加する方法では、Ni,Co,PbまたはSnが金
属塩として添加されているのでその溶解度は大き
く、効果を一定以上に保つためにはその添加量を
常に監視しなければならず、実用化に困難が伴う
ものである。 本発明は、高い引張り強度と優れた耐折疲労強
度をもつめつき銅が容易に得られる無電解銅めつ
き方法を提供することを目的とする。 (課題を解決するための手段) 本発明者らは、鋭意研究の結果、銅塩、錯化
剤、還元剤およびPH調整剤を含む無電解銅めつき
液に、ポリエチレングリコールおよびそのアルキ
ルエーテルの少なくとも一種と、金属銀、ヨウ化
銀および金属鉛の少なくとも一種を併用して添加
すること、および、そのときに添加する金属銀、
ヨウ化銀および金属鉛の少なくとも一種は、1
mg/以上の濃度であれば効果があるという知見
が得られた。また、この金属銀、ヨウ化銀および
金属鉛の少なくとも一種は、その溶解度が極めて
小さいが、前記の濃度を充分に満足できるもので
あることも分かつた。本発明は、以上に述べたこ
とによりなされたものである。 本発明の無電解銅めつき方法は、銅塩、錯化
剤、還元剤およびPH調整剤を含む無電解銅めつき
液を用いた無電解銅めつき方法において、ポリエ
チレングリコールおよびそのアルキルエーテルの
少なくとも一種を添加するとともに、金属銀、ヨ
ウ化銀および金属鉛の少なくとも一種を、常にそ
の溶解度以上の量添加して行うことを特徴とする
ものである。 金属銀、ヨウ化銀、又は金属鉛は、ポリエチレ
ングリコール又はそのアルキルエーテルと併用し
て添加する場合にポリエチレングリコール又はそ
のアルキルエーテルだけを添加する場合に較べて
めつき銅の引張強度を向上させることができ、又
同じに高い耐折疲労強度が得られる。これらの金
属銀、ヨウ化銀又は金属鉛の添加量は1mg/あ
れば十分であるが、これより多くてもめつき液が
不安定になり分解するということはない。これ
は、ヨウ化銀又は金属鉛の溶解度が極めて小さい
ためである。水に対して金属銀は25℃の場合に
2.8×10-5g/、ヨウ化銀は20℃の場合に2.5×
10-6g/、金属鉛は25℃の場合に3.1×10-4
g/である。金属銀、ヨウ化銀又は金属鉛は上
記したように極めて小さいが、めつき銅の引張り
強度の向上と同時に高い耐折疲労強度を得るため
には充分な濃度である。 金属銀、ヨウ化銀又は金属鉛は、0.5〜5mmの
粒状顆粒状又は粉末状のものが使用される。 ポリエチレングリコール又はそのアルキルエー
テルは、金属銀、ヨウ化銀および金属鉛と併せ添
加する場合に、ポリエチレングリコール又はその
アルキルエーテルを添加しない場合におこり易い
めつき液の分解を抑制することができる。ポリエ
チレングリコール又はそのアルキルエーテルは
0.02g/以上、好ましくは0.05〜10g/以
上、最も好ましくは1〜5g/添加される。添
加量が0.02g/未満の場合はめつき液の安定性
が低下する。添加量が多くても悪影響は与えない
が、一般に10g/を超える添加は不必要であ
る。 ポリエチレングリコールは、オキシエチレン (−CH2−CH2−O−)o を有す化合物で、オキシエチレン数n=2〜80の
ものがめつき銅の引張り強度を向上させる点で好
ましい。更に好ましくはn=3〜24、最も好まし
くはn=4〜16のものが使用される。ポリエチレ
ングリコールのアルキルエーテルとしてはC1
C3のモノ又はジエーテルが使用される。これら
はめつき液に可溶なものである。 本発明においてベースとなる無電解銅めつき液
はとくに特殊な配合のものではない。銅塩、錯化
剤、還元剤およびPH調整剤とから成る一般の無電
解銅めつき液が用いられる。銅塩としては、硫酸
銅、ハロゲン化銅、硝酸銅、酢酸銅等が、錯化剤
としてはエチレンジアミン四酢酸、ロツシエル塩
等が還元剤としてはホルマリン、バラホルムアル
デヒド等が、PH調整剤としては水酸化ナトリウム
等が使用される。代表的な無電解銅めつき液とし
ては、硫酸銅3〜20g/,エチレンジアミン四
酢酸、銅塩濃度の1.2〜3倍モル濃度、37%のホ
ルマリン水溶液2〜25ml/、PH11.5〜13.0のも
のが好ましい。温度は90℃以下で行うのが良い。 尚、本発明の無電解銅めつき液には、ピロリド
ン類、α−ピペリドンおよび脂肪族アミノ酸の少
なくとも一種を0.02g/以上、好ましくは0.05
〜10g/、最も好ましくは1〜5g/添加す
ることも出来る。 (作用) めつき析出状態の表面および観察し易いように
エツチング処理した断面の電子顕微鏡観察から、
上記オキシエチレン数の範囲では組織が緻密であ
り、その範囲を超えたものでは構成結晶粒が粗に
なり、かつめつき銅箔に対して垂直に配向する傾
向が認められた。このことから上記オキシエチレ
ン数の範囲内のものが、引張り強度と耐折疲労強
度に効果的なめつき析出状態を生じさせていると
考えられる。ポリエチレングリコールのアルキル
例えばメチルエーテルはポリエチレングリコール
に較べて表面張力が小さいので界面活性剤を添加
しなくても、めつきしたいものとめつき液との濡
れをよくできるという長所がある。 実施例 1〜7 硫酸銅0.04g/、エチレンジアミン四酢酸
0.05モル/、ホルムアルデヒド0.03モル/、
PH11.8の溶液に表1の添加物を添加して無電解銅
めつき液を作成した。 これらのめつき液に活性化処理したステンレス
板を浸漬して70℃で無電解銅めつきをおこない、
めつき膜厚25〜35μmの銅箔を得た。めつきの析
出速度、得られた銅箔の引張り強度耐折強度は表
1のとおりである。 尚、引張り強度は10mm×70mmの試験片を用い東
洋測器製のテンシロン形万能試験機を用い、つか
み間隔15mm引張り速度1mm/分で測定した。 又、耐折疲労強度の測定はJIS P 8115に準じ
た耐折疲労試験器でおこなつた。折り曲げ点の曲
率は半径2mmのものを使用した。この試験器によ
れば耐折疲労強度が試料破断までの折り曲げ回数
で示される。
(Industrial Field of Application) The present invention relates to an electroless copper plating method, and more particularly, to an electroless copper plating method that can easily produce laminate copper having high tensile strength and excellent bending fatigue strength. (Prior art) Research and development efforts have been actively conducted to improve the mechanical properties of plated copper obtained from electroless copper plating solutions, and one of the reasons is still This is because applying this electroless copper plating technology to circuit formation on printed wiring boards will produce great effects. That is, the circuit density of printed wiring boards is becoming higher and higher year by year, and the diameter of the through holes that allow conduction between circuits on different surfaces is becoming smaller and smaller.
In view of this trend, electroless copper plating is expected to produce less difference in the plating thickness between the flat part and the inner wall surface of the through hole, compared to the electroplating method. In addition, when using electroless copper plating or electrolytic copper plating to remove copper other than circuits by etching, etching creates undercuts (in the thickness direction of the copper, the dimensions of the surface portion are maintained by an etching resist film). However, it is difficult to create thin wire circuits because etching progresses further near the substrate, causing circuit breaks to become inverted trapezoidal shapes. On the other hand, in electroless copper plating, only the circuit portion is plated, so there is no undercut problem and it is advantageous for thinning the circuit. However, the plated copper obtained from many conventional electroless copper plating solutions is generally measured by the tensile strength of copper obtained from copper pyrophosphate electroplating, which is used to form circuits on printed wiring boards, and by the method described later. Because of its poor bending fatigue strength, it has the disadvantage that circuits are likely to break due to heat caused by soldering after components are mounted on a printed wiring board. The tensile strength of copper obtained from copper pyrophosphate electroplating is generally 50 to 60 Kg/mm 2 , and the folding fatigue strength is 2000 to 3000 times. In contrast, the tensile strength of copper obtained from electroless copper plating, which is used on an industrial level, is approximately
30Kg/mm 2 , and the folding fatigue strength is 800 to 1100 times. In order to solve these problems, various research and development efforts have been carried out, including ordinary copper salts, complexing agents, reducing agents, and PH
A method of adding a polyethylene glycol/alkylamine nonionic surfactant and a metal monosulfide to an electroless copper plating solution containing a conditioning agent was published in 1983.
51028, and a method of adding a non-reactive raw resin group polymer and at least one metal salt of Ni, Co, Pb and Sn is disclosed in Japanese Patent Application Laid-Open No. 52-1989.
It is known from Publication No. 20339. (Problem to be Solved by the Invention) By the way, although the conventional electroless copper plating solution that does not contain the above-mentioned additives is advantageous for increasing the density of wiring for the above-mentioned reasons, it has poor mechanical properties. Currently, it is hardly used because the connection reliability is low. In addition, in such conventional electroless copper plating solution,
In the method of adding a polyethylene glycol/alkylamine nonionic surfactant and a metal monosulfide, since the sulfur of the metal monosulfide acts as a catalyst poison for plating, it is extremely difficult to control the amount added. Additionally, non-reactive aliphatic polymers and
In the method of adding at least one of the metal salts of Ni, Co, Pb, and Sn, since Ni, Co, Pb, or Sn is added as a metal salt, its solubility is high, and in order to maintain the effect above a certain level, it is necessary to The amount added must be constantly monitored, making it difficult to put it into practical use. SUMMARY OF THE INVENTION An object of the present invention is to provide an electroless copper plating method by which copper having high tensile strength and excellent bending fatigue strength can be easily obtained. (Means for Solving the Problems) As a result of intensive research, the present inventors discovered that polyethylene glycol and its alkyl ether were added to an electroless copper plating solution containing a copper salt, a complexing agent, a reducing agent, and a PH adjuster. Adding at least one of metal silver, silver iodide, and metal lead in combination with at least one metal, and metallic silver added at that time,
At least one of silver iodide and metallic lead contains 1
It was found that concentrations of mg/mg or higher are effective. It has also been found that at least one of metallic silver, silver iodide, and metallic lead has extremely low solubility, but can sufficiently satisfy the above concentration. The present invention has been accomplished as described above. The electroless copper plating method of the present invention is an electroless copper plating method using an electroless copper plating solution containing a copper salt, a complexing agent, a reducing agent, and a PH adjuster. The method is characterized in that at least one of metal silver, silver iodide, and metal lead is always added in an amount exceeding the solubility thereof. When metallic silver, silver iodide, or metallic lead is added in combination with polyethylene glycol or its alkyl ether, it improves the tensile strength of plated copper compared to when only polyethylene glycol or its alkyl ether is added. It is possible to obtain the same high bending fatigue strength. It is sufficient that the amount of metallic silver, silver iodide or metallic lead added is 1 mg/mt, but even if the amount is more than this, the plating solution will not become unstable and decompose. This is because the solubility of silver iodide or metallic lead is extremely low. Metallic silver is compared to water at 25°C.
2.8×10 -5 g/, silver iodide 2.5× at 20℃
10 -6 g/, metallic lead is 3.1×10 -4 at 25°C
g/. Although metallic silver, silver iodide, or metallic lead is extremely small as described above, the concentration is sufficient to improve the tensile strength of the plated copper and to obtain high bending fatigue strength at the same time. Metallic silver, silver iodide, or metallic lead is used in the form of granules or powder of 0.5 to 5 mm. When polyethylene glycol or its alkyl ether is added together with metallic silver, silver iodide, and metallic lead, it can suppress the decomposition of the plating solution that tends to occur when polyethylene glycol or its alkyl ether is not added. Polyethylene glycol or its alkyl ether
It is added at least 0.02g/, preferably from 0.05 to 10g/, most preferably from 1 to 5g/. If the amount added is less than 0.02 g/l, the stability of the plating solution decreases. Even if the amount added is large, there will be no adverse effect, but addition of more than 10 g/l is generally unnecessary. Polyethylene glycol is a compound having oxyethylene (-CH 2 -CH 2 -O-) o , and it is preferable that oxyethylene number n=2 to 80 improves the tensile strength of plated copper. More preferably n=3 to 24, most preferably n=4 to 16. As the alkyl ether of polyethylene glycol, C 1 ~
C 3 mono- or diethers are used. These are soluble in the plating solution. The electroless copper plating solution that is the base of the present invention is not particularly formulated. A general electroless copper plating solution consisting of a copper salt, a complexing agent, a reducing agent and a PH adjuster is used. Copper salts include copper sulfate, copper halides, copper nitrate, copper acetate, etc. Complexing agents include ethylenediaminetetraacetic acid and Rothsiel's salt; reducing agents include formalin and paraformaldehyde; and pH adjusters include water. Sodium oxide etc. are used. Typical electroless copper plating solutions include 3 to 20 g of copper sulfate, ethylenediaminetetraacetic acid, 1.2 to 3 times the molar concentration of the copper salt, 2 to 25 ml of a 37% formalin aqueous solution, and a pH of 11.5 to 13.0. Preferably. It is best to keep the temperature below 90℃. The electroless copper plating solution of the present invention contains at least 0.02 g of at least one of pyrrolidones, α-piperidone, and aliphatic amino acids, preferably 0.05 g/or more.
It is also possible to add ~10g/, most preferably 1-5g/. (Function) From electron microscope observation of the plated surface and the etched cross section for easy observation,
Within the above range of oxyethylene numbers, the structure was dense, and beyond this range, the constituent crystal grains became coarse and tended to be oriented perpendicular to the plated copper foil. From this, it is thought that oxyethylene within the above range produces a plating precipitation state that is effective for tensile strength and folding fatigue strength. The alkyl of polyethylene glycol, such as methyl ether, has a lower surface tension than polyethylene glycol, so it has the advantage that it can improve wetting of the object to be plated with the plating solution without adding a surfactant. Examples 1 to 7 Copper sulfate 0.04g/, ethylenediaminetetraacetic acid
0.05 mol/, formaldehyde 0.03 mol/,
An electroless copper plating solution was prepared by adding the additives shown in Table 1 to a solution with a pH of 11.8. The activated stainless steel plate is immersed in these plating solutions and electroless copper plating is performed at 70℃.
A copper foil with a plating thickness of 25 to 35 μm was obtained. Table 1 shows the deposition rate of plating and the tensile strength and folding strength of the obtained copper foil. The tensile strength was measured using a 10 mm x 70 mm test piece using a Tensilon type universal testing machine manufactured by Toyo Sokki at a gripping interval of 15 mm and a tensile speed of 1 mm/min. Further, the bending fatigue strength was measured using a bending fatigue tester conforming to JIS P 8115. The radius of curvature of the bending point was 2 mm. According to this tester, the bending fatigue strength is indicated by the number of times the sample is bent until it breaks.

【表】【table】

【表】 (発明の効果) 以上に説明したように本発明の無電解銅めつき
方法によつて得られためつき銅は、高い引張り強
度と優れた耐折疲労強度をもち、かつ、この効果
を維持するために金属銀、ヨウ化銀又は金属鉛の
濃度はその溶解度以上に添加しておけばよく、従
来のように分析やそれに基づく補充量の計算等を
行うことなくその濃度を一定に保つことができる
のである。
[Table] (Effects of the invention) As explained above, the matted copper obtained by the electroless copper plating method of the present invention has high tensile strength and excellent bending fatigue strength. In order to maintain the concentration of metallic silver, silver iodide, or metallic lead, it is sufficient to add it at a concentration higher than its solubility, and the concentration can be kept constant without performing analysis or calculating the amount of replenishment based on it as in the past. It is possible to keep it.

Claims (1)

【特許請求の範囲】 1 銅塩、錯化剤、還元剤およびPH調整剤を含む
無電解銅めつき液を用いた無電解銅めつき方法に
おいて、ポリエチレングリコールおよびそのアル
キルエーテルの少なくとも一種を添加するととも
に、金属銀、ヨウ化銀および金属鉛の少なくとも
一種を、常にその溶液度以上の量添加して行うこ
とを特徴とする無電解銅めつき方法。 2 前記ポリエチレングリコールおよびそのアル
キルエーテルの少なくとも一種を0.02g/以上
添加することを特徴とする特許請求の範囲第1項
記載の無電解銅めつき方法。 3 前記ポリエチレングリコールおよびそのアル
キルエーテルのオキシエチレン数が2〜80である
ことを特徴とする特許請求の範囲第1項又は第2
項記載の無電解銅めつき方法。
[Claims] 1. In an electroless copper plating method using an electroless copper plating solution containing a copper salt, a complexing agent, a reducing agent, and a PH regulator, at least one of polyethylene glycol and its alkyl ether is added. At the same time, an electroless copper plating method characterized in that at least one of metallic silver, silver iodide, and metallic lead is always added in an amount equal to or higher than the solution concentration thereof. 2. The electroless copper plating method according to claim 1, wherein 0.02 g or more of at least one of the polyethylene glycol and its alkyl ether is added. 3. Claim 1 or 2, wherein the number of oxyethylenes in the polyethylene glycol and its alkyl ether is 2 to 80.
Electroless copper plating method described in Section 1.
JP1539782A 1982-02-01 1982-02-01 Electroless copper plating liquid Granted JPS58133365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1539782A JPS58133365A (en) 1982-02-01 1982-02-01 Electroless copper plating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1539782A JPS58133365A (en) 1982-02-01 1982-02-01 Electroless copper plating liquid

Publications (2)

Publication Number Publication Date
JPS58133365A JPS58133365A (en) 1983-08-09
JPH0416550B2 true JPH0416550B2 (en) 1992-03-24

Family

ID=11887591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1539782A Granted JPS58133365A (en) 1982-02-01 1982-02-01 Electroless copper plating liquid

Country Status (1)

Country Link
JP (1) JPS58133365A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684545B2 (en) * 1985-03-29 1994-10-26 日立化成工業株式会社 Electroless copper plating solution
JPS6311678A (en) * 1986-06-30 1988-01-19 Hitachi Chem Co Ltd Electroless copper plating method
US4975553A (en) * 1989-02-22 1990-12-04 Square D Company Line terminal and arc stack for a circuit breaker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220339A (en) * 1975-08-08 1977-02-16 Hitachi Ltd Chemical copper plating solution
JPS5551028A (en) * 1978-10-11 1980-04-14 Asahi Chem Ind Co Ltd Preparation of tertiary butanol from mixed butylene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220339A (en) * 1975-08-08 1977-02-16 Hitachi Ltd Chemical copper plating solution
JPS5551028A (en) * 1978-10-11 1980-04-14 Asahi Chem Ind Co Ltd Preparation of tertiary butanol from mixed butylene

Also Published As

Publication number Publication date
JPS58133365A (en) 1983-08-09

Similar Documents

Publication Publication Date Title
JP4932094B2 (en) Electroless gold plating solution and electroless gold plating method
JP4603812B2 (en) Improved tin plating method
JP2010261082A (en) Electroless palladium plating solution
KR20080052479A (en) Electroless gold plating bath, electroless gold plating method and electronic parts
WO2002016668A1 (en) Electroless displacement gold plating solution and additive for preparing said plating solution
US6767392B2 (en) Displacement gold plating solution
KR920002710B1 (en) Chemical copper plating method
JPH0416550B2 (en)
EP4230775A1 (en) Tin alloy plating solution
US11512394B2 (en) Electroless gold plating bath
JPH08311663A (en) Release liquid for nickel coating film or nickel alloy coating film
JPS6141774A (en) Modified aqueous bath for nickel plating and method
JP2000309876A (en) Substitution type electroless tin-silver alloy plating solution
JP2649749B2 (en) Selective electroless plating method on copper material
CN113005438B (en) Method for using silver ion accelerator as additive for improving palladium plating rate in chemical palladium plating solution
CN116508401A (en) Electroless gold plating solution
JP2023157562A (en) Electroless copper plating solution and electroless copper plating method using the same
JPS60138076A (en) Chemical copper plating liquid
JPH02122079A (en) Electroless copper plating solution
JPH0425348B2 (en)
JPS6227152B2 (en)
JPS613884A (en) Electroless copper plating liquid
JPH0570964A (en) Electroless copper plating solution
JPH0570965A (en) Electroless copper plating solution
JPS60218481A (en) Chemical copper plating solution