JPH0416237B2 - - Google Patents

Info

Publication number
JPH0416237B2
JPH0416237B2 JP19093583A JP19093583A JPH0416237B2 JP H0416237 B2 JPH0416237 B2 JP H0416237B2 JP 19093583 A JP19093583 A JP 19093583A JP 19093583 A JP19093583 A JP 19093583A JP H0416237 B2 JPH0416237 B2 JP H0416237B2
Authority
JP
Japan
Prior art keywords
treatment
tank
aeration
anaerobic
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19093583A
Other languages
Japanese (ja)
Other versions
JPS6082191A (en
Inventor
Yoshiaki Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suido Kiko Kaisha Ltd
Original Assignee
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suido Kiko Kaisha Ltd filed Critical Suido Kiko Kaisha Ltd
Priority to JP58190935A priority Critical patent/JPS6082191A/en
Publication of JPS6082191A publication Critical patent/JPS6082191A/en
Publication of JPH0416237B2 publication Critical patent/JPH0416237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 従来、微生物による汚水の好気性処理は有機物
分解等には効率的であるが、窒素分を硝酸性窒素
まで酸化できても、これを窒素ガスに変じて大気
中に放出する処理はできず脱窒能力に欠けてお
り、これは嫌気性処理に頼らざるを得ない。この
発明はひとつの生物反応槽で好気性、好気性処理
を行うと共に、処理水の清澄化も図ろうとするも
ので、次に図示の実施例によりその態様を説明す
る。
[Detailed Description of the Invention] Conventionally, aerobic treatment of wastewater using microorganisms has been efficient in decomposing organic matter, but even if nitrogen can be oxidized to nitrate nitrogen, it is not possible to convert this into nitrogen gas and release it into the atmosphere. It cannot be treated to release it, and it lacks denitrification ability, so it has no choice but to rely on anaerobic treatment. This invention aims to perform aerobic and aerobic treatment in one biological reaction tank and also to clarify the treated water. Next, the embodiment will be explained with reference to the illustrated embodiment.

例 1 第1図及び第2図に示すように下部を錐形腔1
aとした生物反応槽1の央部に上縁は上限水位よ
りやや下つた位置に、下縁は錐形腔1aより高い
位置で区画壁2を垂設しその両側は槽壁に至らし
めることによつて、水面附近と底部とが各連通し
た画槽3,4に区分する。そして両画槽3,4の
底部において画槽のほぼ中央に散気筒等の曝気装
置5,6を設け、各装置5,6の送気管7,8が
槽外に出た部分において、それぞれ自動的に開閉
操作が行える給気弁9,10をとりつけ、かつこ
れら給気弁9,10は電気的に制御盤11に接続
し、各個にタイマ開閉できるようにして同じく制
御11により自動運転を可能としたブロワ12に
送気管7,8を接続しておく。なお両曝気装置
5,6は各個に槽外に引き上げ点検可能の構造に
しておく。
Example 1 As shown in Figures 1 and 2, the lower part is a conical cavity 1.
A partition wall 2 is installed vertically in the center of the biological reaction tank 1 designated as a, with the upper edge slightly below the upper limit water level and the lower edge higher than the conical cavity 1a, with both sides reaching the tank walls. Accordingly, the tank is divided into tanks 3 and 4 in which the vicinity of the water surface and the bottom are connected to each other. At the bottoms of both tanks 3 and 4, aeration devices 5 and 6 such as diffuser pipes are installed approximately in the center of the tanks, and the air pipes 7 and 8 of each device 5 and 6 are automatically Air supply valves 9 and 10 that can be opened and closed automatically are installed, and these air supply valves 9 and 10 are electrically connected to a control panel 11 so that each can be opened and closed by a timer, and automatic operation is also possible using the control 11. The air pipes 7 and 8 are connected to the blower 12. Both aeration devices 5 and 6 are constructed so that they can be individually pulled out of the tank and inspected.

更に区画壁2の直上には汚水供給管13を開口
させ、錐形腔1aの上部には処理水取出口14
を、また錐形腔1aの錐下底には汚泥排出口15
をそれぞれ配し、前記汚水供給管13と、取出口
14、排出口15から導出される各送液管16,
17にはそれぞれ制御弁18,19,20を設
け、前記制御盤11に電気的に接続し、開閉制御
を可能とする。
Furthermore, a waste water supply pipe 13 is opened directly above the partition wall 2, and a treated water outlet 14 is opened at the upper part of the conical cavity 1a.
In addition, there is a sludge discharge port 15 at the bottom of the conical cavity 1a.
are arranged respectively, and each liquid sending pipe 16 led out from the wastewater supply pipe 13, the take-out port 14, and the discharge port 15,
17 are provided with control valves 18, 19, and 20, respectively, and are electrically connected to the control panel 11 to enable opening/closing control.

一方、本実施例においては接触材21として発
泡スチロール粒子を使用し満水位附近に網枠22
を水平に展張して、接触材21粒子が浮上膨出し
ないようにしておく。かくして先づ生物反応槽1
に汚水を徐々に流入してゆき、散気筒5,6がか
くれるようになつてから図において左側の画槽3
のみ曝気操作を行なう。この場合、接触材21は
散気筒5から浮上してくる気泡によつて上方に押
し上げられる傾向にあるが、左側の画槽3におい
ては好気性状態となつて接触材21に附着してい
る微生物の作用により有機物は分解され、また汚
水中のアンモニアは硝酸にまで酸化される。この
曝気時間は汚水の濃度、性状によつて異なり、21
〜23時間或いは短く1〜12時間のサイクルをとる
場合もある。そして曝気操作により汚水は自動的
に区画壁2上縁を乗り越えて曝気されていない右
側の画槽4に入るが、ここで嫌気性となつて、脱
窒菌の作用で区画壁2直上から流下してくる汚水
の一部流入により、それを炭素源として硝酸を窒
素ガス及び炭酸ガスに分解して大気中に放出し、
また汚水は嫌気消化される。この際、嫌気部で再
成されたアルカリ度は好気部へ循環返送されるこ
とによつて、好気部におけるPH値の低下防止に役
立ち、窒素の硝化脱窒運転が合理的に行なえる。
それから適宜時期に処理水弁を開けば、右側の画
槽4中の処理水は静かに接触材21の粒子間を降
下し、あたかも過されるような状態で浮遊物は
接触材粒子に捕捉され、清澄な処理水を取り出す
ことができる。
On the other hand, in this embodiment, expanded polystyrene particles are used as the contact material 21, and the mesh frame 22 is placed near the full water level.
is spread horizontally to prevent the contact material 21 particles from floating and swelling. Thus, first biological reaction tank 1
Sewage gradually flows into the tank until the aeration pipes 5 and 6 are hidden, and then the tank 3 on the left side in the figure
Perform aeration only. In this case, the contact material 21 tends to be pushed upward by the bubbles floating up from the aeration tube 5, but the left tank 3 is in an aerobic state and the microorganisms attached to the contact material 21 are in an aerobic state. Organic matter is decomposed and ammonia in wastewater is oxidized to nitric acid. This aeration time varies depending on the concentration and properties of the wastewater.
The cycle may be ~23 hours or shorter, 1 to 12 hours. Then, by the aeration operation, the wastewater automatically climbs over the upper edge of the compartment wall 2 and enters the tank 4 on the right side, which is not aerated, but here it becomes anaerobic and flows down from directly above the compartment wall 2 due to the action of denitrifying bacteria. When some of the sewage flows in, it is used as a carbon source to decompose nitric acid into nitrogen gas and carbon dioxide and release it into the atmosphere.
The wastewater is also subjected to anaerobic digestion. At this time, the alkalinity regenerated in the anaerobic section is circulated back to the aerobic section, which helps prevent the PH value from decreasing in the aerobic section, allowing nitrogen nitrification and denitrification to be carried out rationally. .
Then, by opening the treated water valve at an appropriate time, the treated water in the right-hand image tank 4 will quietly fall between the particles of the contact material 21, and the suspended matter will be captured by the particles of the contact material as if passing through. , clear treated water can be taken out.

しかる後、接触材21の粒子中に浮遊物が充満
してきたと思われる時期に、左右両画槽3,4を
同時に5〜15分間位一斉に曝気すれば、上昇する
気泡と共に動く水流によつて、粒子相互が摩擦
し、附着した汚泥は脱落して過池の逆洗効果が
得られるから、ブロワ12の運転を停止し、30分
〜2時間静置する。そして液中に懸濁した汚泥が
錐形腔1aの底部に沈殿した時、余剰汚泥を排出
するようにする。したがつて静置期間と汚泥排出
期間はブロワ運転は停止となり、次には逆に第2
図に示すように右側の画槽4を曝気して同様にし
て汚水処理操作を行なう。
After that, when the particles of the contact material 21 are thought to be filled with floating matter, if both the left and right tanks 3 and 4 are aerated for about 5 to 15 minutes at the same time, the water flow that moves with the rising air bubbles will The particles rub against each other and the attached sludge falls off, producing a backwashing effect for the pond.The operation of the blower 12 is therefore stopped and the sludge is allowed to stand still for 30 minutes to 2 hours. When the sludge suspended in the liquid settles to the bottom of the conical cavity 1a, excess sludge is discharged. Therefore, the blower operation is stopped during the standing period and sludge discharge period, and then the second blower is turned on.
As shown in the figure, the right tank 4 is aerated and the sewage treatment operation is performed in the same manner.

以上が処理操作の態様であるが、各管路の弁の
開閉は汚水の水質がきまればタイマより自動制御
できるものである。
The above is the mode of treatment operation, and the opening and closing of the valves of each pipeline can be automatically controlled by a timer once the quality of the waste water is determined.

例 2 第3図ないし第5図に示す本例の場合は、反応
槽等は例1の場合と同様であるが、接触材21を
粒状とせず、条鰭を突出させた傾斜板装置やハニ
カム材等の固定沈殿分離装置21aを固定接触材
とする。したがつて本例の場合は、接触材による
固液分離操作は過効果でなく、沈殿効果による
ものとなる。その他の処理操作及び効果は、例1
の場合と同様であつて図中、例1と同一又は同等
部分には同一符号を付し説明を省略した。
Example 2 In the case of this example shown in Figures 3 to 5, the reaction tank etc. are the same as in Example 1, but the contact material 21 is not made into granules, but instead is made of an inclined plate device with protruding ray fins or a honeycomb. The fixed precipitation separator 21a is used as a fixed contact material. Therefore, in this example, the solid-liquid separation operation using the contact material is not an overeffect, but is due to a precipitation effect. For other processing operations and effects, see Example 1.
This is the same as in Example 1, and in the figure, the same or equivalent parts as in Example 1 are denoted by the same reference numerals, and their explanations are omitted.

例 3 本例は第6図に示すように、一対の画槽3,4
を有する生物反応槽1,1……を複数個直列に配
置し、固液分離槽22だけは別個に設けるもので
ある。この場合、直列の反応槽間の液の移動は水
位差による。本例においても例1と同一又は同等
部分には同一の符号を付し、説明を省略した。
Example 3 In this example, as shown in Fig. 6, a pair of picture tanks 3 and 4 are used.
A plurality of biological reaction tanks 1, 1, . . . are arranged in series, and only the solid-liquid separation tank 22 is provided separately. In this case, the movement of liquid between reactors in series is due to the difference in water level. In this example as well, the same or equivalent parts as in Example 1 are denoted by the same reference numerals, and the explanation thereof is omitted.

この発明は上述のようにして実施するものであ
るから 1) 有機物及び窒素等の酸化分解と脱窒が同時
に行える。
Since the present invention is carried out as described above, 1) oxidative decomposition of organic matter, nitrogen, etc. and denitrification can be performed simultaneously.

2) 接触材に浮上材を使用した場合は、固液
分離は嫌気部の生物過となり、清澄な処理水
が得られる。
2) When a flotation material is used as a contact material, solid-liquid separation becomes a biological filtration in the anaerobic section, resulting in clear treated water.

3) 浮上材を使用するときは、材の逆洗が
容易に行える。
3) When using flotation material, it is easy to backwash the material.

4) 全床曝気の接触酸化でも片側の嫌気部では
散気筒を引き上げても差支えないので、散気装
置の保守点検ができる。
4) Even in catalytic oxidation with whole-bed aeration, there is no problem in pulling up the aeration pipe in the anaerobic section on one side, so maintenance and inspection of the aeration system can be performed.

5) 汚水の流入が曝気流により自然に嫌気部に
行き、また嫌気部で再生されるアルカリ分が好
気部へ循還されるので、窒素の硝化脱窒処理が
合理的に行える等の利点が生ずる。
5) The inflow of sewage flows naturally to the anaerobic section by the aerobic flow, and the alkaline content regenerated in the anaerobic section is recycled to the aerobic section, so nitrification and denitrification of nitrogen can be carried out rationally. occurs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の第一実施例の作
業順序を示す竪断面図、第3図a〜eは第二実施
例における各作業段階の状態図、第4図は第3図
a〜bの各段階の運転操作例図、第5図は第二実
施例の装置の竪断面図で、第6図は第三実施例の
配置図である。 なお図において、1……生物反応槽、1a……
錐形腔、2……区画壁、3,4……画槽、5,6
……曝気装置、12……ブロワ、21……接触材
である。
1 and 2 are vertical sectional views showing the working order of the first embodiment of this invention, FIGS. 3 a to 3e are state diagrams of each work stage in the second embodiment, and FIG. FIG. 5 is a vertical sectional view of the apparatus of the second embodiment, and FIG. 6 is a layout diagram of the third embodiment. In the figure, 1...biological reaction tank, 1a...
Conical cavity, 2... compartment wall, 3, 4... tank, 5, 6
... Aeration device, 12 ... Blower, 21 ... Contact material.

Claims (1)

【特許請求の範囲】 1 好気性及び嫌気性微生物処理を併用する汚水
生物処理法において、生物反応槽の央部を区画壁
により水面部及び底部が連通した画槽に区分し、
かつ各槽に曝気装置を配して対をなす画槽を交互
に一定時間曝気操作することによつて、区画壁直
上から供給される汚水を接触材の存在のもとに、
曝気部では好気性処理により有機物の酸化及び窒
素化合物の硝化を進め、曝気停止側の嫌気部では
流入汚水中の一部有機物を炭素源として還元脱窒
処理及び嫌気性生物処理を行なうと共に、両処理
に加えて適宜静置、固液分離、汚泥排出、処理水
排出操作を行なう一連の工程を特徴とする微生物
による汚水処理法。 2 槽中に接触材類を介在させ、好気性及び嫌気
性微生物処理を行なう汚水生物処理装置におい
て、生物反応槽の央部に区画壁を吊設して反応槽
を水面部及び底部が連通した対をなす画槽に区分
し、かつ各槽中には間歇的作動操作を可能とする
給気弁を介してブロワに接続される曝気装置を備
え、かつ粒状或いは固定式の接触材を配すると共
に、区画壁直上に汚水供給口を、また槽体には汚
泥排出口、処理水取出口を設けてなり、各画槽を
交互に一定時間曝気操作することで曝気部では好
気性処理を、曝気停止側の嫌気部では嫌気性処理
を行なうことを特徴とする汚水処理装置。
[Claims] 1. In a sewage biological treatment method that uses both aerobic and anaerobic microbial treatment, the central part of the biological reaction tank is divided into tank tanks in which the water surface and the bottom are connected by a partition wall,
In addition, by placing an aeration device in each tank and aerating the paired tanks alternately for a certain period of time, the sewage supplied from directly above the compartment wall is treated in the presence of a contact material.
In the aeration section, oxidation of organic matter and nitrification of nitrogen compounds are carried out through aerobic treatment, and in the anaerobic section on the side where aeration is stopped, reduction denitrification treatment and anaerobic biological treatment are carried out using some organic matter in the inflowing wastewater as a carbon source. A sewage treatment method using microorganisms that is characterized by a series of steps including, in addition to treatment, appropriate standing, solid-liquid separation, sludge discharge, and treated water discharge operations. 2. In a sewage biological treatment system that performs aerobic and anaerobic microbial treatment by interposing contact materials in the tank, a partition wall is hung in the center of the biological reaction tank so that the water surface and bottom of the reaction tank communicate with each other. It is divided into pairs of tanks, and each tank is equipped with an aeration device connected to a blower via an air supply valve that enables intermittent operation, and a granular or fixed contact material is arranged. At the same time, a sewage supply port is provided directly above the partition wall, and a sludge discharge port and a treated water intake port are provided in the tank body.By alternately aerating each tank for a certain period of time, aerobic treatment is carried out in the aeration section. A sewage treatment device characterized in that an anaerobic section on the aeration stop side performs anaerobic treatment.
JP58190935A 1983-10-14 1983-10-14 Method and device for treating sewage by microorganism Granted JPS6082191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190935A JPS6082191A (en) 1983-10-14 1983-10-14 Method and device for treating sewage by microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190935A JPS6082191A (en) 1983-10-14 1983-10-14 Method and device for treating sewage by microorganism

Publications (2)

Publication Number Publication Date
JPS6082191A JPS6082191A (en) 1985-05-10
JPH0416237B2 true JPH0416237B2 (en) 1992-03-23

Family

ID=16266128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190935A Granted JPS6082191A (en) 1983-10-14 1983-10-14 Method and device for treating sewage by microorganism

Country Status (1)

Country Link
JP (1) JPS6082191A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233593A (en) * 1985-08-05 1987-02-13 Kobe Steel Ltd Biological treatment of waste water
DE19614214C2 (en) * 1996-04-10 1998-01-29 Herhof Umwelttechnik Gmbh Method and device for treating water from a biodegradation process
JP4689007B2 (en) * 2000-06-23 2011-05-25 株式会社ハウステック Wastewater purification method
JP4574830B2 (en) * 2000-10-23 2010-11-04 フジクリーン工業株式会社 Sewage treatment apparatus and treatment method
JP4573991B2 (en) * 2000-11-06 2010-11-04 フジクリーン工業株式会社 Sewage treatment apparatus and treatment method
JP4573997B2 (en) * 2000-11-14 2010-11-04 フジクリーン工業株式会社 Sewage treatment apparatus and treatment method
KR100441208B1 (en) 2001-10-24 2004-07-22 삼성엔지니어링 주식회사 Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
JP2006263605A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Suspended carrier-used biological treatment apparatus
JP4787133B2 (en) * 2006-11-08 2011-10-05 フジクリーン工業株式会社 Water treatment apparatus and water treatment method
JP4979531B2 (en) * 2007-10-01 2012-07-18 株式会社ハウステック Aerobic filter bed and method for operating the aerobic filter bed
JP5087034B2 (en) * 2009-03-04 2012-11-28 株式会社クボタ Septic tank and operation method of septic tank

Also Published As

Publication number Publication date
JPS6082191A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
US3773659A (en) System for processing wastes
KR940000563B1 (en) Waste water treating method and apparatus
JP4782576B2 (en) Wastewater treatment equipment
JPH0416237B2 (en)
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
US3928190A (en) Method of biological purification of sewage
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
CN207512026U (en) For the advanced treatment apparatus being for further processing to biochemical treatment tail water
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
JPS61136490A (en) Aeration type waste water treatment apparatus
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JP4689007B2 (en) Wastewater purification method
JP4117361B2 (en) Anaerobic treatment tank equipped with ozone aeration chamber and sewage septic tank
JPS62237998A (en) Reactor for biofilter
JP2001246390A (en) Two bed juxtaposition type aerobic filter bed tank, septic tank and operation method thereof
JPH02238835A (en) Filter of breeding water of fishes
JPS5842077Y2 (en) Biological “filtration” device
JPH07256286A (en) Water treatment apparatus
JP3716461B2 (en) Concentration method in the receiving tank for biological filtration backwash wastewater
JPS62132598A (en) Treatment of waste water
KR200369118Y1 (en) Waster water recyclic apparatus by Attached microbe in Separated Aeration tank
CA1090488A (en) Apparatus for on-site renovation of sanitary waters
JPH06142692A (en) Method and device for purifying organic sewage