JPH04157230A - Fluid-sealed bush assembly body - Google Patents

Fluid-sealed bush assembly body

Info

Publication number
JPH04157230A
JPH04157230A JP28028090A JP28028090A JPH04157230A JP H04157230 A JPH04157230 A JP H04157230A JP 28028090 A JP28028090 A JP 28028090A JP 28028090 A JP28028090 A JP 28028090A JP H04157230 A JPH04157230 A JP H04157230A
Authority
JP
Japan
Prior art keywords
liquid
elastic
inner shaft
outer cylinder
shaft body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28028090A
Other languages
Japanese (ja)
Inventor
Tsugunari Iwashita
岩下 嗣也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP28028090A priority Critical patent/JPH04157230A/en
Publication of JPH04157230A publication Critical patent/JPH04157230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To decline the rise of spring constant for the input in the direction perpendicular to the axial direction while maintaining high damping action against all frequencies by forming a viscous means and an elastic means sepa rately and combining them between an inner shaft body and outer tube. CONSTITUTION:An elastic body portion is separately formed by dividing it into two portions. One is a viscous means 2 in which mainly fluid is sealed and sectioned and viscous spring effect is given by means of an orifice means, and the other is an elastic means 1 formed mainly of rubber elastic body and gives elastic spring effect. Both means are positioned between an inner shaft body 10a and outer tube 14 so that they are separated and opposed in the direction perpendicular to the axial direction under the condition that they are substantially made in contact with or pressed against each other to form a fluid- sealed bush assembly body. When an input force F in the direction perpendicular to the axial direction is applied to the inner shaft body 10a, the contact portion 4 of a movable wall 16 on the side opposite to the inputted portion of the inner shaft body 10a, is separated from the elastic means 1 to form a diaphragm and lower spring constant can be realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】 本発明は、ゴム弾性体の弾性と、液体の粘性という相反
する特性を利用して、高減衰作用を与える液体封入ブツ
シュ型の防振ゴムに係り、特に自動車のサスペンション
ブツシュ、エンジンマウント、ボディーマウント、メン
バーマウントなどに好適に使用される液体封入ブツシュ
組立体に関するものである。
[Field of Industrial Application] The present invention relates to a liquid-filled bushing-type vibration isolating rubber that provides a high damping effect by utilizing the conflicting properties of the elasticity of a rubber elastic body and the viscosity of a liquid, and in particular relates to a suspension type vibration-isolating rubber for automobiles. The present invention relates to a liquid-filled bushing assembly suitable for use in bushings, engine mounts, body mounts, member mounts, etc.

【従来の技術】[Conventional technology]

従来より、自動車のサスペンションブツシュやエンジン
マウントには各種の防振ゴムが開発され[てきたが、一
般に内筒と外筒との間にゴム弾性体を介在させたもので
あった(例えば実開昭52−127192号公報)。 ゴム弾性体のみでは防振ゴムの減衰性能には限界がある
ため近年、液体封入式の防振ゴムが開発されて、液体が
オリフィスを流動するときの粘性抵抗を利用して、低周
波大損幅領域で大減衰を達成すると共に、高周波微小振
幅領域での動バネ定数の低減を図るということが行なわ
れている(例えば特開昭53−5376号公報)。 このうち、振動特性等の面から、ブツシュ型の液体封入
防振ゴムの使用が多くなっているが、この種の防振ゴム
の初期のタイプとして特公昭48−36151号のよう
なものが知られている。 このような液体封入ブツシュにおいては、ゴムスリーブ
の外側表面に複数の凹みを設け、その凹みと外筒スリー
ブ内壁とによって形成される液室をオリフィスを通じて
連通される基本構成を有しており、加振振動時には、゛
入力に対して内外筒間のゴムが歪み、液室内の液体が差
動的に一方の液室から他方の液室にオリフィスを通じて
流動する時の抵抗により、高減衰作用が得られるように
なっている。 この初期の液体封入ブツシュにおいては、ゴムスリーブ
中にオリフィスが設けてあり、入力時にオリフィスが変
形し、潰れるなどの問題が生じたため、内筒又は外筒側
の金具内にオリフィスを設けてオリフィス通路の信頼性
を高めたさまざまな構成の液体封入ブツシュが近年開発
されるに至り、種々用途に使用されている(例えば実開
昭60−142335号)。 ■発明が解決しようとする課題】 内情側オリフィス、外筒側オリフィスを問わず。 こうした従来の液体封入ブツシュにおいては、その基本
構成として、内外筒間に液室と弾性体であるゴムが一体
的に存在しており、軸直角入力に応じて、内筒が入力方
向に外筒へ押し付けられた場合、圧縮されたゴム側で生
じた圧縮応力と伸長されたゴム側で生じた伸長応力が同
時に、内外筒に作用するため、バネ定数の立ち上がりが
大きく。 また、構造的に高周波微小振幅時、低周波大振幅時共に
、動的バネ定数が大きくなる原因を有していたのである
。また、高周波−微小振幅時においては、液体がオリフ
ィスを通過しにくくなり、流体圧の上昇による動的バネ
定数の上昇をきたすという問題もあったのである。 この問題を解決するために、液室を形成する弾性体の肉
厚を薄くして、その弾性壁を膨出変形し易くして動的バ
定数の上昇を緩和することも行なわれているが、限界が
あり、ややもすると耐久性が悪化するという問題が生じ
ていたのである。 また、この問題を解決する方法として、ゴム弾性体を貫
通する隙間や空所を設けることも実開昭61−1707
39号公報、実開昭62−143839号公報により明
らかにされている。第14図に示される如く、この方法
によれば、たしかに微小振幅時には、低バネ定数が得ら
れるが、ゴム弾性体(30)のある内筒(32)と、液
室部(31)が隙間又は空所によって隔離しているため
に、ゴム弾性体(30)と液室部(31)が当接するま
では高減衰作用が得られず、隙間以上の大振幅が作用し
たときのみ、高減衰効果を生ずるので、サスペンション
ブツシュやエンジンマウント等で、低振幅時から、高減
衰作用を要求されるものには実使用に適さなかったので
ある。 また、この要求を達成するために、空所や隙間を狭くす
ることも考えられるが、防振ゴムの成形方法においては
、その空所形状をそのまま中実の三次元形状に復元した
陰型にゴムを注入して加硫成形するため、金型の強度上
、空所形状を狭くするには限度があったのである。また
更に空所形状を成形後、外筒に絞りを入れることにより
狭めることもできるが安定せず、ややもすると外筒が歪
んだり、中間筒に窓部を形成して中間筒を介して外筒に
圧入する場合には、圧入時、この窓部位置に応力集中し
て座屈を生じたりするため、限度があったのである。 本発明は、このような事情を背景として為されたもので
あって、その目的とするところは、流体を使用した高減
衰特性を有する液体封入ブツシュにおいて、上述した従
来の欠点の改良を図ることにある。 また、本発明の他の目的は、あらゆる振幅に対して高減
衰作用を有しながらも軸直角方向人力に対するバネ定数
の立上がりがゆるやかで、小型化。 軽量化を達成し、さらには耐久性を向上した車両用の液
体封入ブツシュを提供することにある。
Various types of anti-vibration rubber have been developed for automobile suspension bushes and engine mounts, but generally a rubber elastic body is interposed between the inner cylinder and the outer cylinder (for example, in practice Publication No. 52-127192). Since there is a limit to the damping performance of anti-vibration rubber using only a rubber elastic body, liquid-filled anti-vibration rubber has been developed in recent years. At the same time as achieving large attenuation in this region, efforts have been made to reduce the dynamic spring constant in the high frequency and small amplitude region (for example, Japanese Patent Laid-Open No. 5376/1983). Among these, bush type liquid-filled vibration isolating rubber is increasingly being used due to its vibration characteristics, but the early type of this kind of vibration isolating rubber is known as the one manufactured by Japanese Patent Publication No. 48-36151. It is being Such a liquid-filled bushing has a basic structure in which a plurality of recesses are provided on the outer surface of the rubber sleeve, and a liquid chamber formed by the recesses and the inner wall of the outer sleeve is communicated through an orifice. During vibration, the rubber between the inner and outer cylinders is distorted in response to input, and a high damping effect is achieved due to the resistance when the liquid in the liquid chamber differentially flows from one liquid chamber to the other through the orifice. It is now possible to In these early liquid-filled bushings, an orifice was provided in the rubber sleeve, and problems such as the orifice being deformed and crushed during input occurred. In recent years, liquid-filled bushings of various configurations with improved reliability have been developed and are used for various purposes (for example, Japanese Utility Model Application No. 142335/1983). ■Problems to be solved by the invention] Regardless of whether the orifice is on the inner side or the outer cylinder side. The basic structure of such conventional liquid-filled bushings is that a liquid chamber and rubber, which is an elastic body, are integrally present between the inner and outer cylinders, and in response to an input at right angles to the axis, the inner cylinder moves in the input direction to the outer cylinder. When pressed, the compressive stress generated on the compressed rubber side and the elongated stress generated on the stretched rubber side act on the inner and outer cylinders at the same time, resulting in a large rise in the spring constant. In addition, the structure caused the dynamic spring constant to become large both at high frequency and small amplitude and at low frequency and large amplitude. Furthermore, at high frequencies and small amplitudes, it becomes difficult for the liquid to pass through the orifice, resulting in an increase in the dynamic spring constant due to an increase in fluid pressure. In order to solve this problem, attempts have been made to reduce the thickness of the elastic body that forms the liquid chamber, making it easier for the elastic wall to expand and deform, thereby mitigating the increase in the dynamic bar constant. However, there was a problem that the durability deteriorated over time. In addition, as a method to solve this problem, it is also possible to provide a gap or void space that penetrates the rubber elastic body.
This is disclosed in Publication No. 39 and Japanese Utility Model Application Publication No. 62-143839. As shown in FIG. 14, according to this method, it is true that a low spring constant can be obtained at the time of minute amplitude, but there is a gap between the inner cylinder (32) with the rubber elastic body (30) and the liquid chamber (31). Or, because they are separated by a space, high damping action cannot be obtained until the rubber elastic body (30) and liquid chamber part (31) come into contact, and high damping action is only achieved when a large amplitude greater than the gap is applied. Therefore, it was not suitable for practical use in suspension bushes, engine mounts, etc. that require high damping even at low amplitudes. Furthermore, in order to achieve this requirement, it is possible to narrow the voids and gaps, but in the molding method of anti-vibration rubber, the shape of the void is directly restored to a solid three-dimensional shape using a negative mold. Because rubber was injected and vulcanized, there was a limit to how narrow the cavity could be due to the strength of the mold. It is also possible to further narrow the space by putting a draw in the outer cylinder after forming the shape of the space, but this is not stable and may cause the outer cylinder to become distorted. When press-fitting into a cylinder, there was a limit because stress was concentrated at the window position during press-fitting, causing buckling. The present invention was made against the background of the above, and its purpose is to improve the above-mentioned conventional drawbacks in a liquid-filled bushing that uses fluid and has high damping characteristics. It is in. Another object of the present invention is to have a high damping effect for all amplitudes, yet have a gentle spring constant rise in response to human force in the direction perpendicular to the axis, and to be compact. An object of the present invention is to provide a liquid-filled bushing for a vehicle that is lightweight and has improved durability.

【課題を解決するための手段】[Means to solve the problem]

これらの目的を達成するために、本発明においては、同
心的又は偏心的に配置した内軸体と外筒間の弾性体部分
に少なくとも2箇所の液室を設けて液体を封入するとと
もに、その液室間をオリフィスにて連通させた液体封入
ブツシュにおいて。 弾性体部分を主に液体が封入郭成されてオリフィス手段
による粘性バネを与える粘性手段部(2)と、主にゴム
弾性体から形成されて弾性バネを与える弾性手段部(1
)とに分離してそれぞれ別体に形成して内軸体(10)
と外筒(14)との間に配設し、粘性手段部と弾性手段
部が実質的に当接または圧接状態で軸直角方向に分離さ
れながら対向した。液体封入ブツシュ組立体を完成する
に至ったのである。
In order to achieve these objects, in the present invention, at least two liquid chambers are provided in the elastic body portion between the inner shaft body and the outer cylinder, which are arranged concentrically or eccentrically, and the liquid is sealed therein. In a liquid-filled bushing in which liquid chambers are communicated through an orifice. A viscous means part (2) whose elastic body part is mainly filled with a liquid to provide a viscous spring by orifice means, and an elastic means part (1) which is mainly formed of a rubber elastic body and provides an elastic spring.
) and are each formed separately to form an inner shaft body (10).
and the outer cylinder (14), and the viscous means portion and the elastic means portion faced each other while being separated in the direction perpendicular to the axis while substantially in contact with or in pressure contact with each other. This led to the completion of a liquid-filled bushing assembly.

【作用】[Effect]

本発明による、このような構成によれば、液体封入ブツ
シュ内部に粘性手段部(2)と弾性手段部(1)とが実
質的に当接または圧接状態で軸直角方向に分離されなが
ら対向しているところから、低周波大振幅時には、液室
間を連通ずるオリフィス(19)を流れる液体の粘性抵
抗や慣性力による高減衰効果によって、高周波−微小振
幅時には、分離されながらも当接している可動壁(16
)自体の柔らかい変形作用による動的バネ定数低下効果
によって、内軸体−外筒に作用する荷重によって惹起さ
れる微少振幅から大振幅に至る広範囲の振動に対して、
高減衰作用を与え得るものとなったのである。 また1弾性手段部(1)が別体で形成されて組立られる
ところから、内軸体(10a)−外筒(14)間で圧入
接着でき、弾性手段部(1)の挿入代を変えて、絞り加
工等を行なわなくとも、たとえ、内輪体−外筒間におい
て弾性手段部(1)又は、粘性手段部(2)への予圧縮
量を自由にコントロールでき、非対称、非線型の特性の
付与をもできるようになったのである。 緩和することも可能となったのである。下げてより柔軟
性を上げることにより高周波時の剛体化を粘性手段部(
2〉の液室(21)を構成する可動壁(16)のゴム硬
度をまた、弾性手段部(1)、粘性手段部(2)のゴム
弾性体を変えて、さらに1弾径手段部(1)と粘性手段
部(2)が別体で作動するため、軸直角方向の内軸体へ
の圧縮応力と伸長応力が分離すると共に、軸直角方向人
力Fが内軸体(10a)に加わったとき、第13図に示
したように可動壁(16)の入力された反対側の当接部
(4)が弾性手段部(1)から離れてダイヤフラムとな
ることによって、より低いバネ定数が実現されたのであ
る。
According to such a configuration according to the present invention, the viscous means part (2) and the elastic means part (1) are opposed to each other while being separated in the direction perpendicular to the axis, in a state of substantially contacting or press-contacting inside the liquid-filled bushing. Therefore, at low frequency and large amplitude, due to the high damping effect due to the viscous resistance and inertial force of the liquid flowing through the orifice (19) communicating between the liquid chambers, at high frequency and small amplitude, they are separated but in contact. Movable wall (16
) itself has a dynamic spring constant reduction effect due to its soft deformation, and is able to withstand a wide range of vibrations ranging from minute amplitudes to large amplitudes caused by loads acting on the inner shaft body and outer cylinder.
This made it possible to provide a high damping effect. In addition, since the first elastic means part (1) is formed separately and assembled, it is possible to press fit and bond between the inner shaft body (10a) and the outer cylinder (14), and the insertion distance of the elastic means part (1) can be changed. Even without drawing, etc., the amount of precompression applied to the elastic means part (1) or the viscous means part (2) between the inner ring body and the outer cylinder can be freely controlled, and asymmetrical and nonlinear characteristics can be avoided. It is now possible to give grants as well. It was also possible to alleviate the situation. By lowering and increasing flexibility, the viscous means part (
The rubber hardness of the movable wall (16) constituting the liquid chamber (21) of 2> was changed, and the rubber elastic bodies of the elastic means part (1) and the viscous means part (2) were changed, and further 1 elastic diameter means part (1) was changed. 1) and the viscous means part (2) operate separately, the compressive stress and extensional stress on the inner shaft body in the direction perpendicular to the axis are separated, and the human force F in the direction perpendicular to the axis is applied to the inner shaft body (10a). 13, the abutment part (4) on the opposite side of the movable wall (16) separates from the elastic means part (1) and becomes a diaphragm, resulting in a lower spring constant. It was realized.

【実施例】【Example】

本発明を更に具体的に明らかにするために、本発明の実
施例を図面に基づき、詳細に説明する。 まず、第1図〜第8図に、自動車のサスペンションブツ
シュに本発明を適用した第1の実施例が示されている。 この中で、第2図及び第4図には、このようなサスペン
ションブツシュの外形が描かれており、第1図、第3図
には同サスペンションブツシュの全体的構成が断面図で
示されており、第5図には1本発明の一方を構成するこ
のブツシュ弾性手段部(1)が、第6図〜第8図には、
本発明の他方を構成するこのブツシュの粘性手段部(2
)の構成部品が示されている。 これらの図によって説明するが、ここで本発明の内軸体
という術語は、中実の輪状物、中空の円筒金具のどちら
も含んでおり、本発明においては、どちらを用いてもよ
い。 まず、第1図及至第4図において、その最内側に、 内
軸体としてのシャフト(10a)が配置されている。こ
の内輪体(10)の両端には、車体あるいはアクスルハ
ウジング等に固定するための平坦な取付部(12)とそ
の取付穴(13)が設けられており、その軸方向内側に
ゴム弾性体(11)が加硫接着されて弾性手段部(1)
が構成されるが、 この弾性体(11)は第5図に明ら
かに示されている如く、内軸体を隔てて対向する位置に
才槌状に突出して形成されている。この才槌状突出部の
台頂部に粘性手段部との圧入接着部(3)が斜線にて示
されており、この部分で粘性手段部(2)と接合される
ようになっている。 この弾性手段部(1)が内挿されたその外側に粘性手段
部(2)が形成されて1本発明が完成されるが、 この
粘性手段部(2)は主に、第6図、第7図に示される中
間筒組立体(5)と第8図に示される外筒(14)を構
成部品として組立てられている。 第6図、第7図において中間筒(15)が示されている
が、この中間1 (15)はその外周面の径方向に対応
する位置に1周方向に延びる対称的な二つの窓部(22
)を有しており、この窓部(22)の位置に弾性体の凹
所を設けて可動壁(16)を形成している。 その他の内外周面にはその略全面に薄いゴム層が形成さ
れているが、その内周面をほぼ一定の所定厚さで覆う内
周ゴム層(17)は1弾性手段部(1)との接合部であ
り、この内周ゴム層(17)と、弾性手段部(1)の圧
入接着部(3)との圧入接着により、強固なゴム−ゴム
接合をするようにされており、その外周面を覆う外周ゴ
ム層(18)は、中間筒(15)と外筒(14)との間
に位置して、これらの間を液密となすためのものであり
、その軸線方向両端の端部近接位置にそれぞれ2箇所3
条の細条を有する突条部(24a) (24b)が設け
られている0本実施例においては、更にこの外周ゴム層
(18)の中央部に円周方向に延びる凹状溝(23a)
を有し、外筒(14)との間にオリフィス(19)を形
成するようにされている。 これら可動壁(16)、内周ゴム層(17)、外周ゴム
層(18)は、中間筒(15)と一体的に加硫接着成形
される。 こうして形成された中間筒組立体は、中間筒(15)を
通常のダイス絞り操作や、へ方絞り操作により縮径加工
が施されてゴム部が予備圧縮されてもされなくてもよい
、この中間筒組立体(5)と。 外筒(14)との間に液体(20)が封入される。この
液体は、本発明においては限定はされないが特に。 50C5Tから1万C5Tの高粘性シリコーン流体が好
適に使用される。 このような高粘性流体を封入するには、エアー混入によ
る防振特性の支障を防止するために、エアーを排除する
ことが必要となる。本発明による液体封入ブツシュ組立
体を組立てるに際しては。 例えば、液槽中で中間筒組立体(5)と外筒(14)を
組立てるか、効果的にエアー混入を防止した液封装置の
中で組立てられる。液体(20)の封入においては、中
間筒組立体(5)を上述した方法で外筒(14)内に嵌
挿した後、外周端部を加締め操作や、必要に応じた絞り
操作により、外周ゴム層(18)に圧縮を加えることに
よりこの間の密閉が行なわれ、この例においては、外周
ゴム層(18)の凹状溝(23a)と、外筒(14)と
の間にオリフィス(19)が形成され、二つの液室(2
1)が互いに連通されて、粘性手段部(2)が形成され
る。 液体封入ブツシュ組立体の製作に際しては、その方法は
限定されないが1例えば、粘性手段部(2)が完成され
る前に中間筒組立体(5)の空所に弾性手段部(1)が
挿入接着され、液槽中あるいは所定の液封装置の中で、
液体(20)が液室(21)及びオリフィス(19)内
に充填封入されると共に、外筒(14)が外挿されて、
必要な所定の絞り操作や加締め操作が加えられるといっ
た方法や、粘性手段部(2)が完成された後に、 その
空所に弾性手段部(1)が挿入接着されるといった方法
により、液体封入ブツシュ組立体が組立てられる。 組立てに際して、粘性手段部(2)の空所に弾性手段部
(1)を挿入したとき、 ゴム弾性体より成る可動壁(
16)は外筒(14)より内軸体(10a)に向かって
、弾性手段部(1)と実質的に当接または圧接する位置
まで膨出した形状をしており、その膨出した反対側に液
室(2■)となる凹みを有している。この当接部はダイ
ヤフラムの作用をするために薄くすることもできる。そ
して、弾性手段部(1)の圧入接着部(3)の外径は、
圧入される内周ゴム層(17)の内径よりも圧入代だけ
大きくされており、圧入されると同時に内径方向に予備
圧縮されて接着される。 この圧入接着によって、たとえ、中間筒(15)や、外
筒(14)に絞り操作を加えなくとも弾性手段部(1)
のゴム弾性体は予備圧縮されるため、中間筒(15)。 外筒(14)に応力集中による座屈や歪みが生じること
はないのである。そのため、金具自体の強度内で無理の
ない加工が実施できる。 これら弾性手段部(1)と粘性手段部(2)とは、こう
してそれぞれ別体に形成された後、内軸体と外筒との間
に所定位置に配設されて組合わされ、第1図〜第4図に
示されるような液体封入ブツシュ組立体が完成される。 第9図、第1O図に、自動車のサスペンションブツシュ
に本発明を適用した第2の実施例が示されている。 第10図は本発明の第2の実施例に使用される弧状部材
(25)で、本実施例はこの弧状部材(25)の使用及
びこの弧状部材(25)と中間筒(15)との間にオリ
フィスを設けた点、及び内軸体として内筒金具(10b
)を使用した点においてのみ第1実施例とは異なってい
る。 この弧状部材(25)は中間筒(15)よりは弧の径が
小さくされ、 その弧の幅は弾性手段部(1)の中間筒
との接合位置に配設したときにその両端が粘性手段部(
2)の両方の液室(21)に充分達する長さにされてい
る。その弧状部材(25)の中央部外周に円周方向に延
在する凹状溝(23b)が形成され、その左右両端に外
形に沿って略長方形の抜き穴(26)が貫通されている
。 この弧状部材(25)は中間筒組立体(5)を形成する
時に内周ゴム層(17)の内部に略全体が埋設されるよ
うに加硫接着される。そして、第9図の断面図に示され
る如く、弧状部材(25)の抜き穴(26)内にゴムが
貫通一体化されることにより、弧状部材(25)は、内
周ゴム層(17)内に強固に把持される。 この時凹状溝(23b)は中子によって充填されて、こ
の中子を抜くことによりオリフィス(19)が形成され
る1本実施例においては弧状部材(25)上に溝が形成
されているので、第1実施例よりもより安定した連通路
が形成されることになる。その他は第1実施例同様であ
るので説明を省く。 第11図、第12図は本発明の第3及び第4の実施例で
あり、第11図においては、粘性手段部(2)の可動壁
(16)の内軸体に面する部分製他方より厚くした制限
ストッパー(27a)を形成した点で、第12図におい
ては、粘性手段部(2)の可動壁(16)の弾性体に面
する部分を他方より厚くした制限ストッパー(27b)
を形成した点でそれぞれ第1実施例と異なっている。こ
れら厚肉部はいずれも過大な入力時に制限ストッパー(
27a) (27b)として働き1組立体の耐久性を向
上させる。この第3.第4実施例においては、制限スト
ッパー(27a)(27b)はゴム弾性体のみにて形成
されたが、必要に応じて、この厚肉部に金属性中子を部
分的に形成して、半径方向への内輪体(10a)の動き
を規制することもできる。 上述した実施例においては、弾性手段部(1)が内軸体
(10a)に一体加硫されたゴム弾性体で、粘性手段部
(2)が外筒(14)より内輪体(10)に向かって膨
出する可動壁(16)に液体(20)を封入した液室(
21)としたが、本発明は何らこれに限定されるもので
なく、内軸体(10)と外筒(14)との間に別体に形
成された弾性手段部(1)と、粘性手段部(2)が当接
して配設されて組合わされた、さまざまなブツシュ構造
が採用可能である。 本実施例においては1弾性手段部(1)、粘性手段部(
2)の予備圧縮や絞り操作を効率的に行なうために中間
筒(15)を使用したが1本発明は何らこれに限定され
るものではなく、中間筒(15)を使用しないブツシュ
構造も使用できる。また、オリフィスの構成においても
、中間筒(15)の外周ゴム層(18)、あるいは弧状
部材(25)と中間筒(15)との間に設ける態様に限
定されるものではなく1例えば。 内軸体(10)中、あるいはゴム弾性体中にオリフィス
を設けることが可能である。その他、逐一明記しないが
、本発明には、その趣旨を逸脱しない限りにおいて、当
業者の知識に基づいて種々なる変更、修正を加えること
が可能である。 【発明の効果1 本発明は以上のようにゴム弾性体の弾性と、液体の粘性
という相反する特性を利用するに際して。 粘性手段部と弾性手段部が別体に形成された後向軸体、
外筒間に組み合わされ、互いに分離されながら同時に当
接、あるいは圧接されるという構成と、上述した実施例
における少ない端成部品で簡易に組み立てられる構造を
用いることによって、構造的に高周波微小振幅時、低周
波大振幅時共に、動的バネ定数が小さく、あらゆる振幅
に対して高減衰作用を有しながらも、軸直角方向入力に
対するバネ定数の立上がりが緩やかな液体封入ブツシュ
組立体となっている。そこで、小振幅時から、高減衰作
用を要求される自動車のサスペンションブツシュ、エン
ジンマウント、ボディーマウントなどに好適に使用され
得る。また、小型化、軽量化を達成し、さらには耐久性
を向上させた液体封入ブツシュ組立体の提供を可能とし
たのである。
In order to clarify the present invention more specifically, embodiments of the present invention will be described in detail based on the drawings. First, FIGS. 1 to 8 show a first embodiment in which the present invention is applied to a suspension bushing for an automobile. Among these, Figures 2 and 4 show the external shape of such a suspension bushing, and Figures 1 and 3 show the overall structure of the suspension bushing in cross-sectional view. FIG. 5 shows this bushing elastic means part (1) constituting one aspect of the present invention, and FIGS. 6 to 8 show it.
The viscous means part (2) of this bushing which constitutes the other part of the present invention
) components are shown. As will be explained with reference to these figures, the term "inner shaft body" in the present invention includes both a solid ring-shaped member and a hollow cylindrical metal fitting, and either one may be used in the present invention. First, in FIGS. 1 to 4, a shaft (10a) serving as an inner shaft body is disposed at the innermost side. A flat mounting part (12) and its mounting hole (13) for fixing to the vehicle body or axle housing are provided at both ends of the inner ring body (10), and a rubber elastic body ( 11) is vulcanized and bonded to form the elastic means part (1).
As clearly shown in FIG. 5, this elastic body (11) is formed to protrude like a hammer at opposing positions across the inner shaft body. A press-fit bonding part (3) with the viscous means part is indicated by diagonal lines on the top of the pedestal of this mallet-shaped protrusion, and is connected to the viscous means part (2) at this part. A viscous means part (2) is formed outside the elastic means part (1) to complete the present invention. The intermediate cylinder assembly (5) shown in FIG. 7 and the outer cylinder (14) shown in FIG. 8 are assembled as components. The intermediate cylinder (15) is shown in FIGS. 6 and 7, and this intermediate cylinder (15) has two symmetrical window portions extending in the circumferential direction at positions corresponding to the radial direction on the outer peripheral surface of the intermediate cylinder (15). (22
), and a recess made of an elastic body is provided at the position of this window (22) to form a movable wall (16). A thin rubber layer is formed on almost the entire surface of the other inner and outer circumferential surfaces, and the inner circumferential rubber layer (17) that covers the inner circumferential surface with a substantially constant predetermined thickness is one elastic means part (1). The inner rubber layer (17) and the press-fit adhesive part (3) of the elastic means part (1) are press-fitted to form a strong rubber-to-rubber joint. The outer peripheral rubber layer (18) that covers the outer peripheral surface is located between the intermediate cylinder (15) and the outer cylinder (14) to make the gap liquid-tight. 2 locations each near the end 3
In this embodiment, in which the protrusions (24a) (24b) having stripes are provided, a concave groove (23a) extending in the circumferential direction is further provided in the center of the outer peripheral rubber layer (18).
An orifice (19) is formed between the outer cylinder (14) and the outer cylinder (14). These movable wall (16), inner peripheral rubber layer (17), and outer peripheral rubber layer (18) are integrally vulcanized and adhesively molded with the intermediate cylinder (15). The intermediate cylinder assembly formed in this manner may or may not be subjected to a diameter reduction process on the intermediate cylinder (15) by a normal die drawing operation or a helical drawing operation, and the rubber portion may or may not be pre-compressed. and an intermediate cylinder assembly (5). A liquid (20) is sealed between the outer cylinder (14) and the outer cylinder (14). This liquid is particularly, but not exclusively, used in the present invention. High viscosity silicone fluids of 50C5T to 10,000C5T are preferably used. In order to enclose such a highly viscous fluid, it is necessary to exclude air in order to prevent the vibration damping characteristics from being impaired due to air intrusion. In assembling a liquid-filled bushing assembly according to the present invention. For example, the intermediate cylinder assembly (5) and the outer cylinder (14) can be assembled in a liquid bath, or in a liquid sealing device that effectively prevents air from entering. In enclosing the liquid (20), after inserting the intermediate cylinder assembly (5) into the outer cylinder (14) using the method described above, the outer peripheral end is crimped or squeezed as necessary. Sealing is performed by compressing the outer rubber layer (18), and in this example, an orifice (19) is formed between the concave groove (23a) of the outer rubber layer (18) and the outer cylinder (14). ) is formed, and two liquid chambers (2
1) are communicated with each other to form a viscous means portion (2). When manufacturing the liquid-filled bushing assembly, the method is not limited, but for example, the elastic means part (1) is inserted into the cavity of the intermediate cylinder assembly (5) before the viscous means part (2) is completed. Glued, in a liquid tank or in a specified liquid sealing device,
The liquid (20) is filled and sealed in the liquid chamber (21) and the orifice (19), and the outer cylinder (14) is inserted,
The liquid can be sealed by applying a necessary squeezing operation or crimping operation, or by inserting and gluing the elastic means part (1) into the void after the viscous means part (2) is completed. A bushing assembly is assembled. During assembly, when the elastic means part (1) is inserted into the empty space of the viscous means part (2), the movable wall made of rubber elastic body (
16) has a shape that bulges out from the outer cylinder (14) toward the inner shaft body (10a) to a position where it substantially contacts or presses against the elastic means part (1), and the opposite side of the bulge It has a recess on the side that becomes the liquid chamber (2). This abutment can also be made thin in order to act as a diaphragm. The outer diameter of the press-fit adhesive part (3) of the elastic means part (1) is
The inner diameter of the inner peripheral rubber layer (17) to be press-fitted is made larger by the press-fitting margin, and at the same time as it is press-fitted, it is pre-compressed in the inner diameter direction and bonded. Due to this press-fit bonding, the elastic means part (1) can be fixed even if no squeezing operation is applied to the intermediate cylinder (15) or the outer cylinder (14).
Since the rubber elastic body of is pre-compressed, the intermediate cylinder (15). Buckling or distortion due to stress concentration does not occur in the outer cylinder (14). Therefore, processing can be carried out within the strength of the metal fitting itself. After these elastic means part (1) and viscous means part (2) are formed separately, they are disposed at a predetermined position between the inner shaft body and the outer cylinder and combined, as shown in FIG. ~A liquid-filled bushing assembly as shown in FIG. 4 is completed. A second embodiment in which the present invention is applied to a suspension bushing for an automobile is shown in FIG. 9 and FIG. 1O. FIG. 10 shows an arc-shaped member (25) used in a second embodiment of the present invention, and this embodiment uses the arc-shaped member (25) and the connection between this arc-shaped member (25) and the intermediate cylinder (15). An orifice is provided between the points, and an inner cylinder fitting (10b) is used as the inner shaft body.
) is different from the first embodiment only in that it uses. This arc-shaped member (25) has a smaller arc diameter than the intermediate cylinder (15), and the width of the arc is such that when it is disposed at the joint position of the elastic means part (1) with the intermediate cylinder, both ends of the arc member (25) Department (
2) is made long enough to reach both liquid chambers (21). A concave groove (23b) extending in the circumferential direction is formed on the outer periphery of the central portion of the arc-shaped member (25), and substantially rectangular punch holes (26) are penetrated along the outer shape at both left and right ends of the concave groove (23b). This arc-shaped member (25) is vulcanized and bonded so that it is substantially entirely embedded inside the inner peripheral rubber layer (17) when forming the intermediate cylinder assembly (5). As shown in the cross-sectional view of FIG. 9, the arc-shaped member (25) is integrated with the inner peripheral rubber layer (17) by penetrating and integrating the rubber into the hole (26) of the arc-shaped member (25). It is firmly held inside. At this time, the concave groove (23b) is filled with a core, and by removing the core, the orifice (19) is formed.In this embodiment, the groove is formed on the arc-shaped member (25). , a more stable communication path is formed than in the first embodiment. The rest is the same as the first embodiment, so the explanation will be omitted. FIGS. 11 and 12 show third and fourth embodiments of the present invention, and in FIG. 11, the movable wall (16) of the viscous means part (2) faces the inner shaft. In FIG. 12, the limit stopper (27b) is formed with a thicker limit stopper (27a) in which the part of the movable wall (16) of the viscous means part (2) facing the elastic body is thicker than the other part.
Each embodiment differs from the first embodiment in that a . All of these thick parts have limit stoppers (
27a) Works as (27b) to improve the durability of one assembly. This third. In the fourth embodiment, the limit stoppers (27a) and (27b) were formed only of rubber elastic material, but if necessary, a metal core may be partially formed in this thick part to reduce the radius. It is also possible to restrict the movement of the inner ring body (10a) in the direction. In the embodiment described above, the elastic means part (1) is a rubber elastic body integrally vulcanized with the inner shaft body (10a), and the viscous means part (2) is attached to the inner ring body (10) from the outer cylinder (14). A liquid chamber (
21), but the present invention is not limited to this in any way. Various bush structures can be employed in which the means portions (2) are arranged in abutting combinations. In this embodiment, one elastic means part (1), one viscous means part (
Although the intermediate cylinder (15) was used to efficiently perform the pre-compression and squeezing operation in 2), the present invention is not limited to this in any way, and a bush structure that does not use the intermediate cylinder (15) may also be used. can. Further, the configuration of the orifice is not limited to the configuration provided in the outer peripheral rubber layer (18) of the intermediate cylinder (15) or between the arc-shaped member (25) and the intermediate cylinder (15), for example. It is possible to provide an orifice in the inner shaft (10) or in the rubber elastic body. Although not specified in detail, various changes and modifications can be made to the present invention based on the knowledge of those skilled in the art without departing from the spirit thereof. Effects of the Invention 1 As described above, the present invention utilizes the contradictory properties of the elasticity of a rubber elastic body and the viscosity of a liquid. A rearward shaft body in which a viscous means portion and an elastic means portion are formed separately;
By using the structure in which the outer cylinders are combined and separated from each other and are simultaneously brought into contact or pressure contact, and the structure that can be easily assembled with a small number of terminal parts in the above-mentioned embodiment, it is structurally possible to handle high frequency minute amplitudes. The liquid-filled bushing assembly has a small dynamic spring constant both at low frequency and large amplitude, and has a high damping effect for all amplitudes, but the spring constant rises slowly in response to input in the direction perpendicular to the axis. . Therefore, it can be suitably used in automobile suspension bushes, engine mounts, body mounts, etc., which require high damping effects even when the amplitude is small. Furthermore, it has become possible to provide a liquid-filled bushing assembly that is smaller, lighter, and has improved durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明の第1実施例に係るサスペンシ
ョンブツシュを示し、第1図は第2図におけるI−I断
面図であり、第2図は外形の側面図であり、第3図は第
4図における■−■断面図であり、第4図はその正面図
であり、第5図は弾性手段部の一部破断側面図であり、
第6図、第7図は粘性手段部の90°位置を違えて見た
時の下部破断側面図であり、第8図は加締め前の外筒金
具の縦断面図である。 第9図は本発明の第2の実施例を示す第3図に相当する
断面図であり、第10図はそれに使用される弧状板の斜
視図であり、第11図、第12図は、本発明の第3、第
4の実施例を示す、第1図相当上半分の断面図である。 第13図は軸直角入力がある場合の断面図である。第1
4図は従来例を示す第1図相当断面図である。 (1)弾性手段部    (2)粘性手段部(3)圧入
接着部    (4)当接(圧接)部(5)中間筒組立
体   (10a)内軸体(シャフト)(10b)内軸
体(内筒)   (11)ゴム弾性体(12)取付部 
    (13)取付穴(14)外筒      (1
5)中間筒(16)可動壁      (17)内周ゴ
ム層(18)外周ゴム層    (19)オリフィス(
20)液体      (21)液室(22)窓部  
    (23a) (23b)凹状溝(24a)(2
4b)突条部  (25)弧状部材(26)抜き穴  
 (27a) (27b)制限ストッパー以上
1 to 8 show a suspension bushing according to a first embodiment of the present invention, FIG. 1 is a cross-sectional view taken along line II in FIG. 2, and FIG. 2 is a side view of the outer shape. 3 is a sectional view taken along the line ■-■ in FIG. 4, FIG. 4 is a front view thereof, and FIG. 5 is a partially cutaway side view of the elastic means portion,
FIGS. 6 and 7 are cutaway side views of the lower part of the viscous means when viewed from different 90° positions, and FIG. 8 is a longitudinal cross-sectional view of the outer cylindrical fitting before crimping. FIG. 9 is a sectional view corresponding to FIG. 3 showing a second embodiment of the present invention, FIG. 10 is a perspective view of an arcuate plate used therein, and FIGS. 11 and 12 are FIG. 2 is a cross-sectional view of the upper half of FIG. 1, showing third and fourth embodiments of the present invention. FIG. 13 is a sectional view when there is an axis-perpendicular input. 1st
FIG. 4 is a sectional view corresponding to FIG. 1 showing a conventional example. (1) Elastic means part (2) Viscous means part (3) Press-fit adhesive part (4) Contact (pressure contact) part (5) Intermediate cylinder assembly (10a) Inner shaft body (shaft) (10b) Inner shaft body ( (11) Rubber elastic body (12) Mounting part
(13) Mounting hole (14) Outer cylinder (1
5) Intermediate cylinder (16) Movable wall (17) Inner rubber layer (18) Outer rubber layer (19) Orifice (
20) Liquid (21) Liquid chamber (22) Window
(23a) (23b) Concave groove (24a) (2
4b) Projection (25) Arc-shaped member (26) Hole
(27a) (27b) Limit stopper or higher

Claims (1)

【特許請求の範囲】 1 同心的又は偏心的に配置した内軸体と外筒間の弾性
体部分に少なくとも2箇所の液室を設けて液体を封入す
るとともに、その液室間をオリフィスにて連通させた液
体封入ブッシュにおいて、弾性体部分を主に液体が封入
郭成されてオリフィス手段による粘性バネを与える粘性
手段部(2)と、主にゴム弾性体から形成されて弾性バ
ネを与える弾性手段部(1)とに分離してそれぞれ別体
に形成して内軸体(10)と外筒(14)との間に配設
し、粘性手段部(2)と弾性手段部(1)が実質的に当
接または圧接状態で軸直角方向に分離されながら対向し
てなる液体封入ブッシュ組立体。 2 前記弾性手段部(1)が内軸体を隔てて対向する位
置の実質的内軸体外筒間に接着されたゴム弾性体(11
)であり、前記粘性手段部(2)が外筒より内軸体に向
かって、内軸体(10)及び弾性手段部(1)と実質的
に当接する位置まで膨出した形状のゴム弾性体の可動壁
(16)に、液体を封入した液室(21)からなる請求
項1記載の液体封入ブッシュ組立体。 3 前記弾性手段部(1)が内軸体(10)に一体加硫
されたゴム弾性体(11)であって、内軸体と外筒間で
圧入接着されてなる請求項1記載の液体封入ブッシュ組
立体。 4 前記内軸体(10)と外筒(14)との間に窓部(
22)を少なくとも2箇所設けた中間筒(15)を配置
して、この中間筒窓部の位置に弾性体の凹所を設けて液
室の可動壁(16)となし、中間筒(15)と外筒(1
4)との間に弾性体層を設け、その弾性体層に溝部を設
けて、外筒との間にオリフィス(19)を形成して液室
間の連通路としてなる請求項1、2又は3記載の液体封
入ブッシュ組立体。 5 前記内軸体と外筒との間に窓部(22)を少なくと
も2箇所設けた中間筒(15)を配置して、この中間筒
窓部の位置に弾性体の凹所を設けて液室の可動壁(16
)となし、前記弾性手段部(1)の中間筒(15)との
接合部位置に粘性手段部(2)の液室(21)まで延在
する弧状部材(25)を設け、その弧状部材(25)と
中間筒(15)との間に液室(21)を互いに連通させ
るオリフィス(19)を設けてなる請求項1、2又は3
記載の液体封入ブッシュ組立体。 6 前記粘性手段部(2)の可動壁(16)の内軸体(
10)に面する部分と、弾性体に面する部分のいずれか
一方を、他方より厚くして、過大入力に対する制限スト
ッパー(27)としてなる請求項2及至5のいずれか記
載の液体封入ブッシュ組立体。 7 前記封入される液体が50CST〜1万CSTの高
粘性シリコーン流体である請求項1及至6のいずれか記
載の液体封入ブッシュ組立体。
[Claims] 1 At least two liquid chambers are provided in the elastic body portion between the inner shaft body and the outer cylinder arranged concentrically or eccentrically to seal liquid therein, and an orifice is provided between the liquid chambers. In the fluid-filled bushings that are connected to each other, the elastic body portion is mainly filled with liquid and has a viscous means portion (2) that provides a viscous spring by means of an orifice, and an elastic portion (2) that is mainly formed of a rubber elastic body and provides an elastic spring. The means part (1) is separated and formed separately and arranged between the inner shaft body (10) and the outer cylinder (14), and the viscous means part (2) and the elastic means part (1) A liquid-filled bushing assembly in which the bushings are opposed to each other while being separated in the direction perpendicular to the axis while being substantially in contact or pressure contact. 2. A rubber elastic body (11
), and the rubber elastic member has a shape in which the viscous means portion (2) bulges from the outer cylinder toward the inner shaft body to a position where it substantially contacts the inner shaft body (10) and the elastic means portion (1). A liquid-filled bushing assembly according to claim 1, wherein the movable wall (16) of the body includes a liquid chamber (21) containing a liquid. 3. The liquid according to claim 1, wherein the elastic means portion (1) is a rubber elastic body (11) integrally vulcanized with the inner shaft body (10), and is press-fitted and bonded between the inner shaft body and the outer cylinder. Enclosed bushing assembly. 4 A window (
22) is provided in at least two places, and a recess of an elastic body is provided at the position of the window of the intermediate cylinder to form a movable wall (16) of the liquid chamber. and outer cylinder (1
4) An elastic layer is provided between the liquid chamber and the outer cylinder, and a groove is provided in the elastic layer, and an orifice (19) is formed between the liquid chamber and the outer cylinder to serve as a communication path between the liquid chambers. 3. The liquid-filled bushing assembly according to 3. 5. An intermediate cylinder (15) having at least two windows (22) is arranged between the inner shaft body and the outer cylinder, and a recess of an elastic body is provided at the position of the window part of the intermediate cylinder to allow the liquid to flow. Movable walls of the room (16
), an arc-shaped member (25) extending to the liquid chamber (21) of the viscous means part (2) is provided at the joint position of the elastic means part (1) with the intermediate cylinder (15), and the arc-shaped member Claim 1, 2 or 3, wherein an orifice (19) is provided between the liquid chamber (25) and the intermediate cylinder (15) for communicating the liquid chamber (21) with each other.
Liquid-filled bushing assembly as described. 6 The inner shaft (
The liquid-filled bushing assembly according to any one of claims 2 to 5, wherein either one of the portion facing 10) and the portion facing the elastic body is made thicker than the other to serve as a limit stopper (27) against excessive input. Three-dimensional. 7. The liquid-filled bushing assembly according to any one of claims 1 to 6, wherein the liquid to be sealed is a high viscosity silicone fluid of 50 CST to 10,000 CST.
JP28028090A 1990-10-17 1990-10-17 Fluid-sealed bush assembly body Pending JPH04157230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28028090A JPH04157230A (en) 1990-10-17 1990-10-17 Fluid-sealed bush assembly body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28028090A JPH04157230A (en) 1990-10-17 1990-10-17 Fluid-sealed bush assembly body

Publications (1)

Publication Number Publication Date
JPH04157230A true JPH04157230A (en) 1992-05-29

Family

ID=17622788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28028090A Pending JPH04157230A (en) 1990-10-17 1990-10-17 Fluid-sealed bush assembly body

Country Status (1)

Country Link
JP (1) JPH04157230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697543A3 (en) * 1994-08-10 1997-06-11 Gencorp Inc Fluid-damped bushings with encapsulated window metal
US5702094A (en) * 1994-08-10 1997-12-30 Btr Antivibration Systems, Inc. Fluid damped bushing with encapsulated window metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697543A3 (en) * 1994-08-10 1997-06-11 Gencorp Inc Fluid-damped bushings with encapsulated window metal
US5702094A (en) * 1994-08-10 1997-12-30 Btr Antivibration Systems, Inc. Fluid damped bushing with encapsulated window metal

Similar Documents

Publication Publication Date Title
US4998345A (en) Method of manufacturing fluid-filled elastic mount having pressure-receiving and equilibrium chambers
JPH0225947Y2 (en)
JPS63318339A (en) Vibration absorbing device
US5060918A (en) Fluid-filled cylindrical elastic connector having two orifice passages with different cross sectional areas
JPH04266644A (en) Vibration isolator
US5906360A (en) Elastic mounting device including fluid-filled elastic mount and synthetic resin bracket for fixing the elastic mount, and method of manufacturing the same
JPS61165040A (en) Fluid charged type vibration absorbing assembly
JPS62184249A (en) Fluid enclosing-type vibro-isolating support body
US5145155A (en) Method of manufacturing fluid-filled elastic mount having fluid injection hole for filling pressure-receiving and equilibrium chambers
JPH026935B2 (en)
JPS6344982B2 (en)
JPH04157230A (en) Fluid-sealed bush assembly body
JP2849404B2 (en) Bushing type vibration damping device with liquid
US5310168A (en) Fluid-filled cylindrical elastic mount having annular fluid chamber with constant cross sectional area over the entire circumference
JPH04337129A (en) Bush assembly body
JP4131396B2 (en) Liquid filled cylindrical vibration isolator
JP3736155B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JPH0524837Y2 (en)
JP2003278823A (en) Liquid-filled cylindrical mount and manufacturing method therefor
JPH0729321Y2 (en) Liquid-filled bush
JP2877940B2 (en) Cylindrical mount and method of manufacturing the same
JP2955304B2 (en) Bushing type vibration damping device with liquid
JP3633075B2 (en) Fluid-filled cylindrical mount device and manufacturing method thereof
JPH0524836Y2 (en)
JPH04210134A (en) Vibration isolating device