JPH04162691A - Hybrid integrated circuit - Google Patents

Hybrid integrated circuit

Info

Publication number
JPH04162691A
JPH04162691A JP29010890A JP29010890A JPH04162691A JP H04162691 A JPH04162691 A JP H04162691A JP 29010890 A JP29010890 A JP 29010890A JP 29010890 A JP29010890 A JP 29010890A JP H04162691 A JPH04162691 A JP H04162691A
Authority
JP
Japan
Prior art keywords
nickel
conductive path
integrated circuit
hybrid integrated
plated resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29010890A
Other languages
Japanese (ja)
Inventor
Akira Kazami
風見 明
Noriaki Sakamoto
則明 坂本
Sumio Ishihara
石原 純夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29010890A priority Critical patent/JPH04162691A/en
Publication of JPH04162691A publication Critical patent/JPH04162691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

PURPOSE:To completely prevent a nickel-plated resistor from burning out due to an overcurrent by arranging a fuse in a conductive path on the injection side or output side of the path of a current flowing through the nickel-plated resistor. CONSTITUTION:A fuse 7 is arranged on the injection side or output side of the current path of a nickel-plated resistor 4 for detecting a current flowing through a power device 3 so that the nickel-plated resistor 4 is prevented from burning out due to an overcurrent. As the fuse 7, the width of a conductive path 2 is formed in the shape of a narrow width. This narrow width part can be easily formed simultaneously with other conductive paths 2 by the use of a copper foil. When e.g. the width and length of the conductive path 2 to be the fuse 7 are formed to 0.6-0.7mm in the case of 70mum thickness of the copper foil, 20mOMEGA resistance value of the nickel-plated resistor 4 and about 3OA current flowing in a normal condition, the conductive path 2 of the fuse 7 burns out by about 60-7OA overcurrent but the resistor 4 does not burn out because it burns out by 80-9OA current.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は混成集積回路に関し、パワー出力用の混成集積
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hybrid integrated circuit, and more particularly, to a hybrid integrated circuit for power output.

(ロ)従来の技術 パワー出力用混成集積回路としては種々のものがあるが
、例えばインバータ用混成集積回路がもっとも代表的で
ある。
(b) Conventional Technology There are various types of hybrid integrated circuits for power output, but the most typical one is, for example, a hybrid integrated circuit for inverters.

第4図は、インバータ用混成集積回路の平面図を示すも
のであり、(20〉はアルミニウム、鉄、銅等などの金
属基板であり、その基板(20)上には図示されないが
エポキシ樹脂を主成分とする絶縁性接着剤からなる絶縁
層が設けられ、(21)は上記絶縁性接着剤により基板
(20)と貼り合せられた銅箔をエツチング処理によっ
て形成された導電路である。
FIG. 4 shows a plan view of a hybrid integrated circuit for an inverter, in which (20) is a metal substrate made of aluminum, iron, copper, etc., and on the substrate (20), although not shown, an epoxy resin is applied. An insulating layer made of an insulating adhesive as a main component is provided, and (21) is a conductive path formed by etching a copper foil bonded to the substrate (20) with the insulating adhesive.

かかる導電路(21)上には複数のトランジスタ、パワ
ーMO8,IGBT等のパワー系のスイッチング素子(
22)が固着きれ、且つスイッチング素子(22)に流
れる電流を検出する電流検出用のニッケルメッキ抵抗体
(23)が電流経路に形成されている。ニッケルメッキ
抵抗体(23)は導電路(21)をくし型状に配置詐せ
、そのくし型状に配置された領域上にニッケルをメツキ
することにより形成きれる。
On the conductive path (21), there are a plurality of transistors, power MO8s, IGBTs, and other power switching elements (
22) is completely fixed, and a nickel-plated resistor (23) for current detection that detects the current flowing through the switching element (22) is formed in the current path. The nickel-plated resistor (23) can be formed by arranging the conductive paths (21) in a comb shape and plating nickel on the regions arranged in the comb shape.

かかる基板(20)はケース材によって固着一体化する
か、あるいは、対向基板(図示しない)を配置(いわゆ
る二枚基板構造)してケース材によって固着一体化され
る。
Such a board (20) is fixedly integrated with a case material, or a counter board (not shown) is arranged (so-called two-board structure) and fixedly integrated with a case material.

また、第5図は基板(20)にケース材(24)を固着
したときのニッケルメッキ抵抗体(23)が形成された
付近の要部拡大図であり、ケース材(24)と基板(2
0)とで形成される空間領域には基板上に固着された各
素子の耐湿性を向上きせるためにシリコーンゲル(25
)が充填されている。二枚基板構造の場合も同様に各基
板間内にシリコーンゲルが充填きれる。
Moreover, FIG. 5 is an enlarged view of the main part near where the nickel-plated resistor (23) is formed when the case material (24) is fixed to the board (20), and shows the case material (24) and the board (24).
In order to improve the moisture resistance of each element fixed on the substrate, silicone gel (25
) is filled. In the case of a two-substrate structure, the space between each substrate can be filled with silicone gel as well.

(ハ)発明が解決しようとする課題 かかる混成集積回路において、例えばユーザが異常使用
したときにパワー素子が破壊したとき(ショート状態)
、電流検出抵抗であるニッケルメッキ抵抗体に許容容量
以上の大電流が流れ、第6図に示す如く、ニッケルメッ
キ抵抗体(23)が焼断し、このエネルギーにより矢印
方向にシリコーンゲル(25)を持上げる。このとき、
同時にニッケルメッキ抵抗体(23)上に形成されたオ
ーバーコート(図示しない)および持上げられたシリコ
ーンゲル(25)の表面部分を炭化させる。
(c) Problems to be solved by the invention In such a hybrid integrated circuit, for example, when a power element is destroyed due to abnormal use by a user (short-circuit condition)
, a large current exceeding the allowable capacity flows through the nickel-plated resistor (current detection resistor), and as shown in Figure 6, the nickel-plated resistor (23) burns out, and this energy causes the silicone gel (25) to flow in the direction of the arrow. lift up. At this time,
At the same time, the overcoat (not shown) formed on the nickel-plated resistor (23) and the surface portion of the lifted silicone gel (25) are carbonized.

すると、シリコーンゲル(25)は経時変化により、も
との状態に戻り、第7図に示す如く、シリコーンゲル(
25〉の表面に形成された炭化部(26)により、ニッ
ケルメッキ抵抗体(23)が形成された導電路(21)
が導通状態となり再び大電流が流れる。
Then, the silicone gel (25) returns to its original state due to changes over time, and the silicone gel (25) returns to its original state as shown in FIG.
A conductive path (21) in which a nickel-plated resistor (23) is formed by a carbonized portion (26) formed on the surface of
becomes conductive and a large current flows again.

すると、次はシリコーンゲル(25)の炭化部(26)
が焼断し、再びそのエネルギーによってシリコーンゲル
(25)を持上げ上記した動作を何回かくり返し起こす
。すると、炭化部(26)が形成したシリコーンゲル(
25)領域で炭化が促進するとともに可燃性ガスが増加
しケース内の内圧が高くなり、ケース材と基板との固着
性が悪化し、その結果耐湿性が低下する問題がある。
Then, next is the carbonized part (26) of the silicone gel (25).
is burnt out, and the silicone gel (25) is lifted again by the energy, and the above-mentioned operation is repeated several times. Then, the silicone gel (
25) There is a problem in that carbonization is promoted in the region, flammable gas increases, internal pressure within the case increases, the adhesion between the case material and the substrate deteriorates, and as a result, moisture resistance decreases.

(ニ)課題を解決するための手段 本発明は上述した課題に鑑みて為されたものであり、−
枚あるいは二枚の金属基板から構成され、いずれか一方
の基板上にパワー素子およびパワー素子に流れる電流を
検出するニッケルメッキ抵抗体が形成され、ケーシング
された空間内にシリコーンゲルが充填きれた混成集積回
路のニッケルメッキ抵抗体の電流経路の入力側あるいは
出力側の導電路にヒユーズ手段を設けて解決する。
(d) Means for solving the problems The present invention has been made in view of the above-mentioned problems, and -
A hybrid structure consisting of one or two metal substrates, with a power element and a nickel-plated resistor for detecting the current flowing through the power element formed on one of the substrates, and silicone gel completely filled in the cased space. This problem is solved by providing a fuse means on the input or output side of the current path of the nickel-plated resistor of the integrated circuit.

(ネ)作用 この様に本発明に依れば、ニッケルメッキ抵抗体電流経
路の入力側あるいは出力側の導電路にヒユーズ手段を設
けることにより、仮にパワー素子が短絡し過電流が流れ
たとしてもニッケルメッキ抵抗体の入力側あるいは出力
側に設けたヒユーズ手段によって、過電流がニッケルメ
ッキ抵抗体に流れることを防止することができる。従っ
て、過電流によるニッケルメッキ抵抗体の焼断を完全に
防止できる。
(f) Function As described above, according to the present invention, by providing a fuse means on the input side or output side of the nickel-plated resistor current path, even if the power element is short-circuited and an overcurrent flows. Fuse means provided on the input or output side of the nickel-plated resistor can prevent excess current from flowing through the nickel-plated resistor. Therefore, burning out of the nickel-plated resistor due to overcurrent can be completely prevented.

(へ)実施例 以下に第1図に示した一実施例に基づいて本発明の詳細
な説明する。
(F) Example The present invention will be described in detail below based on an example shown in FIG.

第1図は本発明の混成集積回路の要部拡大断面図であり
、詳細にはニッケルメッキ抵抗体が形成された領域付近
の断面図である。
FIG. 1 is an enlarged cross-sectional view of a main part of a hybrid integrated circuit according to the present invention, and in detail is a cross-sectional view of the vicinity of a region where a nickel-plated resistor is formed.

本発明の混成集積回路は、絶縁金属基板(1)(以下単
に基板という)と、基板(1)上に形成きれた導電路(
2)と、導電路(2)上に固着きれたパワー素子(3)
およびニッケルメッキ抵抗体(4)と、基板(1)と固
着一体化されるケース材(5)と、基板(1)とケース
材(5)とで形成された空間に充填されたシリコーンゲ
ル(6〉と、ニッケルメッキ抵抗体(4)の入力側ある
いは出力側に設けられたヒユーズ手段(7)とから構成
きれている。
The hybrid integrated circuit of the present invention includes an insulated metal substrate (1) (hereinafter simply referred to as a substrate) and a conductive path (1) formed on the substrate (1).
2) and the power element (3) firmly fixed on the conductive path (2)
and a nickel-plated resistor (4), a case material (5) fixedly integrated with the substrate (1), and a silicone gel (filled in the space formed by the substrate (1) and the case material (5)). 6> and a fuse means (7) provided on the input side or output side of the nickel plated resistor (4).

基板(1)はアルミニウムが用いられ、そのアルミニウ
ム表面には陽極酸化処理によって酸化アルミニウム膜(
図示しない)が形成されている。
The substrate (1) is made of aluminum, and the aluminum surface is coated with an aluminum oxide film (
) is formed.

また、基板(1)上には絶縁接着剤であるエポキシ系の
絶縁層(8)を介して銅箔が貼着され、銅箔をエツチン
グ処理して所望形状の導電路(2)が形成される。
Further, a copper foil is pasted on the substrate (1) via an epoxy-based insulating layer (8), which is an insulating adhesive, and a conductive path (2) of a desired shape is formed by etching the copper foil. Ru.

かかる導電路(2)上には、例えば第4図に示す如く、
パワートランジスタ、パワーMO8,IGBT等の複数
のパワー素子(3)が三相モータを駆動する様に固着接
続されている。又、導電路(2)上にはパワー素子(3
)に流れる電流を検出するためにニッケルメッキ抵抗体
(4)が形成されている。ニッケルメッキ抵抗体(4)
については従来の説明で簡単に説明したが、ここでは更
に詳細に説明する。
On such a conductive path (2), for example, as shown in FIG.
A plurality of power elements (3) such as a power transistor, a power MO8, an IGBT, etc. are fixedly connected to drive a three-phase motor. Moreover, a power element (3) is placed on the conductive path (2).
) is formed with a nickel plated resistor (4) to detect the current flowing through it. Nickel plated resistor (4)
Although this was briefly explained in the conventional explanation, it will be explained in more detail here.

ニッケルメッキ抵抗体(4)が形成される領域の導電路
(2)は、第2図に示す如く、所定間隔で夫々の導電路
(2)がくし型状になる様に形成されている。そのくし
型状に配置された導電路(2)領域(基板領域)上にパ
ラジウム等の触媒を付着させニッケルを所定の厚みにな
るまでメツキを行う。即ち、ニッケルメッキ抵抗体(4
)の抵抗値あるいは許容容量は面積と厚みを選択するこ
とで任意に設定することができる。くし型状に形成され
た夫々の導電路(2)の両端電圧を検出することでニッ
ケルメッキ抵抗体(4)、即ち、パワー素子(3)に流
れる電流を検出することができる。
The conductive paths (2) in the region where the nickel-plated resistor (4) is formed are formed in a comb-shape at predetermined intervals, as shown in FIG. A catalyst such as palladium is deposited on the conductive path (2) region (substrate region) arranged in a comb shape, and nickel is plated to a predetermined thickness. That is, the nickel plated resistor (4
) can be arbitrarily set by selecting the area and thickness. By detecting the voltage across each conductive path (2) formed in a comb shape, it is possible to detect the current flowing through the nickel-plated resistor (4), that is, the power element (3).

ところで、ニッケルメッキ抵抗体(4)の電流経路の入
力側あるいは出力側にヒユーズ手段(7)が配置され、
過電流によるニッケルメッキ抵抗体(4)の焼断を防止
している。本実施例では、ヒユーズ手段(7)として導
電路(2)を用いている。即ち、第2図から明らかであ
るように入力側の導電路(2)の幅を幅狭状に形成する
。この幅狭部は銅箔を用いているため容易に他の導電路
(2)を形成するときに同時形成できる。
By the way, fuse means (7) is arranged on the input side or output side of the current path of the nickel-plated resistor (4),
This prevents the nickel-plated resistor (4) from burning out due to overcurrent. In this embodiment, a conductive path (2) is used as the fuse means (7). That is, as is clear from FIG. 2, the width of the conductive path (2) on the input side is formed narrow. Since this narrow portion is made of copper foil, it can be easily formed at the same time as forming other conductive paths (2).

例えば、銅箔の厚みを70μとし、二′ツケルメッキ抵
抗体(4)の抵抗値を20mΩ、通常状態で流れる電流
が約3OAである場合、ヒユーズ手段(7)となる導電
路(2)の幅および長さを0.6〜0.7m1lで形成
すると、ヒユーズ手段(7)の導電路(2)は約60〜
70Aの過電流で焼断し、ニッケルメッキ抵抗体(4)
は80〜90Aで焼断するためニッケルメッキ抵抗体(
4)が焼断することはない。
For example, if the thickness of the copper foil is 70 μm, the resistance value of the 2′ plated resistor (4) is 20 mΩ, and the current flowing under normal conditions is approximately 3 OA, then the width of the conductive path (2) serving as the fuse means (7) is and a length of 0.6-0.7 ml, the conductive path (2) of the fuse means (7) is approximately 60-0.
Nickel-plated resistor (4) burnt out at 70A overcurrent
The nickel-plated resistor (
4) will not burn out.

また、基板(1)は樹脂製のケース材(5)が基板(1
)の周端部で接着性シートを介して強固に固着され、基
板(1)とケース材(5)とで形成された空間内には基
板(1)上に形成きれた導電路(2)および各素子を保
護するためにシリコーンゲル(6)が充填される。
In addition, the board (1) has a case material (5) made of resin.
) is firmly fixed at the peripheral end via an adhesive sheet, and within the space formed by the substrate (1) and the case material (5), there is a conductive path (2) formed on the substrate (1). And silicone gel (6) is filled to protect each element.

本発明に依れば、仮にパワー素子(3)が短絡し過IE
流が発生したとしても、ヒユーズ手段(7)によって過
電流が遮断きれるためニッケルメッキ抵抗体(4)が過
電流によって焼断することがない。
According to the present invention, if the power element (3) is short-circuited and an excessive IE
Even if a current occurs, the overcurrent can be completely interrupted by the fuse means (7), so that the nickel-plated resistor (4) will not be burnt out by the overcurrent.

第2図は本発明の他の実施例を示した要部拡大断面図で
あり、二枚の基板(la)(lb)から構成される。こ
の場合、一方の基板(1a)にはパワー素子(3)およ
びニッケルメッキ抵抗体(4)が形成され、他方の基板
(1b)上には小信号系のトランジスタ等の回路素子(
11)が固着され、夫々の基板(la)(lb)は図示
されないが枠状のケース材によって離間配置され、その
空間内にシリコーンゲル(6)が充填きれている。
FIG. 2 is an enlarged sectional view of a main part showing another embodiment of the present invention, which is composed of two substrates (la) and (lb). In this case, a power element (3) and a nickel-plated resistor (4) are formed on one substrate (1a), and circuit elements (such as small-signal transistors) are formed on the other substrate (1b).
11) are fixed, and the respective substrates (la) and (lb) are spaced apart by a frame-shaped case material (not shown), and the silicone gel (6) is completely filled in the space.

また、本実施例ではヒユーズ手段(7〉として導電路(
2)を用いたが、その他にワイヤー線を用いても同様の
効果を期待することができる。この場合、ワイヤー線の
材料あるいは径の大きさを通常電流、過電流の大きさに
よって所定に選択する必要がある。
Further, in this embodiment, the conductive path (7) is used as the fuse means (7).
2) was used, but the same effect can be expected by using other wires. In this case, the material or diameter of the wire must be selected depending on the magnitude of the normal current and overcurrent.

(ト)発明の効果 以上に詳述した如く、本発明に依れば、ニッケルメッキ
抵抗体電流経路の入力側あるいは出力側の導電路にヒユ
ーズ手段を設けることにより、仮にパワー素子が短絡し
過電流が流れたとしてもニッケルメッキ抵抗体の入力側
あるいは出力側に設けたヒユーズ手段によって、過電流
がニッケルメッキ抵抗体に流れることを防止することが
できる。その結果、過電流によるニッケルメッキ抵抗体
の焼断を完全に防止することができる。従って、従来の
如き問題を完全に解消することができ、極めて耐湿性に
優れた混成集積回路を提供することができる。
(G) Effects of the Invention As described in detail above, according to the present invention, by providing a fuse means on the input side or output side of the nickel-plated resistor current path, the power element can be prevented from short-circuiting. Even if current flows, the fuse means provided on the input side or output side of the nickel-plated resistor can prevent excessive current from flowing into the nickel-plated resistor. As a result, it is possible to completely prevent the nickel-plated resistor from being burnt out due to overcurrent. Therefore, the conventional problems can be completely solved, and a hybrid integrated circuit with extremely excellent moisture resistance can be provided.

また、本発明は従来の製造工程をそのまま利用すること
ができるメリットを有する。
Furthermore, the present invention has the advantage that conventional manufacturing processes can be used as they are.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の混成集積回路の要部拡大断面図、第2
図はニッケルメッキ抵抗体近傍を説明するための拡大平
面図、第3図は他の実施例を示す断面図、第4図は一般
的なパワー用の混成集積回路を示す平面図、第5図は第
4図のニッケルメッキ抵抗体が形成きれた部分を示す断
面図、第6図および第7図は課題を説明するための断面
図である。 (1)は絶縁金属基板、(2)は導電路、(3)はパワ
ー素子、(4)はニッケルメッキ抵抗体、(5)はケー
ス材、(6)はシリコーンゲル、(7)はヒユーズ手段
である。 第1図 113図 第4図 第5図 第6図
FIG. 1 is an enlarged cross-sectional view of the main parts of the hybrid integrated circuit of the present invention, and FIG.
The figure is an enlarged plan view to explain the vicinity of the nickel-plated resistor, FIG. 3 is a sectional view showing another embodiment, FIG. 4 is a plan view showing a general power hybrid integrated circuit, and FIG. 4 is a cross-sectional view showing a portion where the nickel-plated resistor has been completely formed, and FIGS. 6 and 7 are cross-sectional views for explaining the problem. (1) is an insulated metal substrate, (2) is a conductive path, (3) is a power element, (4) is a nickel-plated resistor, (5) is a case material, (6) is a silicone gel, and (7) is a fuse. It is a means. Figure 1 Figure 113 Figure 4 Figure 5 Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも一枚の絶縁金属基板から構成され、 前記基板上に形成された所定位置の導電路にパワー素子
およびパワー素子に流れる電流を検出するニッケルメッ
キ抵抗体が接続され、 前記基板とケース材を一体化して形成された封止空間に
封止樹脂を充填してなる混成集積回路において、 前記ニッケルメッキ抵抗体に流れる電流経路の入力側あ
るいは出力側の前記導電路にヒューズ手段を配置したこ
とを特徴とする混成集積回路。
(1) Consisting of at least one insulated metal substrate, a power element and a nickel-plated resistor for detecting the current flowing through the power element are connected to a conductive path formed at a predetermined position on the substrate, and the substrate and a case are connected. In a hybrid integrated circuit formed by filling a sealing resin into a sealing space formed by integrating materials, a fuse means is arranged in the conductive path on the input side or output side of the current path flowing through the nickel-plated resistor. A hybrid integrated circuit characterized by:
(2)前記パワー素子としてパワートランジスタ、パワ
ーMOSFET、IGBT等のパワー系のスイッチング
素子を用いたことを特徴とする請求項1記載の混成集積
回路。
(2) The hybrid integrated circuit according to claim 1, wherein a power switching element such as a power transistor, a power MOSFET, or an IGBT is used as the power element.
(3)前記封止樹脂としてシリコン樹脂を用いたことを
特徴とする請求項1記載の混成集積回路。
(3) The hybrid integrated circuit according to claim 1, wherein a silicone resin is used as the sealing resin.
(4)前記導電路は銅箔を用いて形成したことを特徴と
する請求項1記載の混成集積回路。
(4) The hybrid integrated circuit according to claim 1, wherein the conductive path is formed using copper foil.
(5)前記ヒューズ手段として前記導電路幅を幅狭状に
形成し、前記幅狭部を用いることを特徴とする請求項1
記載の混成集積回路。
(5) Claim 1 characterized in that the conductive path width is formed in a narrow shape and the narrow width portion is used as the fuse means.
Hybrid integrated circuit as described.
JP29010890A 1990-10-25 1990-10-25 Hybrid integrated circuit Pending JPH04162691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29010890A JPH04162691A (en) 1990-10-25 1990-10-25 Hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29010890A JPH04162691A (en) 1990-10-25 1990-10-25 Hybrid integrated circuit

Publications (1)

Publication Number Publication Date
JPH04162691A true JPH04162691A (en) 1992-06-08

Family

ID=17751903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29010890A Pending JPH04162691A (en) 1990-10-25 1990-10-25 Hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JPH04162691A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394094A (en) * 1993-05-13 1995-02-28 Industrial Scientific Corporation Portable gas sensor utilizing fault protective battery cap
US5788855A (en) * 1995-05-04 1998-08-04 Intel Corporation Method of producing circuit board
JP2003218318A (en) * 2002-01-21 2003-07-31 Mitsubishi Electric Corp Semiconductor power module, insulating substrate used for the same and method of manufacturing the same
JP2006140317A (en) * 2004-11-12 2006-06-01 Mitsubishi Electric Corp Semiconductor device
JP2007123644A (en) * 2005-10-31 2007-05-17 Mitsubishi Electric Corp Power semiconductor device
WO2009001554A1 (en) * 2007-06-27 2008-12-31 Sanyo Electric Co., Ltd. Circuit device
JP2011222285A (en) * 2010-04-09 2011-11-04 Hitachi Vehicle Energy Ltd Electricity storage module
CN107300371A (en) * 2017-06-16 2017-10-27 郑州云海信息技术有限公司 A kind of method for measuring copper foil necked width and electric current

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394094A (en) * 1993-05-13 1995-02-28 Industrial Scientific Corporation Portable gas sensor utilizing fault protective battery cap
US5788855A (en) * 1995-05-04 1998-08-04 Intel Corporation Method of producing circuit board
JP2003218318A (en) * 2002-01-21 2003-07-31 Mitsubishi Electric Corp Semiconductor power module, insulating substrate used for the same and method of manufacturing the same
JP2006140317A (en) * 2004-11-12 2006-06-01 Mitsubishi Electric Corp Semiconductor device
JP4615289B2 (en) * 2004-11-12 2011-01-19 三菱電機株式会社 Semiconductor device
JP2007123644A (en) * 2005-10-31 2007-05-17 Mitsubishi Electric Corp Power semiconductor device
WO2009001554A1 (en) * 2007-06-27 2008-12-31 Sanyo Electric Co., Ltd. Circuit device
US8363419B2 (en) 2007-06-27 2013-01-29 Sanyo Electric Co., Ltd. Circuit device
JP2011222285A (en) * 2010-04-09 2011-11-04 Hitachi Vehicle Energy Ltd Electricity storage module
US9041403B2 (en) 2010-04-09 2015-05-26 Hitachi Automotive Systems, Ltd. Electrical storage module
CN107300371A (en) * 2017-06-16 2017-10-27 郑州云海信息技术有限公司 A kind of method for measuring copper foil necked width and electric current

Similar Documents

Publication Publication Date Title
JP4220094B2 (en) Power semiconductor module
CN108370016B (en) Electrical bridging device for bridging electrical components, in particular energy sources or energy consumers
KR940003015A (en) Semiconductor device and manufacturing method thereof
JP2000306477A (en) Protective element
TW455887B (en) Conductive polymer PTC battery protection device and method of making same
JP3819703B2 (en) Battery protection part and battery pack having protection part
TWI277106B (en) Thermistor having improved lead structure and secondary battery having the thermistor
JPH04162691A (en) Hybrid integrated circuit
JP2005197660A (en) Overcurrent protection element and its manufacturing method
JP3714954B2 (en) High voltage breakover diode
JP4244452B2 (en) Battery pack
JPS6386411A (en) Fail-safe ceramic capacitor
US5130784A (en) Semiconductor device including a metallic conductor for preventing arcing upon failure
TW201805984A (en) Protection element
JPH04162489A (en) Hybrid integrated circuit
JP2523055B2 (en) Hybrid integrated circuit
JP4085639B2 (en) Semiconductor device and manufacturing method thereof
JP2854120B2 (en) Hybrid integrated circuit
US11909073B2 (en) Battery module having overcharge prevention structure, battery pack comprising the same, and vehicle comprising the battery pack
JP7149886B2 (en) semiconductor equipment
JPH043480Y2 (en)
JPH0626175B2 (en) Chip-shaped solid electrolytic capacitor with fuse and manufacturing method
JP2002110324A (en) Sheet heating element and its manufacturing method
JPS63239972A (en) Input protective circuit of semiconductor device
JPH1056130A (en) Semiconductor device