JPH0415613A - Laser beam scanning position detection structure - Google Patents

Laser beam scanning position detection structure

Info

Publication number
JPH0415613A
JPH0415613A JP11918090A JP11918090A JPH0415613A JP H0415613 A JPH0415613 A JP H0415613A JP 11918090 A JP11918090 A JP 11918090A JP 11918090 A JP11918090 A JP 11918090A JP H0415613 A JPH0415613 A JP H0415613A
Authority
JP
Japan
Prior art keywords
laser beam
scanning
laser
position detection
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11918090A
Other languages
Japanese (ja)
Other versions
JP2984023B2 (en
Inventor
Taizo Saito
泰三 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP11918090A priority Critical patent/JP2984023B2/en
Publication of JPH0415613A publication Critical patent/JPH0415613A/en
Priority to US08/480,867 priority patent/US5497184A/en
Application granted granted Critical
Publication of JP2984023B2 publication Critical patent/JP2984023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

PURPOSE:To decrease the number of components and simplify the structure, to facilitate the assembling operation, and to reduce the cost by arranging a photodetecting element in a laser beam scanning range and detecting a scanning laser beam directly. CONSTITUTION:A laser oscillator 10 is arranged in the laser beam scanning range of a reflecting and deflecting means 1 and a laser beam scanning position detection sensor 6 which detects the scanning laser beam is arranged in the laser beam scanning range on a scanning start side about a utilization scanning range across the laser oscillator 10. Consequently, the number of components can be decreased, the constitution is simplified, and the cost is reducible.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レーザビームプリンタ等に用いられるレー
ザ発振器からのレーザビームを反射手段の移動によって
所定角度範囲走査させるレーザ走査光学系に於て、レー
ザビーム変調開始基準とする為にレーザビームの走査位
置を検知するレーザビーム走査位置検出構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a laser scanning optical system that scans a laser beam from a laser oscillator used in a laser beam printer or the like over a predetermined angle range by moving a reflecting means. The present invention relates to a laser beam scanning position detection structure that detects the scanning position of a laser beam in order to use it as a reference for starting laser beam modulation.

[従来の技術] 近時、図形1文字等の画像情報に基いて変調したレーザ
ビームて、帯電させた感光体(感光ドラム)上を露光走
査して静電潜像を形成し、現像(顕像化)、転写、定着
などの複写工程(いわゆる電子写真法による複写工程)
を経て記録紙上に画像情報のハードコピーを得るように
したレーザプリンタや、感光材表面をレーザビームて走
査してプリント基板等の原板を描画するレーザフォトプ
ロッタ等の画像形成装置か普及しつつある。
[Prior Art] Recently, a laser beam modulated based on image information such as a single graphic character is used to expose and scan a charged photoreceptor (photoreceptor drum) to form an electrostatic latent image, which is then developed (photoreceptor). Copying processes such as imaging), transfer, and fixing (so-called electrophotographic copying processes)
Image forming devices such as laser printers, which obtain a hard copy of image information on recording paper through photosensitive printing, and laser photoplotters, which scan the surface of a photosensitive material with a laser beam to draw a pattern on an original plate such as a printed circuit board, are becoming popular. .

レーザビームを偏向走査させる方式には種々考えられて
いるか、回転多面鏡(所謂ポリゴンミラー)やガルバノ
メータ等、レーザビームを反射する鏡面を移動(角度変
化)させて走査させるものか一般的である。
Various methods have been considered for deflecting and scanning the laser beam, and the most common method is to move (change the angle) a mirror surface that reflects the laser beam, such as a rotating polygon mirror or a galvanometer.

このようなレーザビームを偏向走査させる偏向走査光学
系の一例を第4図乃至第5図に示す。
An example of a deflection scanning optical system for deflecting and scanning such a laser beam is shown in FIGS. 4 and 5.

図示偏向走査光学系は、レーザプリンタに用いられるも
のてあり、半導体レーザ10から出射したレーザビーム
LBをポリゴンミラー1の側周面に形成された複数の反
射面IA・・・て反射させ、該ポリゴンミラー1の回転
による反射面IAの角度変化によってレーザビームLB
を走査させるものである。
The illustrated deflection scanning optical system is used in a laser printer, and reflects the laser beam LB emitted from the semiconductor laser 10 by a plurality of reflective surfaces IA formed on the side peripheral surface of the polygon mirror 1. The laser beam LB changes due to the angle change of the reflecting surface IA due to the rotation of the polygon mirror 1.
This is to scan.

レーザプリンタては、レーザビームLBをその走査と同
期させて変調させる必要かあり、その為、画像形成に寄
与しない走査範囲端部のレーザビームLBを受光素子6
て検知し、この受光素子6によるレーザビーム検知信号
を水平同期信号とするように構成されている。つまり、
受光素子6によるレーザビーム検知によってレーザビー
ムLBの走査位置を把握し、これに基いて感光トラム3
上の所定位置から描画開始するようになっているもので
ある。
In a laser printer, it is necessary to modulate the laser beam LB in synchronization with the scanning, so the laser beam LB at the end of the scanning range, which does not contribute to image formation, is sent to the light receiving element 6.
The laser beam detection signal from the light receiving element 6 is used as a horizontal synchronization signal. In other words,
The scanning position of the laser beam LB is grasped by the laser beam detection by the light receiving element 6, and based on this, the photosensitive tram 3
Drawing starts from a predetermined position above.

レーザビームLBの走査位置を高い精度て検知する為に
は、受光素子6をレーザビーム走査面(感光ドラム3表
面)と光学的に等価位置に配置することか望ましく、第
4図示の走査光学系ては、走査範囲の端部に反射部材(
レーザビーム位置検出用ミラー5)を配置し、該ミラー
5によって走査レーザビームLBを反射させて受光素子
6に導くように構成して、受光素子6に至るレーザビー
ム光路長か感光ドラム3表面に至るレーザビーム光路長
と略等しくなるように設定されている。
In order to detect the scanning position of the laser beam LB with high precision, it is desirable to arrange the light receiving element 6 at a position optically equivalent to the laser beam scanning surface (the surface of the photosensitive drum 3), and the scanning optical system shown in FIG. , a reflective member (
A laser beam position detection mirror 5) is disposed, and the mirror 5 reflects the scanning laser beam LB and guides it to the light receiving element 6. The optical path length of the laser beam is set to be approximately equal to the optical path length of the laser beam.

半導体レーザ10及び受光素子6は夫々基板13.61
に装着された状態て当該走査光学系の図示しないベース
部材に固定され、半導体レーザlOか装着された基板1
3には当該半導体レーザlOを駆動する駆動回路21及
びレーザ出力をフィードバック制御する発光安定化回路
22か、又、受光素子6か装着された基板61には同期
信号検出回路23か、夫々構成されているものである。
The semiconductor laser 10 and the light receiving element 6 are respectively mounted on substrates 13 and 61.
The substrate 1 is fixed to a base member (not shown) of the scanning optical system while being attached to the substrate 1, and a semiconductor laser IO is attached thereto.
3 includes a drive circuit 21 for driving the semiconductor laser IO and a light emission stabilization circuit 22 for feedback controlling the laser output, and a synchronization signal detection circuit 23 for the substrate 61 on which the light receiving element 6 is mounted. It is something that

第5図示の走査光学系ては、受光素子6を当該走査光学
系を作動制御する制御装置の基板20上に設けると共に
、当該受光素子6に所定走査位置のレーザビームを光フ
ァイハーフによって導くように構成したものである。こ
の構成によれば、同期信号検出回路を制御装置の基板2
0上に構成することかてきる為、第4図示構成に比較し
て受光素子6の為の専用の基板か不要となり(制御装置
の基板と一緒にてきる)、又、その設置も容易となって
コストタウンとなるという利点かある。
In the scanning optical system shown in FIG. 5, a light receiving element 6 is provided on a substrate 20 of a control device that controls the operation of the scanning optical system, and a laser beam at a predetermined scanning position is guided to the light receiving element 6 by an optical fiber half. It is composed of According to this configuration, the synchronization signal detection circuit is connected to the board 2 of the control device.
Compared to the configuration shown in FIG. 4, there is no need for a dedicated board for the light receiving element 6 (it comes together with the control device board), and its installation is also easier. It has the advantage of becoming a cost town.

尚1図中2はポリゴンミラー1によるレーザビームLB
の偏向角に比例した速度で感光ドラム3表面を走査する
ようレーザビームLBの走査速度を補正するfθレンズ
てあり、4はポリゴンミラー1の反射面IA・・・の倒
れによる影響を少なくする為にレーザビームLBをポリ
ゴンミラー1の回転軸と直交する線状に集光させるシリ
ンターレンズである。
Note that 2 in Figure 1 is the laser beam LB produced by the polygon mirror 1.
An fθ lens is provided to correct the scanning speed of the laser beam LB so that the surface of the photosensitive drum 3 is scanned at a speed proportional to the deflection angle of This is a cylindrical lens that focuses the laser beam LB into a line perpendicular to the rotation axis of the polygon mirror 1.

[発明か解決しようとする課題] しかし乍ら、上記$41]示の如きレーザビームの走査
位置検出構成ては、レーザビーム位置検出用ミラー及び
受光素子を独立に設ける為に部品点数か多く構造も複雑
てあり、しかもそれら部品を高精度て設置しなければな
らず、部品コスト及び組立コスト共に高いという問題か
あった。
[Problems to be Solved by the Invention] However, the laser beam scanning position detection configuration shown in $41 above has a structure with a large number of parts because the mirror for laser beam position detection and the light receiving element are provided independently. It is also complicated, and the parts must be installed with high precision, resulting in high parts and assembly costs.

又、第5図示の構成ては、第4図示構成に比較して受光
素子専用の基板か不要となることからコストタウンか可
能であるか、所定走査位置のレーザビームを光ファイバ
ーを介して受光素子に導くことに起因する光量減少によ
ってレーザビーム検知精度か低下するという問題かあっ
た。
In addition, compared to the configuration shown in FIG. 4, the configuration shown in FIG. There was a problem in that the laser beam detection accuracy deteriorated due to the decrease in the amount of light caused by the introduction of the laser beam.

[発明の目的コ この発明は、上記のような背景に鑑みてなされたものて
あり、構成を簡略化てき、コストタウンを図ることのて
きるレーザビーム走査位置検出構造の提供、を目的とす
る。
[Purpose of the Invention] This invention has been made in view of the above-mentioned background, and an object thereof is to provide a laser beam scanning position detection structure that can simplify the configuration and reduce costs. .

[課題を解決するための手段] そのため、この発明によるレーザビーム走査位置検出装
置は、レーザ発振器を前記反射偏向手段によるレーザビ
ーム走査可能範囲内に配置すると共に、走査レーザビー
ムを検知するレーザビーム走査位置検出センサを、利用
走査範囲に対してレーザ発振器を隔てた走査開始側のレ
ーザビーム走査可能範囲内に配置したものである。
[Means for Solving the Problems] Therefore, in the laser beam scanning position detection device according to the present invention, the laser oscillator is placed within the laser beam scanning range by the reflective deflection means, and the laser beam scanning position detecting device detects the scanning laser beam. The position detection sensor is arranged within a laser beam scannable range on the scanning start side, which is separated from the laser oscillator with respect to the usable scanning range.

又、半導体レーザとレーザビーム走査位置検出センサを
、同一基板上に装着配置して構成したものである。
Further, a semiconductor laser and a laser beam scanning position detection sensor are mounted and arranged on the same substrate.

[発明の実施例] 以下、この発明の実施例を添付図面を参照しなから説明
する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明によるレーザビーム走査位置検出構成
の一実施例を適用したレーザプリンタ装置に用いられる
走査光学系の構成を概略的に示す図である。レーザプリ
ンタ装置は、コンピュータの外部出力装置等として使用
されるものてあり、ドツトに分解された描画情報に基い
てON−OFFされるレーザビームによって円筒状の感
光ドラム表面を該感光ドラムの軸方向に走査(主走査)
すると共に感光トラムlを回転させ(副走査)、電子写
真法によって記録用紙にトナーを転写(描画)して出力
するものである。
FIG. 1 is a diagram schematically showing the configuration of a scanning optical system used in a laser printer device to which an embodiment of the laser beam scanning position detection configuration according to the present invention is applied. A laser printer device is used as an external output device for a computer, etc., and prints the surface of a cylindrical photosensitive drum in the axial direction of the photosensitive drum using a laser beam that is turned on and off based on drawing information separated into dots. scan (main scan)
At the same time, the photosensitive tram 1 is rotated (sub-scanning), and toner is transferred (drawn) onto recording paper by electrophotography and output.

図示走査光学系は、反射偏向手段であるポリゴンミラー
1によって半導体レーザ10からのレーザビームLBて
感光トラム3上を走査するものてあつ、ポリゴンミラー
1.fθレンズ2.シリンターレンズ4及び半導体レー
ザ10を所定の位置間係に配置して構成されている。即
ち、半導体レーザlOかポリゴンミラーlに向けて所定
の角度てレーザビームLBを出射するよう配置されると
共に、該半導体レーザlOとポリゴンミラー1の間にポ
リゴンミラー1の回転軸と直交する方向を円柱軸方向と
してシリンターレンズ4か配置され、ポリゴンミラー1
と感光トラム3の間に、fθレンズ2か設置されている
The illustrated scanning optical system includes a polygon mirror 1, which is a reflective deflection means, to scan a photosensitive tram 3 with a laser beam LB from a semiconductor laser 10. fθ lens 2. It is constructed by arranging a cylindrical lens 4 and a semiconductor laser 10 at a predetermined positional relationship. That is, the semiconductor laser IO is arranged so as to emit the laser beam LB at a predetermined angle toward the polygon mirror 1, and a direction perpendicular to the rotation axis of the polygon mirror 1 is arranged between the semiconductor laser IO and the polygon mirror 1. A cylinder lens 4 is arranged in the direction of the cylinder axis, and a polygon mirror 1
An fθ lens 2 is installed between the photosensitive tram 3 and the photosensitive tram 3.

ここて、半導体レーザ10は、ポリゴンミラー1に対し
て、当該半導体レーザlOから出射されたレーザビーム
LBかポリゴンミラー1の回転による反射面IAの角度
変化によって感光トラム3上の所定範囲を走査可能であ
ると共にその走査開始側に配置され、然も、レーザビー
ムLB走査範囲は当該半導体レーザ10配置位置より走
査開始側に及ぶように設定されている。つまり、レーザ
ビームLBの走査範囲は、半導体レーザ10位置以前か
ら当該半導体レーザlO位置を経て感光トラム3上の所
定範囲を含む範囲となっているものである。
Here, the semiconductor laser 10 can scan a predetermined range on the photosensitive tram 3 with respect to the polygon mirror 1 by changing the angle of the reflection surface IA due to the rotation of the polygon mirror 1 or the laser beam LB emitted from the semiconductor laser IO. and is arranged on the scanning start side, and the laser beam LB scanning range is set to extend from the semiconductor laser 10 arrangement position to the scanning start side. In other words, the scanning range of the laser beam LB is a range that includes a predetermined range on the photosensitive tram 3 from before the position of the semiconductor laser 10 through the position of the semiconductor laser IO.

該半導体レーザlOは、第1図のII −II断面相当
図である第2図に示す如く、基板13に装着され、該基
板13と半導体レーザlOか一体となった状態てコリメ
ータレンズ15が内設されたホルタ14によって当該走
査光学系のベース部材(図示せず)に位置決め固定され
ており、この半導体レーザlOか装着された基板13に
は、レーザビーム検出の為の受光素子6も装着されてい
る。
As shown in FIG. 2, which is a cross-sectional view corresponding to II-II in FIG. It is positioned and fixed to a base member (not shown) of the scanning optical system by a provided Holter 14, and a light receiving element 6 for detecting the laser beam is also mounted on the substrate 13 on which the semiconductor laser IO is mounted. ing.

受光素子6は、半導体レーザ10(基板13)を位置決
め固定した際、半導体レーザ10位置より走査開始側の
レーザビームLBか走査する位置となるように基板13
に装着されている。
The light-receiving element 6 is placed on the substrate 13 so that when the semiconductor laser 10 (substrate 13) is positioned and fixed, the laser beam LB on the scanning start side from the semiconductor laser 10 position is scanned.
is installed on.

従って、当該受光素子6を半導体レーザ10位置より走
査開始側のレーザビームLBか走査するか、この受光素
子6を走査するレーザビームLBの光路中に、第1図の
m−m断面に和尚する第3図に示す如く、レーザヒーム
検知用補正しンス8か介設されている。
Therefore, the light-receiving element 6 is scanned by the laser beam LB on the scanning start side from the position of the semiconductor laser 10, or the light-receiving element 6 is scanned by the laser beam LB in the optical path along the mm-m cross section in FIG. As shown in FIG. 3, a correction sensor 8 for laser beam detection is provided.

レーサヒーム検知用補正しンス8は、レーサヒーム走査
□方向に所定の正のパワーを有し、該主走査方向と直交
する副走査方向にも主走査方向とは異る所定の正のパワ
ーを有するよう光学プラスチックにより成形されたレン
ズであり、レーザビームを主走査方向及び副走査方向に
集光して受光素子による検知に必要なパワー密度を満足
させると共にポリゴンミラーlの反射面IAの面倒れに
よる検知精度への影響を排除するよう機能するものであ
る。
The laser beam detection correction sensor 8 has a predetermined positive power in the laser beam scanning direction, and also has a predetermined positive power in the sub-scanning direction orthogonal to the main scanning direction, which is different from the main scanning direction. It is a lens molded from optical plastic that focuses the laser beam in the main scanning direction and sub-scanning direction to satisfy the power density necessary for detection by the light receiving element, and also detects by tilting the reflective surface IA of the polygon mirror l. It functions to eliminate any influence on accuracy.

基板13には、レーザ駆動回路21.出力安定化回路(
APC回路)22及び水平同期検出回路23か構成され
ている。APC回路22は、温度依存性の高い半導体レ
ーザ10の発光出力を安定制御するものてあり、前後二
方向にレーザビームを出射するレーザタイオート11の
一方(後方側)のレーザビームを検知したモニタフォト
タイオート12の出力をレーザ駆動回路にフィードバッ
ク制御する回路である。
The substrate 13 includes a laser drive circuit 21. Output stabilization circuit (
APC circuit) 22 and horizontal synchronization detection circuit 23 are constructed. The APC circuit 22 stably controls the emission output of the semiconductor laser 10, which is highly temperature dependent, and is a monitor that detects the laser beam from one side (the rear side) of the laser tie-out 11 that emits a laser beam in two directions, front and rear. This circuit performs feedback control of the output of the phototype autograph 12 to the laser drive circuit.

而して、上記構成によれは、半導体レーザlOから出射
されてポリゴンミラー1により走査されるレーザビーム
LBか、感光トラム3上の所定範囲を走査するのに先立
つ所定位置に於て受光素子6を走査し、該受光素子6に
よるレーザビーム検知信号に基いて水平同期検出回路に
よって水平同期信号か得られる。
According to the above configuration, the laser beam LB emitted from the semiconductor laser 1O and scanned by the polygon mirror 1 or the light receiving element 6 at a predetermined position on the photosensitive tram 3 prior to scanning a predetermined range. is scanned, and a horizontal synchronization signal is obtained by a horizontal synchronization detection circuit based on a laser beam detection signal from the light receiving element 6.

本実施例ては、半導体レーザ10と受光素子6を同一基
板13上に装着し、然も当該受光素子6を走査レーザビ
ームか走査する位置に配置したこと(換言すれば受光素
子6位置を走査レーザビームか走査するよう設定したこ
と)により、従来、半導体レーザ10と受光素子6とに
夫々別個に必要とした基板を一枚に構成てきると共にレ
ーザど一層を受光素子6導くミラーも不要となり又、組
立て精度を要する半導体レーザlO及び受光素子6の図
示しないヘース部材への装着か一回ててさ、部品点数の
削減と組立の容易化によってコストタウンとなる。
In this embodiment, the semiconductor laser 10 and the light receiving element 6 are mounted on the same substrate 13, and the light receiving element 6 is placed at a position where the scanning laser beam scans (in other words, the position of the light receiving element 6 is scanned). By setting the laser beam to scan), the semiconductor laser 10 and the light-receiving element 6, which were conventionally required to each have separate substrates, can be constructed in one piece, and the mirror that guides the laser to the light-receiving element 6 is no longer necessary. Further, since the semiconductor laser 10 and the light receiving element 6 must be mounted on the heath member (not shown) once, which requires assembly precision, the reduction in the number of parts and the ease of assembly result in increased costs.

尚、上記実施例は、半導体レーザlOと受光素子6を同
一基板上に装着したものであるか、別々の基板に装着し
て構成しても良いものである。これによって、基板数は
増加するものの受光素子6に至るレーザビーム光路長を
感光ドラム3表面に至るレーザビーム光路長と略等しく
なるように設定することも可能となる。
In the above embodiment, the semiconductor laser IO and the light receiving element 6 may be mounted on the same substrate, or may be constructed by mounting them on separate substrates. Although this increases the number of substrates, it is also possible to set the optical path length of the laser beam reaching the light receiving element 6 to be approximately equal to the optical path length of the laser beam reaching the surface of the photosensitive drum 3.

[発明の効果] 以上説明したように、本発明に係るレーザビーム走査位
置検出装置によれば、受光素子をレーザビーム走査範囲
内に配置して走査レーザビームを直接検知するよう構成
したことにより、走査範囲の端部の走査レーザビームを
受光素子に導くレーザビーム位置検出用ミラーか不要と
なり、部品点数の削減、構造の単純化、及び組立作業の
容易化によってコストタウンか可能となる。
[Effects of the Invention] As explained above, according to the laser beam scanning position detection device according to the present invention, the light receiving element is arranged within the laser beam scanning range to directly detect the scanning laser beam, thereby achieving the following effects. There is no need for a mirror for detecting the position of the laser beam that guides the scanning laser beam at the end of the scanning range to the light receiving element, and costs can be reduced by reducing the number of parts, simplifying the structure, and facilitating assembly work.

又、光量減少かなく、安定した精度の高い検知か可能と
なるものである。
In addition, stable and highly accurate detection is possible without a decrease in the amount of light.

更に、請求項(2)に係る発明によれは、半導体レーザ
の駆動とレーザビーム位置検出に係る回路を同一基板上
に構成することかてき、部品点数の削減と回路の簡素化
により一層のコストタウンか図れるものである。
Furthermore, according to the invention according to claim (2), the circuits related to driving the semiconductor laser and detecting the laser beam position can be configured on the same substrate, and the cost can be further reduced by reducing the number of parts and simplifying the circuit. It is something that can be planned around town.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるレーザビーム走査位置検出構造の
一実施例を適用した走査光学系の構成を概略的に示す図
、第2図は第1図のII −II断面相当図、W43I
2Iは第1図のm−m断面相邑図、第4図及び第5図は
従来例としての走査光学系の構成を概略的に示す図であ
る。 l・・・ポリゴンミラー(反射偏向手段)lO・・・半
導体レーザ(レーザ発振器)13・・・基板
FIG. 1 is a diagram schematically showing the configuration of a scanning optical system to which an embodiment of the laser beam scanning position detection structure according to the present invention is applied, and FIG. 2 is a cross-sectional view corresponding to II-II in FIG. 1, W43I
2I is a cross-sectional view taken along line mm in FIG. 1, and FIGS. 4 and 5 are diagrams schematically showing the configuration of a conventional scanning optical system. l... Polygon mirror (reflection deflection means) lO... Semiconductor laser (laser oscillator) 13... Substrate

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ発振器からのレーザビームを反射偏向手段
の移動によって所定角度範囲走査させるレーザ走査光学
系に於て、 前記レーザ発振器を前記反射偏向手段によるレーザビー
ム走査可能範囲内に配置すると共に、走査レーザビーム
を検知するレーザビーム走査位置検出センサを、利用走
査範囲に対して前記レーザ発振器を隔てた走査開始側の
前記レーザビーム走査可能範囲内に配置したこと、を特
徴とするレーザビーム走査位置検出構造。
(1) In a laser scanning optical system that scans a laser beam from a laser oscillator in a predetermined angular range by moving a reflective deflection means, the laser oscillator is disposed within a range in which the laser beam can be scanned by the reflective deflection means, and the laser beam is scanned by the reflective deflection means. Laser beam scanning position detection characterized in that a laser beam scanning position detection sensor for detecting the laser beam is arranged within the laser beam scanning possible range on the scanning start side, which is separated from the laser oscillator with respect to the usable scanning range. structure.
(2)上記レーザ発振器と上記レーザビーム走査位置検
出センサを同一基板上に装着配置したこと、を特徴とす
る請求項(1)記載のレーザビーム走査位置検出構造。
(2) The laser beam scanning position detection structure according to claim 1, wherein the laser oscillator and the laser beam scanning position detection sensor are mounted on the same substrate.
JP11918090A 1990-04-27 1990-05-09 Laser beam scanning position detection structure Expired - Lifetime JP2984023B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11918090A JP2984023B2 (en) 1990-05-09 1990-05-09 Laser beam scanning position detection structure
US08/480,867 US5497184A (en) 1990-04-27 1995-06-07 Laser scanning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11918090A JP2984023B2 (en) 1990-05-09 1990-05-09 Laser beam scanning position detection structure

Publications (2)

Publication Number Publication Date
JPH0415613A true JPH0415613A (en) 1992-01-21
JP2984023B2 JP2984023B2 (en) 1999-11-29

Family

ID=14754890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11918090A Expired - Lifetime JP2984023B2 (en) 1990-04-27 1990-05-09 Laser beam scanning position detection structure

Country Status (1)

Country Link
JP (1) JP2984023B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175996A (en) * 2009-01-30 2010-08-12 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2014021290A (en) * 2012-07-19 2014-02-03 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2014115670A (en) * 2014-01-22 2014-06-26 Ricoh Co Ltd Optical scanner and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175996A (en) * 2009-01-30 2010-08-12 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2014021290A (en) * 2012-07-19 2014-02-03 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2014115670A (en) * 2014-01-22 2014-06-26 Ricoh Co Ltd Optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JP2984023B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US5497184A (en) Laser scanning system
JPH0799410B2 (en) Deflection scanning optical system
EP0666685A2 (en) Image forming apparatus
KR20000048172A (en) Light-scanning optical system and image-forming apparatus comprising the same
JP2676518B2 (en) Scanning optical device
US6366385B2 (en) Multi-beam scanning optical system and image forming apparatus using the same
JP2004109658A (en) Optical scanner and optical path adjusting method, and image forming apparatus
US6317146B1 (en) Image forming apparatus
JP2984023B2 (en) Laser beam scanning position detection structure
JP4500385B2 (en) Optical scanning apparatus and color recording apparatus
JP4425505B2 (en) Image forming apparatus
JP4643159B2 (en) Optical path adjustment method
JP4083935B2 (en) Image forming apparatus
JP2005017680A (en) Scanning optical device
JPH10319336A (en) Multibeam light source device and optical deflection scanner using the same
JPH11160636A (en) Horizontal synchronizing signal detecting circuit and optical scanning device using it, and image forming device
JP7379127B2 (en) Optical scanning device and image forming device equipped with the optical scanning device
JPH06160746A (en) Laser scanner
JP4075365B2 (en) Optical scanning device
JP3596338B2 (en) Image forming device
KR100243142B1 (en) Compact color printer
JP2003035876A (en) Multibeam scanner and image forming device
JP2933568B2 (en) Image forming device
JPH0138573Y2 (en)
JPS62253180A (en) Laser color printer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11