JPH04250822A - Removing method for nitrogen oxides - Google Patents

Removing method for nitrogen oxides

Info

Publication number
JPH04250822A
JPH04250822A JP3111176A JP11117691A JPH04250822A JP H04250822 A JPH04250822 A JP H04250822A JP 3111176 A JP3111176 A JP 3111176A JP 11117691 A JP11117691 A JP 11117691A JP H04250822 A JPH04250822 A JP H04250822A
Authority
JP
Japan
Prior art keywords
nitrogen oxides
adsorbent
raw material
adsorption tower
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3111176A
Other languages
Japanese (ja)
Inventor
Yuji Horii
堀井 雄二
Kunio Osaka
大坂 邦夫
Hisaaki Yokota
横田 久昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3111176A priority Critical patent/JPH04250822A/en
Publication of JPH04250822A publication Critical patent/JPH04250822A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To supply a method to remove nitrogen oxides from a large volume of raw material gas incorporating a low concentration of nitrogen oxides efficiently and surely in the removing method of the nitrogen oxide incorporated in the tunnel exhaust for car use and the exhaust in indoor car parking lot, etc. CONSTITUTION:The method is as follows; the raw material gas is introduced in the adsorption tower 4a or 4b filled a NOx adsorbent and the nitrogen oxides are adsorbed and the inside of the adsorption tower 4a or 4b is heated and the nitrogen oxides are desorbed in the condensed state and subsequently it is fed to the reactor 10 filled a nitrogen oxide reduction catalyst and it is converted into nitrogen. Also by dehumidifying the raw material gas with the adsorption tower 4C or 4D filled a dehumidifying adsorbent, the operation under a high humidity condition is also attained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は大気中に含まれる窒素酸
化物(以下単にNOxという)の除去方法に関し、特に
自動車用トンネル排気や、屋内自動車駐車場排気等に含
まれる数ppm オーダーの低濃度NOx を効率よく
除去し、無害の窒素に還元して大気浄化を行なう窒素酸
化物の除去方法である。
[Industrial Application Field] The present invention relates to a method for removing nitrogen oxides (hereinafter simply referred to as NOx) contained in the atmosphere, particularly in the order of several ppm contained in automobile tunnel exhaust, indoor automobile parking lot exhaust, etc. This is a nitrogen oxide removal method that efficiently removes concentrated NOx and reduces it to harmless nitrogen to purify the atmosphere.

【0002】0002

【従来の技術】ボイラーや焼結炉等の排ガス中NOx 
を回収及び除去する技術は古くから研究されており、例
えば数100ppm オーダーの煙道ガスを、酸化チタ
ンを主成分とする触媒の存在下にアンモニアを還元剤と
して窒素まで還元する方法等が用いられている。
[Prior art] NOx in exhaust gas from boilers, sintering furnaces, etc.
Techniques for collecting and removing nitrogen have been researched for a long time. For example, a method has been used in which flue gas on the order of several hundred ppm is reduced to nitrogen using ammonia as a reducing agent in the presence of a catalyst whose main component is titanium oxide. ing.

【0003】また活性化したコークスに被処理ガスとア
ンモニアを加えてNOx を窒素まで還元する方法[伊
藤義郎,化学装置,1990(3),p.60−64]
や、銅を分散させた疎水性ゼオライトを触媒として、還
元剤を用いずに窒素まで還元しようとする研究(特開昭
60−125250)も行なわれている。
[0003] Also, a method of reducing NOx to nitrogen by adding a to-be-treated gas and ammonia to activated coke [Yoshiro Ito, Kagaku Seki, 1990 (3), p. 60-64]
Research has also been conducted on reducing nitrogen to nitrogen without using a reducing agent using a hydrophobic zeolite in which copper is dispersed as a catalyst (Japanese Patent Laid-Open No. 125250/1983).

【0004】0004

【発明が解決しようとする課題】ところで上記の各NO
x 除去方法は、活性化コークスを用いる方法において
は被処理ガスを100〜200℃、その他の触媒を用い
る方法においては300〜500℃程度まで加熱して運
転する必要がある。したがって自動車用トンネル排気や
屋内自動車駐車場排気等の様に、常温の大量空気中に数
ppm オーダーの低濃度で含まれるNOx を対象と
する場合には、上記公知方法は被処理ガスの加熱に多量
のエネルギーを必要とする点で不経済である。
[Problems to be solved by the invention] By the way, each of the above NOs
x Removal methods require heating the gas to be treated to 100 to 200°C in methods using activated coke, and heating to approximately 300 to 500°C in methods using other catalysts. Therefore, when the target is NOx, which is contained in a large amount of room-temperature air at a low concentration of several ppm, such as in automobile tunnel exhaust or indoor automobile parking lot exhaust, the above-mentioned known method is suitable for heating the gas to be treated. It is uneconomical because it requires a large amount of energy.

【0005】またこのような低濃度NOx を効率よく
還元できる性能を有する触媒は開発されていない。さら
に上記トンネルや駐車場を対象とする場合の被処理ガス
中のNOx 濃度は、交通量等によって大幅に経時変化
するため、アンモニア還元法を行なう場合には、過剰ア
ンモニアを系外に放出させないよう、注入量を精密に制
御しなければならないという問題があった。
[0005] Furthermore, no catalyst has been developed that has the ability to efficiently reduce NOx at such a low concentration. Furthermore, the NOx concentration in the gas to be treated when tunnels and parking lots are targeted changes significantly over time depending on traffic volume, etc., so when performing the ammonia reduction method, care must be taken to prevent excess ammonia from being released outside the system. However, there was a problem in that the injection amount had to be precisely controlled.

【0006】この様に従来開発されている各方法は、常
温且つ大量の排気ガス処理技術としては不適当である。
[0006] As described above, each of the conventionally developed methods is inappropriate as a technology for treating a large amount of exhaust gas at room temperature.

【0007】そこで本発明においては、このような従来
技術に係る問題点を解決し、低濃度で且つ風量変動の多
い排ガス中のNOx を効率よく還元除去する方法を提
供することを目的とする。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to solve the problems associated with the prior art and to provide a method for efficiently reducing and removing NOx in exhaust gas, which has a low concentration and has a large air flow rate fluctuation.

【0008】[0008]

【課題を解決するための手段】上記目的を達成した本発
明は、窒素酸化物用吸着剤(以下単にNOx 用吸着剤
という)が充填された吸着塔に原料ガス(一般には大気
)を導き、原料ガス中に含まれる窒素酸化物を該吸着剤
に吸着させたのち、前記吸着塔内を加熱して窒素酸化物
を原料ガスよりも濃縮された状態で脱着させ、この取り
出されたガスを、窒素酸化物還元触媒の充填された反応
器に導いて窒素酸化物を窒素に変換させたのち、導出す
るものである。
[Means for Solving the Problems] The present invention achieves the above object by introducing a raw material gas (generally atmospheric air) into an adsorption tower filled with a nitrogen oxide adsorbent (hereinafter simply referred to as an NOx adsorbent). After the nitrogen oxides contained in the raw material gas are adsorbed by the adsorbent, the interior of the adsorption tower is heated to desorb the nitrogen oxides in a state more concentrated than the raw material gas, and the extracted gas is The nitrogen oxides are introduced into a reactor filled with a nitrogen oxide reduction catalyst to convert the nitrogen oxides into nitrogen, and then discharged.

【0009】またNOx 用吸着剤としては、ハニカム
状あるいは繊維状に成形された炭素質吸着剤、またはハ
ニカム状に形成された疎水性ゼオライトを使用すること
が望ましい。さらに前記反応器からの排ガスの一部また
は全部を、吸着塔に導入される前の原料ガスと混合させ
るか、あるいは該原料ガスと熱交換させることによって
、NOx 用吸着剤の充填された吸着塔に入るガスのガ
ス温度を上げることが望ましい。さらにNOx 用吸着
剤を充填した吸着塔へ原料ガスを導入する前に、脱湿用
吸着剤を充填した吸着塔内へ原料ガスを導入して脱湿す
ることが好ましい。
[0009] As the NOx adsorbent, it is desirable to use a carbonaceous adsorbent formed into a honeycomb shape or a fiber shape, or a hydrophobic zeolite formed into a honeycomb shape. Furthermore, part or all of the exhaust gas from the reactor is mixed with the raw material gas before being introduced into the adsorption tower, or by heat exchanged with the raw material gas, an adsorption tower filled with an adsorbent for NOx is produced. It is desirable to increase the gas temperature of the gas entering. Furthermore, before introducing the raw material gas into an adsorption tower filled with an adsorbent for NOx, it is preferable to introduce the raw material gas into an adsorption tower filled with a dehumidifying adsorbent for dehumidification.

【0010】0010

【作用】低濃度NOx を、NOx 用吸着剤を利用す
ることによってある程度まで濃縮することにより、窒素
酸化物還元触媒を充填した反応器は定常的に十分な能力
を発揮でき、効率的な還元処理が行なわれる。一方NO
x 用吸着剤や脱湿用吸着剤を再生するには、一般には
塔内温度を100〜150℃程度まで昇温するための加
熱エネルギーが必要であるが、ここでは加熱脱着された
ガスは昇温された状態で前記反応器に導入されるので、
上記脱着の為の熱エネルギーは還元反応を行なう為のエ
ネルギーとして活用されることになって不経済性は無い
[Effect] By concentrating low-concentration NOx to a certain extent by using an NOx adsorbent, the reactor filled with the nitrogen oxide reduction catalyst can constantly demonstrate sufficient capacity, resulting in efficient reduction processing. will be carried out. On the other hand, NO
To regenerate the adsorbent for x and dehumidification, heating energy is generally required to raise the temperature inside the column to about 100 to 150°C, but here the thermally desorbed gas is Since it is introduced into the reactor in a warmed state,
The thermal energy for the above-mentioned desorption is utilized as energy for carrying out the reduction reaction, so there is no uneconomical effect.

【0011】またNOx 除去対象である原料ガスその
ものは極めて大風量である為、一定時間での処理量を確
保するには、原料ガスを高流速化することが必要である
。 一方設備の大型化は避けることが望ましく、その為には
吸着塔断面積(設置面積)をできるだけ小さくし、且つ
吸着塔内圧力損失をできるだけ少なくして、原料ガス吸
入用ブロアの動力費の上昇を防ぐことが必要である。そ
こで吸着剤としてハニカム状あるいは繊維状のものを用
いることにより、圧力損失を低く抑えてガス流速を高速
化することが推奨される。
[0011] Furthermore, since the raw material gas itself from which NOx is to be removed has an extremely large air volume, it is necessary to increase the flow rate of the raw material gas in order to ensure the throughput in a certain period of time. On the other hand, it is desirable to avoid increasing the size of the equipment, and for this purpose, the cross-sectional area (installation area) of the adsorption tower should be made as small as possible, and the pressure loss inside the adsorption tower should be minimized to avoid an increase in the power cost of the blower for sucking the raw gas. It is necessary to prevent Therefore, it is recommended to use a honeycomb-like or fibrous adsorbent to suppress the pressure loss and increase the gas flow rate.

【0012】また炭素質吸着剤あるいは疎水性ゼオライ
トをNOx 用吸着剤として用いる場合は、原料ガス中
に含まれる水分の影響を少なくし、目的とするNOx 
を能率的に吸着することができる。なお疎水性ゼオライ
トとは結晶骨格を構成するシリカ組成比がアルミナに対
して高く、非極性物質(有機溶剤等)と極性物質(水分
等)が共存する際に、前者を優先的に吸着するゼオライ
トを意味し、例えばZSM−5と公称されているゼオラ
イトを挙げることができる。
[0012] Furthermore, when using a carbonaceous adsorbent or hydrophobic zeolite as an adsorbent for NOx, the influence of moisture contained in the raw material gas is reduced, and the desired NOx
can be adsorbed efficiently. Hydrophobic zeolite is a zeolite whose crystal skeleton has a higher silica composition ratio than alumina, and when non-polar substances (organic solvents, etc.) and polar substances (water, etc.) coexist, it preferentially adsorbs the former. For example, a zeolite called ZSM-5 can be mentioned.

【0013】他方炭素質等の吸着剤は素材的に疎水性で
あるけれども、相対湿度が高い場合には水分が毛管現象
的に吸着剤内の細孔に入って凝縮される為、NOx の
吸着を妨害したり、或は吸着していたNOx を脱着さ
せたりする。このため、原料ガス条件が変わっても吸着
剤内細孔が完全に水分で充填されないようにする為に、
少なくとも相対湿度を80%以下、好ましくは水分の吸
着量が急減する60%以下に保つことが望ましい。
On the other hand, adsorbents such as carbonaceous materials are hydrophobic in nature, but when the relative humidity is high, water enters the pores of the adsorbent by capillary action and condenses, resulting in NOx adsorption. or desorb adsorbed NOx. Therefore, in order to prevent the pores in the adsorbent from being completely filled with moisture even if the raw material gas conditions change,
It is desirable to keep the relative humidity at least 80% or less, preferably 60% or less at which the amount of moisture adsorption rapidly decreases.

【0014】原料ガスを脱湿するもっとも簡単な方法と
しては、前処理として脱湿用吸着剤を充填した吸着塔に
よって原料ガスを脱湿することが挙げられる。この脱湿
用吸着剤としては、上記の通り低湿度までの除湿を必要
としないことにより、シリカゲル,活性アルミナ,活性
炭を用いることが推奨される。なお活性炭は酸化性雰囲
気下での加熱処理や硝酸処理等により、炭素質表面の各
種親水性官能基濃度を増した親水性のものを使用するこ
とが望ましい。
The simplest method for dehumidifying the raw material gas is to dehumidify the raw material gas using an adsorption tower filled with a dehumidifying adsorbent as a pretreatment. As the dehumidifying adsorbent, it is recommended to use silica gel, activated alumina, or activated carbon because, as mentioned above, dehumidification to low humidity is not required. Note that it is desirable to use activated carbon that is hydrophilic and has its carbonaceous surface increased in concentration of various hydrophilic functional groups by heat treatment in an oxidizing atmosphere, treatment with nitric acid, or the like.

【0015】一方例えば温度30℃、相対湿度80%の
ガスの相対湿度を60%まで下げるには、ガス温度を3
5℃まで上げればよく、そこで原料ガス導入時の昇圧に
よる温度上昇に加えて、前記反応器からの排ガスの一部
または全部を、原料ガスと混合するか、あるいは熱交換
させてやれば、吸着塔に入るガスを昇温することになり
、水分による悪影響を排除することができる。
On the other hand, in order to lower the relative humidity of a gas at a temperature of 30° C. and a relative humidity of 80% to 60%, for example, the gas temperature must be
It is sufficient to raise the temperature to 5°C, and in addition to raising the temperature by increasing the pressure when introducing the raw material gas, if some or all of the exhaust gas from the reactor is mixed with the raw material gas or heat exchanged, adsorption can be achieved. This increases the temperature of the gas entering the tower, eliminating the negative effects of moisture.

【0016】上記排ガスを直接混合する場合は、NOx
 用吸着剤を充填した吸着塔に入る原料ガス中のNOx
 濃度が低下するとともに、反応器からの排ガス中の水
分が混入するという欠点があるが、反応器からの排ガス
流量は原料ガス流量に比べて僅かであり、また水分は排
ガス系路に凝縮器を設けること、或は該排ガスを脱着工
程と吸着工程の切換え前後に系外へ廃棄することによっ
て解決でき、これらは大きな問題とはならない。
[0016] When the above exhaust gas is directly mixed, NOx
NOx in the raw gas entering the adsorption tower filled with adsorbent for
There is a disadvantage that the concentration decreases and moisture in the exhaust gas from the reactor gets mixed in, but the flow rate of the exhaust gas from the reactor is small compared to the flow rate of the raw material gas, and moisture can be removed by installing a condenser in the exhaust gas line. These problems do not pose a major problem, since the problem can be solved by providing the exhaust gas or disposing of the exhaust gas outside the system before and after switching between the desorption process and the adsorption process.

【0017】また、原料ガス温度は相対湿度80%から
60%まで変化させるのに、数℃上昇するに過ぎないの
で、吸着量の低下傾向も僅かであり、昇温による吸着速
度向上効果を考慮すると大きな不利益とはならない。た
だし原料ガス中の相対湿度が元々低い場合には、反応器
排ガスを放出してしまってもよい。
[0017] Furthermore, even though the temperature of the raw material gas changes from 80% to 60% relative humidity, it only increases by a few degrees Celsius, so there is only a slight tendency for the amount of adsorption to decrease, taking into account the effect of increasing the temperature on the adsorption rate. Then it won't be a big disadvantage. However, if the relative humidity in the raw material gas is originally low, the reactor exhaust gas may be released.

【0018】[0018]

【実施例】図1は本発明方法を実施するための装置の一
例を示す全体構成図である。該装置はNOx 用吸着剤
を充填した2基の吸着塔4a,4b(以下単にNOx 
用吸着塔4a,4bという)と反応器10を備え、原料
ガス供給管1はブロア2及び切換弁3a,3bを介して
NOx 用吸着塔4a,4bに接続され、該NOx 用
吸着塔4a,4bには切換弁3g,3hを介して吸着排
ガス排出管5が接続される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram showing an example of an apparatus for carrying out the method of the present invention. This device consists of two adsorption towers 4a and 4b (hereinafter simply referred to as NOx adsorbent) filled with NOx adsorbent.
The raw material gas supply pipe 1 is connected to the NOx adsorption towers 4a, 4b via the blower 2 and the switching valves 3a, 3b. An adsorbed exhaust gas exhaust pipe 5 is connected to 4b via switching valves 3g and 3h.

【0019】また該NOx 用吸着塔4a,4bには切
換弁3e,3f、加熱ヒータ7及びブロア12を介して
パージ用ガス導入管が連結されると共に、該NOx 用
吸着塔4a,4bには、脱着ガスを送給するために、切
換弁3c,3d及びヒータ8を介して反応器10と接続
され、該反応器10の排出側はバイパス管11を介して
原料ガス供給管1のブロア2下流部に連結される。
A purge gas introduction pipe is connected to the NOx adsorption towers 4a, 4b via switching valves 3e, 3f, a heater 7, and a blower 12, and a purge gas introduction pipe is connected to the NOx adsorption towers 4a, 4b. , is connected to a reactor 10 via switching valves 3c, 3d and a heater 8 to supply desorption gas, and the discharge side of the reactor 10 is connected to a blower 2 of the raw material gas supply pipe 1 via a bypass pipe 11. Connected to the downstream part.

【0020】なお符号9は還元剤であるアンモニアの供
給管であり、反応器10としては脱硝反応器が用いられ
る。
Reference numeral 9 is a supply pipe for ammonia, which is a reducing agent, and a denitrification reactor is used as the reactor 10.

【0021】上記装置によるNOx の処理方法は次に
説明する通りである。まずブロア2により吸引された原
料ガスは、ブロア2による圧縮効果及び後述する反応器
10からの高温排ガスとの混合効果により温度が上昇さ
れ、相対湿度が低下した状態で切換弁3a,3bのいず
れかを経て、例えばハニカム状炭素質吸着剤が充填され
たNOx 用吸着塔4a,4bのいずれかに導入される
。 そしてNOx が吸着除去された吸着排ガスは排出管5
より廃棄される。
The NOx treatment method using the above device will be explained below. First, the temperature of the raw material gas sucked by the blower 2 is increased due to the compression effect by the blower 2 and the mixing effect with high-temperature exhaust gas from the reactor 10, which will be described later. After that, it is introduced into either of the NOx adsorption towers 4a and 4b filled with, for example, a honeycomb-like carbonaceous adsorbent. The adsorbed exhaust gas from which NOx has been adsorbed and removed is discharged into the exhaust pipe 5.
more discarded.

【0022】連続的に原料ガスを処理する場合には、吸
着塔は2塔以上設けることが推奨され、図例の場合には
、NOx 用吸着塔4aの吸着中はNOx用吸着塔4b
の再生が行なわれる。すなわち再生パージ用ガス(原料
ガスと同一のガスで良い)がブロア12により吸引され
、吸着剤の再生に必要な温度までヒータ7により加熱さ
れた後、NOx 用吸着塔4a又は4bへ導入され、吸
着剤に吸着されているNOx を脱着する。脱着したN
Ox は、原料ガスよりも濃縮された状態で、ヒータ8
により還元反応に必要な温度(例えば300℃)まで加
熱され、還元剤であるアンモニアが添加されて、反応器
10に送られる。
When continuously processing raw material gas, it is recommended to provide two or more adsorption towers, and in the case of the example shown in the figure, while the NOx adsorption tower 4a is adsorbing, the NOx adsorption tower 4b is
is played back. That is, the regeneration purge gas (the same gas as the raw material gas may be used) is sucked by the blower 12, heated by the heater 7 to the temperature necessary for regenerating the adsorbent, and then introduced into the NOx adsorption tower 4a or 4b. Desorbs NOx adsorbed by the adsorbent. N detached
Ox is in a state that is more concentrated than the raw material gas, and is passed through the heater 8.
The mixture is heated to a temperature required for the reduction reaction (for example, 300° C.), ammonia as a reducing agent is added, and the mixture is sent to the reactor 10.

【0023】該反応器10で還元が行なわれたガスは、
上記ブロア2によって昇圧された原料ガスと混合され、
NOx 用吸着塔4a,4bのいずれかへ送られる。こ
こで、反応器10の排ガスと原料ガスを混合することに
より、前述の相対湿度低下効果の他に、反応器10にお
ける脱硝率を必ずしも高く設定する必要がないという効
果もある。また何らかの理由により一時的に反応効率が
低下する場合であっても装置全体としての脱硝率は極端
に下がることがない等といった副次的効果が発生する。
The gas reduced in the reactor 10 is
mixed with the source gas pressurized by the blower 2,
It is sent to either the NOx adsorption tower 4a or 4b. Here, by mixing the exhaust gas of the reactor 10 and the raw material gas, in addition to the effect of lowering the relative humidity described above, there is also an effect that the denitrification rate in the reactor 10 does not necessarily have to be set high. Further, even if the reaction efficiency is temporarily lowered for some reason, the denitrification rate of the entire apparatus will not be drastically lowered, which is a secondary effect.

【0024】(実験例A)図1に示す装置で最も重要な
部分である、NOx 用吸着塔に関する実験データを示
す。ハニカム状に成形した活性炭(株式会社神戸製鋼所
製;BET比表面積約800m2/g,ミクロ孔平均細
孔径約20Å)を100cmの高さに充填し、ブロアに
より大気(温度20〜23℃、相対湿度45〜60%)
をそのまま吸引し、これに一酸化窒素を濃度が4.5 
〜5ppm の範囲に収まるように添加して、空塔線速
度1m/sで24時間吸着させたのち、前述の大気と同
一の空気を空塔線速度0.1 m/sで流しつつ、11
0℃に2時間保持する操作を7回繰り返した。そして各
吸着操作時に、化学発光式分析計により、活性炭出口部
におけるNOx 濃度を監視した。
(Experimental Example A) Experimental data regarding the NOx adsorption tower, which is the most important part of the apparatus shown in FIG. 1, is shown below. Activated carbon formed into a honeycomb shape (manufactured by Kobe Steel, Ltd.; BET specific surface area approximately 800 m2/g, average micropore diameter approximately 20 Å) was filled to a height of 100 cm, and a blower was used to blow the air into the atmosphere (temperature 20-23°C, relative Humidity 45-60%)
is inhaled as it is, and nitric oxide is added to it at a concentration of 4.5.
5 ppm and adsorbed for 24 hours at a superficial linear velocity of 1 m/s.
The operation of holding at 0°C for 2 hours was repeated 7 times. During each adsorption operation, the NOx concentration at the activated carbon outlet was monitored using a chemiluminescent analyzer.

【0025】その結果NOx 濃度は、最高0.2pp
m,最低0.1ppm以下であり、95%以上のNOx
 除去率を維持するとともに、繰り返しによる出口濃度
の上昇傾向も認められなかった。
[0025] As a result, the NOx concentration was 0.2pp at maximum.
m, minimum 0.1 ppm or less, and 95% or more NOx
The removal rate was maintained, and no tendency for the outlet concentration to increase due to repetition was observed.

【0026】以上の実験に用いたのと同じ吸着剤を利用
し、ブロアで吸引された空気を一定温度に維持された水
槽中にバブリングすることにより、相対湿度の計算値を
78%,89%,97%に高めて、同様の吸着及び脱着
の実験を実施した。
By using the same adsorbent as used in the above experiment and bubbling air sucked in by a blower into a water tank maintained at a constant temperature, the calculated values of relative humidity were adjusted to 78% and 89%. , 97%, and similar adsorption and desorption experiments were carried out.

【0027】相対湿度78%の場合の出口部におけるN
Ox 濃度は当初の約0.3ppmから24時間後には
約0.85ppm となった。すなわちNOx 除去率
は80%程度まで上昇した。これに対して相対湿度89
%および97%の場合には、吸着開始直後からただちに
除去率が低下し始め、何れの場合も10時間後には完全
に除去性能を失っていた。
N at the outlet at a relative humidity of 78%
The Ox concentration increased from about 0.3 ppm initially to about 0.85 ppm after 24 hours. In other words, the NOx removal rate increased to about 80%. On the other hand, the relative humidity is 89
% and 97%, the removal rate began to decrease immediately after the start of adsorption, and in both cases, the removal performance was completely lost after 10 hours.

【0028】したがって、相対湿度が高くなることがあ
り得る場合には、ガス温度を高めることによって、吸着
活性の低下を防ぐことの有効性が確認された。
[0028] Therefore, it has been confirmed that it is effective to prevent the adsorption activity from decreasing by increasing the gas temperature when the relative humidity may become high.

【0029】また、繊維状活性炭(大阪ガス株式会社製
,BET比表面積約1500m2/g,ミクロ孔平均細
孔径約18Å)を充填した容器に、ブロアにより大気(
温度21〜25℃、相対湿度40〜50%)を吸引し、
これに一酸化窒素を濃度が4.5 〜5ppm の範囲
に収まるように添加して、空塔線速度1m/sで24時
間吸着させたが、出口部におけるNOx 濃度は0.1
ppm以下を保持した。
In addition, a container filled with fibrous activated carbon (manufactured by Osaka Gas Co., Ltd., BET specific surface area of about 1500 m2/g, average micropore diameter of about 18 Å) was heated to atmospheric air (
Temperature 21-25℃, relative humidity 40-50%),
Nitric oxide was added to this so that the concentration was within the range of 4.5 to 5 ppm, and the mixture was adsorbed at a superficial linear velocity of 1 m/s for 24 hours, but the NOx concentration at the outlet was 0.1
Maintained below ppm.

【0030】さらに、粒状疎水性ゼオライト(ZSM−
5と同一の結晶構造,シリカ/アルミナ比415)につ
いても、ブロアにより大気(温度19〜23℃、相対湿
度45〜55%)を吸引し、これに一酸化窒素を濃度が
4.5 〜5ppm の範囲に収まるように添加して、
空塔線速度1m/sで24時間吸着させたが、出口部に
おけるNOx 濃度は0.2 〜0.3ppmを保持し
た。
Furthermore, granular hydrophobic zeolite (ZSM-
For the same crystal structure as 5 (silica/alumina ratio 415), atmospheric air (temperature 19-23°C, relative humidity 45-55%) was sucked in using a blower, and nitrogen monoxide was added to it at a concentration of 4.5-5 ppm. Add it so that it falls within the range of
Although adsorption was carried out for 24 hours at a superficial linear velocity of 1 m/s, the NOx concentration at the outlet was maintained at 0.2 to 0.3 ppm.

【0031】図2は本発明に使用される装置の他の実施
例を示すもので、反応器10より放出される排ガスをバ
イパス管11を介して熱交換器13に導入し、原料ガス
を加温する装置としている。この装置においても、図1
に示した装置と同等の効果を得ることができる。
FIG. 2 shows another embodiment of the apparatus used in the present invention, in which the exhaust gas discharged from the reactor 10 is introduced into the heat exchanger 13 via the bypass pipe 11, and the raw material gas is heated. It is used as a warming device. In this device as well, Figure 1
It is possible to obtain the same effect as the device shown in .

【0032】図3は本発明方法に用いる装置の他の実施
例を示す全体構成図であり、図1に示す装置に比較して
次の点が相違する。まず、NOx 用吸着塔4a,4b
の原料ガス供給管1側には、脱湿用吸着剤を充填した脱
湿用吸着塔4C,4Dを設け、原料ガスを該脱湿用吸着
剤によって前処理してからNOx 用吸着塔4a,4b
へ送給する構成とした。
FIG. 3 is an overall configuration diagram showing another embodiment of the apparatus used in the method of the present invention, which differs from the apparatus shown in FIG. 1 in the following points. First, NOx adsorption towers 4a and 4b
Dehumidification adsorption towers 4C and 4D filled with a dehumidification adsorbent are provided on the raw material gas supply pipe 1 side, and the NOx adsorption towers 4a, 4D are pretreated with the dehumidification adsorption agent after the raw material gas is pretreated with the dehumidification adsorption agent. 4b
The configuration was such that it was sent to

【0033】また反応器10の排出ガスを送給するバイ
パス管11には熱交換器18及び冷却器16を介設する
と共に、切換弁3c,3dのいずれかを経た脱着ガスを
反応器10へ送給するに当たっては、凝縮器13、ドレ
ンセパレータ14、送風器15、熱交換器18及びヒー
タ8を通過する様に構成する。また反応器10の排ガス
は熱交換器18,冷却器16を経て吸着塔4a,4b,
4C,4Dの脱着用ガスとして用いられる様にすると共
に、脱着排ガス中の水分を凝縮器13等によって除去し
て反応器10へ供給する構成としている。
In addition, a heat exchanger 18 and a cooler 16 are installed in the bypass pipe 11 for feeding the exhaust gas from the reactor 10, and the desorption gas is transferred to the reactor 10 through either of the switching valves 3c and 3d. When feeding, the water is configured to pass through a condenser 13, a drain separator 14, an air blower 15, a heat exchanger 18, and a heater 8. In addition, the exhaust gas from the reactor 10 passes through a heat exchanger 18, a cooler 16, and adsorption towers 4a, 4b,
In addition to being used as a gas for desorption of 4C and 4D, moisture in the desorption exhaust gas is removed by a condenser 13 or the like and then supplied to the reactor 10.

【0034】さらにバイパス管11には開閉弁17を設
け、反応器10の排ガスの一部又は全部を系外へ取り外
す構成とし、吸着塔の脱着操作から吸着操作への切換え
前後時期に、上記排ガスを系外へ廃棄して吸着塔内にお
ける水分の残存を防止する。
Furthermore, the bypass pipe 11 is provided with an on-off valve 17 to remove part or all of the exhaust gas from the reactor 10 to the outside of the system. is disposed of outside the system to prevent moisture from remaining inside the adsorption tower.

【0035】(実験例B)実験例Aにおいて相対湿度を
89%にした場合、NOx 除去率は吸着開始直後より
低下したが、NOx 用吸着剤を充填した吸着器内に、
親水性の活性炭(活性炭を3mol/リットルの濃度の
硝酸に100℃で6時間浸漬して酸化処理したもの)を
高さ50cmで充填し、NOx の吸脱着操作を4回行
なった。この結果NOx 用吸着剤出口部におけるNO
x 濃度は0.1 〜0.3ppmの範囲に留まり、脱
湿用吸着剤(親水性の活性炭)が有効に作用することが
確認された。
(Experimental Example B) In Experimental Example A, when the relative humidity was set to 89%, the NOx removal rate decreased from immediately after the start of adsorption;
Hydrophilic activated carbon (activated carbon was oxidized by immersing it in nitric acid at a concentration of 3 mol/liter at 100° C. for 6 hours) was filled to a height of 50 cm, and the NOx adsorption/desorption operation was performed four times. As a result, NOx at the outlet of the NOx adsorbent
The x concentration remained in the range of 0.1 to 0.3 ppm, and it was confirmed that the dehumidifying adsorbent (hydrophilic activated carbon) worked effectively.

【0036】[0036]

【発明の効果】本発明により、従来全く未解決であった
数ppm 程度の低濃度NOx を効率よく捕集すると
共に、窒素まで還元することができる様になり、自動車
用トンネル排ガスや屋内自動車駐車場排ガス等の浄化を
効率的に行なえる様になった。
Effects of the Invention: The present invention makes it possible to efficiently collect NOx at a low concentration of several ppm, which was a completely unsolved problem in the past, and to reduce it to nitrogen. It has become possible to efficiently purify vehicle exhaust gas, etc.

【0037】また脱湿用吸着剤を用いて原料ガスを前処
理することによって高湿条件での運転も可能となり、さ
らにこの方法に用いられる設備及び操作は簡略化されて
低コストになった。
Furthermore, by pre-treating the raw material gas using a dehumidifying adsorbent, operation under high humidity conditions is also possible, and the equipment and operations used in this method have been simplified and reduced in cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に使用される装置の一例を示す全体構成
図である。
FIG. 1 is an overall configuration diagram showing an example of a device used in the present invention.

【図2】本発明に使用される装置の他の例を示す全体構
成図である。
FIG. 2 is an overall configuration diagram showing another example of the device used in the present invention.

【図3】本発明に使用される装置の他の例を示す全体構
成図である。
FIG. 3 is an overall configuration diagram showing another example of the device used in the present invention.

【符号の説明】[Explanation of symbols]

1  原料ガス供給管 3a〜3h  切換弁 4a,4b  NOx 吸着塔 4C,4D  脱湿用吸着塔 10  反応器 11  バイパス管 1 Raw material gas supply pipe 3a-3h switching valve 4a, 4b NOx adsorption tower 4C, 4D Adsorption tower for dehumidification 10 Reactor 11 Bypass pipe

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  窒素酸化物用吸着剤を充填した吸着塔
に原料ガスを導入して該原料ガス中に含まれる窒素酸化
物を吸着させたのち、該吸着塔内を加熱して窒素酸化物
を濃縮された状態で脱着し、この脱着ガスを、窒素酸化
物還元触媒の充填された反応器に導き窒素酸化物を窒素
に変換させることを特徴とする窒素酸化物の除去方法。
Claim 1: After introducing a raw material gas into an adsorption tower filled with an adsorbent for nitrogen oxides and adsorbing nitrogen oxides contained in the raw material gas, the interior of the adsorption tower is heated to absorb nitrogen oxides. A method for removing nitrogen oxides, which comprises desorbing nitrogen oxides in a concentrated state, and introducing the desorbed gas into a reactor filled with a nitrogen oxide reduction catalyst to convert the nitrogen oxides into nitrogen.
【請求項2】  吸着塔内に充填する窒素酸化物用吸着
剤は、ハニカム状あるいは繊維状に成形された炭素質吸
着剤である請求項1に記載の窒素酸化物の除去方法。
2. The method for removing nitrogen oxides according to claim 1, wherein the adsorbent for nitrogen oxides filled in the adsorption tower is a carbonaceous adsorbent formed into a honeycomb shape or a fiber shape.
【請求項3】  吸着塔内に充填される窒素酸化物用吸
着剤は、ハニカム状に成形された疎水性ゼオライトであ
る請求項1に記載の窒素酸化物の除去方法。
3. The method for removing nitrogen oxides according to claim 1, wherein the nitrogen oxide adsorbent packed in the adsorption tower is a hydrophobic zeolite formed into a honeycomb shape.
【請求項4】  反応器から排出される排ガスの一部ま
たは全部を、原料ガスと混合することによって、ガス温
度を上げる請求項1〜3のいずれかに記載の窒素酸化物
の除去方法。
4. The method for removing nitrogen oxides according to claim 1, wherein part or all of the exhaust gas discharged from the reactor is mixed with a raw material gas to increase the gas temperature.
【請求項5】  窒素酸化物用吸着剤を充填した吸着塔
を脱着より吸着へ切替える前後に、反応器から排出され
る排ガスを系外へ廃棄する請求項4に記載の窒素酸化物
の除去方法。
5. The method for removing nitrogen oxides according to claim 4, wherein the exhaust gas discharged from the reactor is disposed of outside the system before and after switching the adsorption column filled with the adsorbent for nitrogen oxides from desorption to adsorption. .
【請求項6】  反応器から排出される排ガスを、原料
ガスと熱交換させることによって、ガス温度を上げる請
求項1〜3のいずれかに記載の窒素酸化物の除去方法。
6. The method for removing nitrogen oxides according to claim 1, wherein the temperature of the exhaust gas discharged from the reactor is increased by exchanging heat with the raw material gas.
【請求項7】  脱湿用吸着剤を充填した吸着塔へ原料
ガスを導入して水分を除去した後、このガスを窒素酸化
物用吸着剤を充填した吸着塔へ導入する請求項1〜6の
いずれかに記載の窒素酸化物の除去方法。
7. Claims 1 to 6, wherein the raw material gas is introduced into an adsorption tower filled with an adsorbent for dehumidification to remove moisture, and then this gas is introduced into an adsorption tower filled with an adsorbent for nitrogen oxides. The method for removing nitrogen oxides according to any one of the above.
JP3111176A 1990-12-21 1991-04-15 Removing method for nitrogen oxides Withdrawn JPH04250822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3111176A JPH04250822A (en) 1990-12-21 1991-04-15 Removing method for nitrogen oxides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-413404 1990-12-21
JP41340490 1990-12-21
JP3111176A JPH04250822A (en) 1990-12-21 1991-04-15 Removing method for nitrogen oxides

Publications (1)

Publication Number Publication Date
JPH04250822A true JPH04250822A (en) 1992-09-07

Family

ID=26450630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3111176A Withdrawn JPH04250822A (en) 1990-12-21 1991-04-15 Removing method for nitrogen oxides

Country Status (1)

Country Link
JP (1) JPH04250822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756057A (en) * 1993-04-28 1998-05-26 Nippon Shokubai Co., Ltd. Method for removal of nitrogen oxides from exhaust gas
JP2006021101A (en) * 2004-07-07 2006-01-26 Japan Pionics Co Ltd Gas treating method and gas treatment apparatus
US8945692B2 (en) 2009-01-30 2015-02-03 Sony Corporation Liquid crystal display unit and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756057A (en) * 1993-04-28 1998-05-26 Nippon Shokubai Co., Ltd. Method for removal of nitrogen oxides from exhaust gas
JP2006021101A (en) * 2004-07-07 2006-01-26 Japan Pionics Co Ltd Gas treating method and gas treatment apparatus
US8945692B2 (en) 2009-01-30 2015-02-03 Sony Corporation Liquid crystal display unit and method of manufacturing the same
US9470929B2 (en) 2009-01-30 2016-10-18 Sony Corporation Liquid crystal display unit and method of manufacturing the same
US9523889B2 (en) 2009-01-30 2016-12-20 Sony Corporation Liquid crystal display unit and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3237795U (en) Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle
JP2557307B2 (en) NOx adsorption removal method
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
CN110743313A (en) Low-temperature flue gas adsorption denitration method
JP2008188492A (en) Water treatment system
JP2007000733A (en) Treatment method and treatment apparatus of gas
JPH04250822A (en) Removing method for nitrogen oxides
JP3197072B2 (en) Regeneration method of ammonia adsorbent
JP4512993B2 (en) Water treatment equipment
JPH0618609B2 (en) Ventilation gas purification equipment for road tunnels, etc.
JP3249181B2 (en) Regeneration method of nitrogen oxide adsorbent
JPH05237342A (en) Purifier of gas
JP2002069468A (en) Method and apparatus for purifying digested gas
JP3083915B2 (en) Removal method of low concentration nitrogen oxides
JPH0226616A (en) Device for purifying ventilation gas for road tunnel
JP2002060767A (en) Method and apparatus for purifying gas containing siloxane compound
JPH0616813B2 (en) Ventilation gas purification method in road tunnel
JP4295548B2 (en) Nitrogen oxide removing catalyst, denitration method and apparatus using the same
JPH0824579A (en) Treatment of low concentration nox containing gas
JPH05123525A (en) Gas purifying method and apparatus therefor
JPS60820A (en) Deodorizing treatment of odorous gas
JP2012236142A (en) Zeolite membrane for atmospheric pollutant removal and method for purifying exhaust gas using the membrane
JPH08257351A (en) System and process for treating low concentration nox-containing gas
JPH07256054A (en) Apparatus and method for adsorbing and removing nox
JP3568244B2 (en) Automobile tunnel ventilation gas purification method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711