JPH04164803A - Recovery of valuable substance from nox-containing gas - Google Patents

Recovery of valuable substance from nox-containing gas

Info

Publication number
JPH04164803A
JPH04164803A JP2294024A JP29402490A JPH04164803A JP H04164803 A JPH04164803 A JP H04164803A JP 2294024 A JP2294024 A JP 2294024A JP 29402490 A JP29402490 A JP 29402490A JP H04164803 A JPH04164803 A JP H04164803A
Authority
JP
Japan
Prior art keywords
gas
nox
treating
perovskite
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2294024A
Other languages
Japanese (ja)
Inventor
Katsutoshi Nakayama
勝利 中山
Akio Nakashiba
中芝 明雄
Shoji Doi
祥司 土肥
Koji Moriya
守家 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2294024A priority Critical patent/JPH04164803A/en
Publication of JPH04164803A publication Critical patent/JPH04164803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost for treatment by bringing NOx in the subject gas for treatment into contact with the first perovskite-type compound and the second perovskite-type compound respectively at a specified temperature, decomposing NOx into N2 and O2, making the resultant O2 adsorbed, subsequently liberating the adsorbing O2 and recovering O2. CONSTITUTION:A treating gas-inflow side part 31 of the first treating unit 3 accommodating the first perovskite-type compound such as BaZrOx (x is 1-3) having O2 defects is kept at the first reaction temperature and a treating gas-outflow side part 32 thereof is kept at the second reaction temperature. As the first process, a treating gas containing NOx is supplied to the first treating unit 3 and NOx is decomposed into O2 and N2 in the treating gas inflow part 31. O2 content in the treated gas is increased at the same time and the treated gas is sent to the treating gas outflow side part 32. As the second process, O2 is adsorbed at the second reaction temperature on the second perovskite-type compound such as LaCoOx (x is 1-3) having O2 defects. If O2-adsorption power is lowered with time, supply-side valves (V1) and (V2) are changed to send the treating gas to the second treating unit 4. Decomposition of NOx and adsorption of decomposition product O2 are successively carried out thereby. As the third process after the above-mentioned changing process, liberation of O2 is carried out at the third temperature in the first treating unit 3 and the liberated gas is sent to an O2-enriched gas tank 2 and recovered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、処理対象ガスである燃焼排気ガス中等から、
このガスか含有する有害なNOxを分解除去するととも
に、さらにNOxの分解除去により生成される有価物を
回収する有価物回収方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the treatment of combustion exhaust gas, etc., which is a gas to be treated.
The present invention relates to a method for recovering valuable materials, which decomposes and removes harmful NOx contained in this gas, and further recovers valuable materials produced by the decomposition and removal of NOx.

〔従来の技術〕[Conventional technology]

従来、排ガス等のNOx含有ガスは、無害化するために
NOxを除去する処理しか考えられておらず、そのため
に、NOx含有ガスから有価物を回収する方法なとは考
えもされていなかった。しかも、NOxを除去する方法
としては、除去剤として還元物(還元ガス、還元剤等)
と触媒を並用するか、あるいは触媒を単独で使用してN
Oxを分解する方法しかなかった。
Conventionally, NOx-containing gas such as exhaust gas has been considered to be treated only by removing NOx in order to render it harmless, and therefore, it has not been considered as a method for recovering valuables from NOx-containing gas. Moreover, as a method for removing NOx, reducing substances (reducing gas, reducing agent, etc.) are used as a removing agent.
and a catalyst, or by using a catalyst alone.
The only way was to decompose Ox.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述のNOx除去方法においては、還元
物(還元ガス、還元剤等)と触媒を並用する方法を採用
すると、燃焼空気比制御装置あるいは還元剤供給装置、
燃焼ガスと還元剤の混合装置、未反応還元剤の処理装置
等を備えて、NOxの分解除去処理を行う必要か生し、
装置か大掛かりてしかも高価になっていた。一方、触媒
を単独で使用する場合は、触媒としてPt担持A 1.
20−等の貴金属触媒、金属担持セオライト等を使用し
てNOxの分解処理を行う必要かあり、いずれにしても
取扱におおくの手間や経費かかかるものであった。
However, in the above-mentioned NOx removal method, if a method that uses a reducing product (reducing gas, reducing agent, etc.) and a catalyst is adopted, the combustion air ratio control device or the reducing agent supply device,
Equipped with a combustion gas and reducing agent mixing device, an unreacted reducing agent processing device, etc., it is necessary to decompose and remove NOx.
The equipment was large and expensive. On the other hand, when using a catalyst alone, Pt supported A1.
It is necessary to decompose NOx using a noble metal catalyst such as No. 20, metal-supported theolite, etc., and in any case, the handling is time-consuming and costly.

そこで、本発明の目的は、NOX含有ガスからNOxを
単に分解除去するたけでなく、効率良く少ない手間で分
解除去しながら、分解除去の際に生成する酸素を有価物
として回収できるようにする方法を提供することにある
Therefore, the purpose of the present invention is to provide a method that not only decomposes and removes NOx from NOx-containing gas, but also allows efficient decomposition and removal with less effort while recovering oxygen generated during decomposition and removal as a valuable product. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するための本発明によるNOx含有ガス
からの有価物回収方法の特徴手段は、処理対象ガスに含
有されるNOxを、常温より高い第一反応温度で酸素欠
陥を有するジルコン酸塩の第一ペロブスカイト型化合物
と接触させてNOXをN2とO2に分解除去する第一工
程と、 第一工程で生成される02を常温より高い第二反応温度
で酸素欠陥を有する第二ペロブスカイト型化合物と接触
させてこれに収着させる第二工程と、 第二工程で生成される02収着状態の第二ペロブスカイ
ト型化合物を第三反応温度にするこトニよって、第二ペ
ロブスカイト型化合物から前記O2を脱離させてこのO
2を回収する第三工程とから構成されていることにあり
、その作用・効果は次の通りである。
The characteristic means of the method for recovering valuables from NOx-containing gas according to the present invention to achieve this object is to remove NOx contained in the gas to be treated by converting it into zirconate having oxygen defects at a first reaction temperature higher than room temperature. A first step of contacting with a first perovskite compound to decompose and remove NOX into N2 and O2, and converting 02 produced in the first step into a second perovskite compound having oxygen vacancies at a second reaction temperature higher than room temperature. A second step of contacting and sorbing O2 onto the second perovskite compound, and bringing the second perovskite compound in the 02 sorption state produced in the second step to a third reaction temperature, thereby removing the O2 from the second perovskite compound. Let me detach this O
The operation and effects are as follows.

〔作 用〕[For production]

つまり、常温より高い第一反応温度で酸素欠陥を有する
ジルコン酸塩の第一ペロブスカイト型化合物、および常
温より高い第二反応温度で酸素欠陥を有する第二ペロブ
スカイト型化合物は、NOXを分解するたけてなく、酸
素も収着する性質かあり、しかも、第一ペロブスカイト
型化合物はNOXをN2と02に効率良く分解する。こ
こで、第一段階においては、第一ペロブスカイト型化合
物か、前述の触媒のような働きをし、その第一反応温度
てNOXを酸素および窒素に分解して無害化する。この
分解反応によって生成される酸素か、第二段階で第二反
応温度とされている第二ペロブスカイト型化合物に接触
させられて、これに吸着される。そしてさらに、第三段
階において、酸素吸着状態の前述の第二ペロブスカイト
型化合物か第三反応温度とされて、この化合物から酸素
か脱離されてくるのである。
In other words, the first perovskite-type compound of zirconate having oxygen vacancies at the first reaction temperature higher than room temperature and the second perovskite-type compound having oxygen vacancies at the second reaction temperature higher than room temperature are capable of decomposing NOX. In addition, the first perovskite compound efficiently decomposes NOx into N2 and O2. Here, in the first stage, the first perovskite compound acts like the aforementioned catalyst and decomposes NOx into oxygen and nitrogen at the first reaction temperature to render it harmless. In the second stage, the oxygen produced by this decomposition reaction is brought into contact with the second perovskite compound at the second reaction temperature, and is adsorbed by the second perovskite compound. Furthermore, in the third stage, the second perovskite type compound in the oxygen adsorption state is brought to the third reaction temperature, and oxygen is desorbed from this compound.

〔発明の効果〕〔Effect of the invention〕

したかって、この方法を採用する場合、NOxの分解除
去、酸素の収着、脱離か各々第一、第二ペロブスカイト
型化合物と処理ガスとの接触だけて行えるために、従来
のNOx処理方法のように還元ガスや還元剤等を使用す
る手間のかかる取扱をせずとも、それぞれの工程におい
て反応温度を適当に保ってやりさえすればよく、操作か
簡単に行える。ここで、これらの化合物は、粒子状、ハ
ニカム状といったように適当且っ容易な形状のまま、処
理対象となるNOx含有ガス流路内に配設して、温度を
設定するたけてよいために、当然、その装置を構成する
場合は簡単で、小型化も可能になる。
Therefore, when this method is adopted, the decomposition and removal of NOx, and the sorption and desorption of oxygen can be carried out only by contacting the first and second perovskite compounds with the processing gas, which makes it possible to eliminate the decomposition and removal of NOx, which is different from the conventional NOx treatment method. The process can be easily performed by simply maintaining the reaction temperature at an appropriate level in each step, without requiring the laborious handling of reducing gases, reducing agents, and the like. Here, these compounds can be placed in an appropriate and easy shape such as particulate or honeycomb shape in the NOx-containing gas flow path to be treated, so that the temperature can be set. Naturally, the device is simple to configure and can be made smaller.

さらに、ペロブスカイト型化合物を使用するため、比較
的低濃度(ppmオーダ)のNOXに対してこれを使用
することかできるとともに、広い温度範囲に渡って(2
0〜900°C)酸素の収着、分離作動を行うことか可
能となるのである。
Furthermore, since a perovskite type compound is used, it can be used against relatively low concentrations (ppm order) of NOx and can be used over a wide temperature range (2
This makes it possible to perform oxygen sorption and separation operations (0 to 900°C).

結局、排ガス等のNOx含有ガスを無害化するたけてな
く、その処理によって生成する酸素を存価物として回収
できるために、NOX含有ガスの無害化のための処理経
費を、全体として安く抑えることかてきるようになった
After all, it is not enough to make NOx-containing gases such as exhaust gas harmless, and the oxygen generated by the treatment can be recovered as a valuable resource, so it is possible to keep the processing costs for making NOx-containing gas harmless as a whole. Now I can write.

〔実施例〕〔Example〕

本願のNOx含有ガスからの有価物回収方法を適応した
処理装置(1)の実施例を図面に基づいて説明する。こ
の処理装置(1)は、連続的に排ガス(g1)中に含有
されるNOxを分解するとともに、さらにNOx分解に
よって生成される酸素を酸素富化ガス貯蔵部(2)に回
収するためのものである。
An embodiment of a processing apparatus (1) to which the method of recovering valuables from NOx-containing gas of the present application is applied will be described based on the drawings. This processing device (1) is for continuously decomposing NOx contained in the exhaust gas (g1) and further recovering oxygen generated by the NOx decomposition into the oxygen-enriched gas storage section (2). It is.

処理装置(1)の構成を以下に説明する。この処理装置
(1)においては、NOx分解およびこの分解により生
成される酸素の吸着と酸素の脱離を交互に行う第一、第
二処理部(3)、 (4)を備えている。この第一、第
二処理部(3)、 (4)にはそれぞれ、その処理ガス
流入側部位(31)、 (41)にジルコン酸塩から成
る第一ペロブスカイト型化合物としてのB a Z r
 0x(x= 1〜3)か収納されているとともに、そ
の処理ガス流出側部位(32)、 (42) j’ニー
第二ペロブスカイト型化合物としてのLaCo0x(x
=1〜3)か収納されている。そして、各部位にはこれ
らの部位の温度を設定する流入側温度設定機構(33)
、 (43)、及び流出側温度調節機構(34)、 (
44)か、それぞれ設けられている。ここで、これらの
第一、第二処理部(3)、 (4)の構造は実質同一で
ある。さて、つぎにこれらの処理部(3)、 (4)に
処理対象ガスとしての排ガス(g1)を供給する供給側
配管路(5)について説明する。供給側配管路(5)は
、排気ガス(g1)か流入する排ガス源(6)と、処理
部(3)。
The configuration of the processing device (1) will be explained below. This processing device (1) includes first and second processing sections (3) and (4) that decompose NOx and alternately adsorb and desorb oxygen generated by this decomposition. In the first and second processing sections (3) and (4), B a Z r as a first perovskite compound consisting of zirconate is added to the processing gas inflow side sections (31) and (41), respectively.
0x (x = 1 to 3) is stored, and the processing gas outlet side portion (32), (42) j'-nee second perovskite compound LaCo0x (x
= 1 to 3) are stored. Each part has an inflow side temperature setting mechanism (33) that sets the temperature of these parts.
, (43), and outflow side temperature adjustment mechanism (34), (
44), respectively. Here, the structures of these first and second processing sections (3) and (4) are substantially the same. Next, a description will be given of the supply side piping path (5) that supplies the exhaust gas (g1) as the gas to be processed to these processing units (3) and (4). The supply side piping (5) includes an exhaust gas source (6) into which exhaust gas (g1) flows, and a processing section (3).

(4)で発生するガス(酸素ガス)を搬送する搬送流体
(g2)を供給する搬送流体供給源(7)とに、各処理
部(3)、 (4)を交互に接続するように構成されて
いる。ここで、この切り換え操作は、供給側配管路(6
)に備えられている一対の供給側弁(v1)、 (v2
)を切り換えて行われる。次に、排出側について説明す
ると、前述の供給側配管路(5)と同様の配管構成を取
った排出側配管路(8)か備えられており、この配管路
(8)の下流側か、それぞれ排ガス開放系(9)および
前述の酸素富化ガス貯蔵部(2)に接続されているので
ある。
The processing units (3) and (4) are configured to be alternately connected to a carrier fluid supply source (7) that supplies a carrier fluid (g2) that carries the gas (oxygen gas) generated in (4). has been done. Here, this switching operation is performed on the supply side piping path (6
), a pair of supply side valves (v1) and (v2
). Next, to explain the discharge side, a discharge side piping line (8) having the same piping configuration as the above-mentioned supply side piping line (5) is provided, and on the downstream side of this piping line (8), They are respectively connected to the exhaust gas open system (9) and the aforementioned oxygen-enriched gas storage section (2).

ここで、この排出側配管路(8)においても一対の排出
側弁(v3)、 (v4)の切り換え操作によって、そ
れぞれの接続状態か択一的に切り換わる。
Here, also in this discharge side piping line (8), the respective connection states are selectively switched by switching operations of the pair of discharge side valves (v3) and (v4).

さて、ここで、前述の第一、第二処理部(3)。Now, here, the above-mentioned first and second processing sections (3).

(4)の処理ガス流入側部位(31)、 (41)およ
び処理ガス流出側部位(32)、 (42)に収納され
ているB a Z r 0x(x= 1〜3)及びLa
Co0x(x=1〜3)の性質について説明する。先ず
、B a Z r 0x(x= 1〜3)について説明
すると、この化合物は常温より高い温度で酸素欠陥を有
する結晶構造をとるものであり、700°C以上の昇温
状態でNOxを含有するガスと接触されると、NOxを
窒素と酸素に分解する分解能を備えたものである。一方
LaCo0x(x=1〜3)について説明すると、この
化合物は前述のBaZ r 0x(x= 1〜3)と同
様に常温より高い温度で酸素欠陥を有する結晶構造を取
るものであり、さらに、200〜600°Cの温度域に
おいて酸素に対して収着性能を有するとともに、酸素収
着状態にあるこの化合物をさらに高い温度である900
°C近傍まで昇温操作すると、収着状態の酸素を脱離し
て、これを開放する性質を有するものである。
B a Z r 0x (x = 1 to 3) and La stored in the processing gas inflow side parts (31), (41) and the processing gas outflow side parts (32), (42) of (4)
The properties of Co0x (x=1 to 3) will be explained. First, to explain B a Z r 0x (x = 1 to 3), this compound has a crystal structure with oxygen defects at temperatures higher than room temperature, and when heated to 700°C or higher, it contains NOx. It has the decomposition ability to decompose NOx into nitrogen and oxygen when it comes into contact with a gas that decomposes NOx into nitrogen and oxygen. On the other hand, when explaining LaCo0x (x = 1 to 3), this compound takes a crystal structure with oxygen defects at a temperature higher than room temperature, similar to the above-mentioned BaZ r 0x (x = 1 to 3), and furthermore, This compound has a sorption ability for oxygen in the temperature range of 200 to 600°C, and it can be absorbed in the oxygen sorption state at even higher temperatures of 900°C.
When the temperature is raised to around °C, the sorbed oxygen is desorbed and released.

以下にこの処理装置(1)の運転状態を説明する。先ず
、第一処理部(3)をNOx分解およびこの分解により
生成される酸素の吸着に使用する状態を説明する。この
とき、第一処理部(3)の処理ガス流入側部位(31)
か、第一反応温度としての900°Cに、さらに処理ガ
ス流出側部位(32)か第二反応温度としての600°
Cに保たれる。
The operating state of this processing device (1) will be explained below. First, a state in which the first processing section (3) is used for NOx decomposition and adsorption of oxygen generated by this decomposition will be described. At this time, the processing gas inflow side portion (31) of the first processing section (3)
or 900°C as the first reaction temperature, and 600° as the second reaction temperature at the processing gas outlet side (32).
It is kept at C.

そして、この第一処理部(3)にNOxを含有した排ガ
ス(g1)か供給される。このようにすると、前述の処
理ガス流入側部位(31)において、NOxか酸素と窒
素に分解され、排ガス(g1)がNOxフリーの清浄な
状態とされるとともに、このガス中に多量の酸素か含ま
れて前述の処理ガス流出側部位(32)に送られてくる
。この分解工程を、第一工程と呼ぶ。そして、さらにこ
の酸素かLacoox(x=1〜3)によって収着され
るのである。この収着工程を第二工程と呼ぶ。
Then, the exhaust gas (g1) containing NOx is supplied to this first processing section (3). In this way, NOx is decomposed into oxygen and nitrogen at the processing gas inflow side section (31), and the exhaust gas (g1) is kept in a clean NOx-free state, and a large amount of oxygen is contained in this gas. The gas is contained therein and sent to the above-mentioned processing gas outflow side section (32). This decomposition step is called the first step. This oxygen is further adsorbed by Lacoox (x=1 to 3). This sorption process is called the second process.

さて、この状態でLaCo0x(x=1〜3)は処理時
間の経過とともに酸素飽和の状態となっていく。こうな
るとLaCo0x(x=1〜3)の酸素収着性能が低下
するのであるが、前述のLaC00x(x=1〜3)に
よる酸素収着性能が低下した場合に、前述の供給側弁(
v1)、 (v2)か切り換えられ、排気ガス(g1)
は第二処理部(4)に送られる。第二処理部(4)は、
この状態でNOx分解およびこの分解により生成される
酸素の吸着作動を受は継ぐのである。さらに、このとき
、第二処理部(4)からの排ガス(g3)か前述の排ガ
ス開放系(9)に送られるのである。
Now, in this state, LaCo0x (x=1 to 3) becomes saturated with oxygen as the processing time progresses. In this case, the oxygen sorption performance of LaCo0x (x = 1 to 3) decreases, but when the oxygen sorption performance of the aforementioned LaC00x (x = 1 to 3) decreases, the aforementioned supply side valve (
v1), (v2) is switched, and the exhaust gas (g1)
is sent to the second processing section (4). The second processing section (4) is
In this state, the NOx decomposition and the adsorption of oxygen generated by this decomposition continue. Furthermore, at this time, the exhaust gas (g3) from the second processing section (4) is sent to the aforementioned exhaust gas release system (9).

一方、第一処理部(3)は、この切り換え操作以後、第
三工程としての酸素の脱離作用を行うこととなる。この
とき第一処理部(3)は、搬送ガス供給源(7)と接続
されるとともに、下流側で酸素富化ガス貯蔵部(2)に
接続される。そして、搬送ガス(g2)を流した状態で
、処理ガス流出側部位(32)が第三反応温度としての
900°Cに昇温されるのである。このようにすると、
LaCo0x(x=1〜3)から脱離される酸素が搬送
ガス(g2)によって、酸素富化ガス貯蔵部(2)に搬
送されるとともに、この部位に回収されるのである。
On the other hand, after this switching operation, the first processing section (3) performs an oxygen desorption operation as a third step. At this time, the first processing section (3) is connected to the carrier gas supply source (7) and also connected to the oxygen-enriched gas storage section (2) on the downstream side. Then, while the carrier gas (g2) is flowing, the temperature of the processing gas outflow side portion (32) is raised to 900° C. as the third reaction temperature. In this way,
Oxygen desorbed from LaCo0x (x=1 to 3) is transported by the carrier gas (g2) to the oxygen-enriched gas storage section (2) and recovered there.

〔別実施例〕[Another example]

上述の実施例において、連続してNOxの分解、酸素の
吸着及び酸素の脱離を行う例を示したか、酸素の脱離時
にNOxの供給を断つ構成とすると、前述の第一、第二
処理部(3)、(4)の一方を備えなくても各処理時に
流入、流出側に接続される流体系(2)、 (6)、 
(7)、 (9)を切り換えることにより上述の実施例
と同様な作用を行うことかできる。このような構造か第
2図に示されている。さて、前述の実施例として、NO
xの分解触媒としてB a Z r 0x(x= 1〜
3)の例を示したか、これは5rZrOx(x=I〜3
)等ても同様の効果か期待てき、これを常温より高い温
度て酸素欠陥のあるジルコン酸塩のペロブスカイト型化
合物と称する。
In the above-mentioned embodiment, an example was shown in which NOx decomposition, oxygen adsorption, and oxygen desorption are performed continuously, or if the configuration is such that the supply of NOx is cut off during oxygen desorption, the first and second treatments described above Fluid systems (2), (6), which are connected to the inflow and outflow sides during each treatment even if one of the sections (3) and (4) is not provided.
By switching between (7) and (9), the same effect as in the above embodiment can be achieved. Such a structure is shown in FIG. Now, as the above-mentioned example, NO.
As a decomposition catalyst for x, B a Z r 0x (x = 1 ~
3), this is 5rZrOx (x=I~3
) etc. are expected to have similar effects, and these are called perovskite-type compounds of zirconate with oxygen vacancies at temperatures higher than room temperature.

さらに酸素を収着、脱離する化合物の例として、LaC
o0x(x= 1〜3)(7)例を示したか、5rCo
Ox等も考えられ、これらを常温より高い温度で酸素欠
陥のあるペロブスカイト型化合物と称する。
Furthermore, as an example of a compound that adsorbs and desorbs oxygen, LaC
o0x(x=1~3)(7) Did you show an example?5rCo
Ox and the like are also considered, and these are called perovskite compounds that have oxygen vacancies at temperatures higher than room temperature.

さらに、第一、第二処理部(3)、 (4)に各化合物
を収納するのに、これをハニカム構造体への含浸とした
り、ケースに入れたペレットのようにして構成すること
もてきる。
Furthermore, in order to store each compound in the first and second processing sections (3) and (4), it is also possible to impregnate a honeycomb structure with it or to form it as a pellet in a case. Ru.

さらに又、第一〜第三反応温度は、各化合物に対して異
なるとともに、温度域を有することは当然である。
Furthermore, it is natural that the first to third reaction temperatures differ for each compound and have a temperature range.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構成
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係るNOx含有ガスの有価物回収方法の
実施例を示し、第1図は本願の方法を適応する処理装置
の模式図、第2図は別実施例の図である。 (g1)・・・・・・処理対象ガス。
The drawings show an embodiment of the method for recovering valuables from NOx-containing gas according to the present invention, FIG. 1 is a schematic diagram of a processing apparatus to which the method of the present application is applied, and FIG. 2 is a diagram of another embodiment. (g1)...Gas to be processed.

Claims (1)

【特許請求の範囲】 処理対象ガス(g1)に含有されるNO_xを、常温よ
り高い第一反応温度で酸素欠陥を有するジルコン酸塩の
第一ペロブスカイト型化合物と接触させて前記NO_x
をN_2とO_2に分解除去する第一工程と、 前記第一工程で生成されるO_2を常温より高い第二反
応温度で酸素欠陥を有する第二ペロブスカイト型化合物
と接触させてこれに収着させる第二工程と、 前記第二工程で生成されるO_2収着状態の前記第二ペ
ロブスカイト型化合物を第三反応温度にすることによっ
て、前記第二ペロブスカイト型化合物から前記O_2を
脱離させてこのO_2を回収する第三工程とから構成さ
れるNO_x含有ガスからの有価物回収方法。
[Claims] The NO_x contained in the gas to be treated (g1) is brought into contact with a first perovskite compound of zirconate having oxygen vacancies at a first reaction temperature higher than room temperature.
a first step of decomposing and removing O_2 into N_2 and O_2; and a second step of bringing the O_2 produced in the first step into contact with a second perovskite compound having oxygen vacancies at a second reaction temperature higher than room temperature and sorption thereto. two steps, and by bringing the second perovskite compound in an O_2 sorption state produced in the second step to a third reaction temperature, the O_2 is desorbed from the second perovskite compound and this O_2 is released. A method for recovering valuables from NO_x-containing gas, comprising a third step of recovering.
JP2294024A 1990-10-30 1990-10-30 Recovery of valuable substance from nox-containing gas Pending JPH04164803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2294024A JPH04164803A (en) 1990-10-30 1990-10-30 Recovery of valuable substance from nox-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2294024A JPH04164803A (en) 1990-10-30 1990-10-30 Recovery of valuable substance from nox-containing gas

Publications (1)

Publication Number Publication Date
JPH04164803A true JPH04164803A (en) 1992-06-10

Family

ID=17802274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2294024A Pending JPH04164803A (en) 1990-10-30 1990-10-30 Recovery of valuable substance from nox-containing gas

Country Status (1)

Country Link
JP (1) JPH04164803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913184A1 (en) * 1997-10-30 1999-05-06 The Boc Group, Inc. Elevated temperature adsorption process
EP1052219A1 (en) * 1999-05-13 2000-11-15 The Boc Group, Inc. Production of hydrogen and carbon monoxide
DE102013114852A1 (en) 2013-12-23 2015-06-25 Aalto University Arrangement and method for carrying out an intensified combustion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913184A1 (en) * 1997-10-30 1999-05-06 The Boc Group, Inc. Elevated temperature adsorption process
EP1052219A1 (en) * 1999-05-13 2000-11-15 The Boc Group, Inc. Production of hydrogen and carbon monoxide
US6464955B2 (en) 1999-05-13 2002-10-15 The Boc Group, Inc. Production of hydrogen and carbon monoxide
DE102013114852A1 (en) 2013-12-23 2015-06-25 Aalto University Arrangement and method for carrying out an intensified combustion
WO2015096833A1 (en) 2013-12-23 2015-07-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Arrangement and process for carrying out an intensified combustion
DE102013114852B4 (en) 2013-12-23 2018-07-05 Aalto University Arrangement and method for carrying out an intensified combustion
US10871130B2 (en) 2013-12-23 2020-12-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. Arrangement and process for carrying out an intensified combustion

Similar Documents

Publication Publication Date Title
JP2007105657A (en) Gas treatment apparatus
TWI282748B (en) Gas purification method and apparatus thereof
KR101144699B1 (en) A method and apparatus for catalyst regeneration
JP2007000733A5 (en)
JPH04164803A (en) Recovery of valuable substance from nox-containing gas
EP0604198A1 (en) Method for treating ammonia
JP3197072B2 (en) Regeneration method of ammonia adsorbent
KR100719371B1 (en) Adsoption apparatus and method for recycling perfluorocompounds
CN1315563C (en) Adsorption stripping method for removing ethene and carbon dioxide from mixed gas
JP3300896B2 (en) How to remove trace oxygen
JPH05123525A (en) Gas purifying method and apparatus therefor
JP3080687B2 (en) How to concentrate chlorine gas
JP3788814B2 (en) Solvent recovery method
JP2007175595A (en) Exhaust gas treatment facility and exhaust gas treatment method
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
JPH04161221A (en) Method and apparatus adsorbing and removing nox
JP3206871B2 (en) Solvent gas treatment apparatus and solvent gas treatment method
JPH07144903A (en) Ozone generating and concentrating device
JP3273353B2 (en) Dry desulfurization method of sulfuric acid plant exhaust gas
JPH08318127A (en) Dilute nox treating device
JP2001332498A (en) Gas detoxification system and method
JPH08252428A (en) Removal of nitrogen dioxide
JPH06233915A (en) Denitration equipment of combustion exhaust gas
JPH0422419A (en) Method for adsorbing and removing ammonia
JPH04250822A (en) Removing method for nitrogen oxides