JPH04154162A - Manufacture of mos-type semiconductor device - Google Patents

Manufacture of mos-type semiconductor device

Info

Publication number
JPH04154162A
JPH04154162A JP2280393A JP28039390A JPH04154162A JP H04154162 A JPH04154162 A JP H04154162A JP 2280393 A JP2280393 A JP 2280393A JP 28039390 A JP28039390 A JP 28039390A JP H04154162 A JPH04154162 A JP H04154162A
Authority
JP
Japan
Prior art keywords
oxide film
film
forming
thermal oxidation
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2280393A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nakada
中田 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2280393A priority Critical patent/JPH04154162A/en
Priority to KR1019910018258A priority patent/KR940011478B1/en
Priority to US07/779,078 priority patent/US5254489A/en
Publication of JPH04154162A publication Critical patent/JPH04154162A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable thickness of a nitrided oxide film and that of a later-formed oxide film to be set independently and achieve a positive integration with improved controllability by forming an oxide film at an element region for nitriding an entire surface and then by forming another oxide film with it as an oxidation-resistant film. CONSTITUTION:An oxide film 3 is formed at each element region by thermal oxidation. Then, heat treatment is performed within nitrogen gas or ammonium gas environment for a short time for nitriding an entire surface. After that, thermal oxidation is performed for a short time and a film quality is homogenized, thus obtaining an oxide film 6 as a first gate insulation film. Then, after eliminating the film 6 using a photoresist film 4, thermal oxidation is performed and an oxide film 5 is formed as a second gate oxide film. At this time, the film 6 cannot be oxidized at all and the film thickness is not increased. After this, a gate electrode 10 consisting of a polycrystalline silicon is formed. The thickness of the film 6 and that of the film 5 can be set independently by this method and a plurality of MOS transistors can be integrated on the same substrate with improved controllability.

Description

【発明の詳細な説明】 J産業上の利用分野〕 本発明は〜10S型半導体装置の製造方法に関し、特に
ゲート絶縁膜の形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ~10S type semiconductor device, and particularly to a method for forming a gate insulating film.

〔従来の技術〕[Conventional technology]

M OS型半導体装置は高集積化 高性能化・多機能化
を目指して開発か進められており、MO5型トランジス
タ特性に対する要求も多種多様となり、二種類のゲート
酸化膜厚を持ったMO3型トランジスタへの要求もその
一例である。
MOS type semiconductor devices are being developed with the aim of becoming highly integrated, high-performance, and multi-functional, and the requirements for MO5 type transistor characteristics have become diverse, and MO3 type transistors with two types of gate oxide film thickness are being developed. One example is the demand for

従来、二種類のゲート酸化膜厚を持ったMO3型半導体
装置の製造方法は第2図に示す様になっていた。以下、
第2図を用いて従来例について説明を行なう。まず、第
2図(a>に示す様に一導電型半導体基板1(単結晶シ
リコン基板)上に素子分離絶縁膜2を素子分離領域とし
て選択的に形成して素子領域を区画し、各素子領域に第
1の酸化膜3を形成する。続いて、第2図(b)に示す
様にフォトレジスト膜4を用いて第1の酸化膜3を選択
的に例えば弗酸を用いてエツチング除去する。そして、
第2図(c)に示す様にフォトレジスト膜4を除去して
熱酸化法により第2の酸化膜5を形成する。この時に第
1の酸化膜3は厚くなり3aとなる。この後、第2図(
d)に示す様に第1の酸化膜3a上および第2の酸化膜
5上にそれぞれ多結晶シリコンより成るゲート電極10
f!:形成し、続いて、第2図(e)に示す様にソース
及びドレインとなる拡散層11を形成し、層間絶縁M1
2を形成し、コンタクト孔を形成し、配線電極13を形
成し、保護膜としてカバー絶縁膜14を形成する。
Conventionally, a method of manufacturing an MO3 type semiconductor device having two types of gate oxide film thickness was as shown in FIG. below,
A conventional example will be explained using FIG. First, as shown in FIG. 2 (a), an element isolation insulating film 2 is selectively formed as an element isolation region on a one-conductivity type semiconductor substrate 1 (single crystal silicon substrate) to partition element regions, and each element A first oxide film 3 is formed in the area.Next, as shown in FIG. 2(b), the first oxide film 3 is selectively etched away using, for example, hydrofluoric acid using a photoresist film 4. Then,
As shown in FIG. 2(c), the photoresist film 4 is removed and a second oxide film 5 is formed by thermal oxidation. At this time, the first oxide film 3 becomes thicker and becomes 3a. After this, Figure 2 (
As shown in d), a gate electrode 10 made of polycrystalline silicon is provided on the first oxide film 3a and the second oxide film 5, respectively.
f! Then, as shown in FIG. 2(e), a diffusion layer 11 that becomes a source and a drain is formed, and an interlayer insulation
2, a contact hole is formed, a wiring electrode 13 is formed, and a cover insulating film 14 is formed as a protective film.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

この従来のMO3型半導体装置の製造方法では、熱酸化
法により第2の酸化膜を形成する時に第1の酸化膜が熱
酸化に晒されて酸化され、膜厚が厚くなる為に、次の様
な問題が生じる61、第1の酸化膜厚は第2の酸化膜厚
に左右され、膜厚を独立に設定出来ない。
In this conventional method for manufacturing MO3 type semiconductor devices, when forming the second oxide film by thermal oxidation, the first oxide film is exposed to thermal oxidation and oxidized, increasing the film thickness. 61. The first oxide film thickness depends on the second oxide film thickness, and the film thickness cannot be set independently.

2、第1の酸化膜は2度の酸化により形成され、膜厚の
バラツキが増大する。
2. The first oxide film is formed by oxidation twice, increasing the variation in film thickness.

3、第1の酸化膜厚は第2の酸化膜より薄くする事が出
来ない。即ち、酸化膜の形成は膜厚の厚いものから順番
にしか形成出来ないのでプロセス設計の自由度が少なく
なる。
3. The thickness of the first oxide film cannot be made thinner than that of the second oxide film. That is, since oxide films can only be formed in order of thickness, the degree of freedom in process design is reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本願第1の発明のMO3型半導体装置の製造方法は、一
導電型半導体基板に選択的に素子分離領域を形成して素
子領域を区画する工程と、前記素子領域に熱酸化法によ
り第1の酸化膜を形成する工程と、窒素又はアンモニア
雰囲気中で熱処理を行ない全面を窒化した後に熱酸化を
行ない第1のゲート絶縁膜を形成する工程と、フォトエ
ツチング技術により所定の領域の前記第1のゲート絶縁
膜を除去し、熱酸化法により前記窒化された前記第1の
酸化膜をマスクとして所定の領域に第2のゲート絶縁膜
として第2の酸化膜を形成する工程と、前記第1のゲー
ト絶縁膜上および第2のゲート絶縁膜上にそれぞれゲー
ト電極を形成する工程とを有するというものである。
A method for manufacturing an MO3 type semiconductor device according to the first invention of the present application includes a step of selectively forming an element isolation region on a semiconductor substrate of one conductivity type to define an element region, and a step of dividing the element region by a thermal oxidation method. a step of forming an oxide film; a step of performing heat treatment in a nitrogen or ammonia atmosphere to nitrid the entire surface and then performing thermal oxidation to form a first gate insulating film; removing the gate insulating film and forming a second oxide film as a second gate insulating film in a predetermined region using the nitrided first oxide film as a mask by thermal oxidation; The method includes a step of forming gate electrodes on the gate insulating film and on the second gate insulating film, respectively.

又、本願第2の発明のMO3型半導体装置の製造方法は
、一導電型半導体基板に選択的に素子分離領域を形成し
て素子領域を区画する工程と、前記素子領域に熱酸化法
により第1の酸化膜を形成する工程と、フォトエツチン
グ技術により所定の前記素子領域の前記第1の酸化膜を
選択的に除去し熱酸化法により第2の酸化膜を形成する
工程と、窒素又はアンモニア雰囲気中て熱処理を行ない
全面を窒化した後に熱酸化を行ない前記素子領域に段差
のある第1のゲート絶縁膜を形成する工程と、フォトエ
ツチング技術により他の所定の素子領域の窒化された前
記第1の酸化膜を除去し熱酸化法により前記窒化された
前記第1の酸化膜及び窒化された前記第2の酸化膜をマ
スクとして前記所定の素子領域に第2のゲート絶縁膜と
して第3の酸化膜を形成する工程と、前記第1のゲート
絶縁膜上および第2のゲート絶縁膜上にそれぞれゲート
電極を形成する工程とを有するというものである。
Further, the method for manufacturing an MO3 type semiconductor device according to the second invention of the present application includes a step of selectively forming an element isolation region on a semiconductor substrate of one conductivity type to define an element region, and a step of dividing the element region by a thermal oxidation method. a step of selectively removing the first oxide film in a predetermined element region by a photoetching technique and forming a second oxide film by a thermal oxidation method; and a step of forming a second oxide film by a thermal oxidation method. A step of performing heat treatment in an atmosphere to nitridize the entire surface and then performing thermal oxidation to form a first gate insulating film with steps in the element region, and a step of forming the nitrided first gate insulating film in another predetermined element region by photoetching. A third oxide film is removed as a second gate insulating film in the predetermined device region using the nitrided first oxide film and the nitrided second oxide film as masks by thermal oxidation. The method includes a step of forming an oxide film, and a step of forming gate electrodes on the first gate insulating film and the second gate insulating film, respectively.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(f)は本願第1、発明の名称施例にお
ける工程順断面図である。
FIGS. 1(a) to 1(f) are sectional views in the order of steps in the first embodiment of the present invention.

まず、第1図(a)に示すように一導電型半導体基板1
(単結晶シリコン基板)上に素子分離絶縁膜2を素子分
離領域として形成して素子領域を区画し、各素子領域に
第1の酸化膜3を形成する。第1の酸化膜3としては、
例えば800℃〜1150°Cの熱酸化により100八
〜500八程度の膜厚で形成する。続いて、第1図(b
)に示すように、窒素ガス雰囲気又はアンモニアカス雰
囲気でカーボンヒータにより短時間熱処理を行ない全面
を窒化する。窒化の時の温度は窒素ガス雰囲気の場合は
1000℃〜1200’C,アンモニアガス雰囲気の場
合は900°C〜1150’Cて行なう。その後に、膜
質の均質化の為にカーボンヒータによる短時間熱酸化を
例えば800℃〜1150℃で行なう。このようにして
窒化された第1の酸化膜6が第1のゲート絶縁膜として
得られる。そして、第1図(c)に示すように、フォト
レジストM4を用いて図の右側の素子領域とその近傍の
窒化された第1の酸化膜6を例えば弗酸を用いて除去す
る。それから、第1図(d)に示すように、第2の酸化
膜5を、第2のゲート絶縁膜として、例えは800°C
〜1150°Cの短時間熱酸化により100八〜500
A程度形成する。
First, as shown in FIG. 1(a), a semiconductor substrate 1 of one conductivity type is
An element isolation insulating film 2 is formed as an element isolation region on a (single-crystal silicon substrate) to partition element regions, and a first oxide film 3 is formed in each element region. As the first oxide film 3,
For example, it is formed by thermal oxidation at 800° C. to 1150° C. to a film thickness of about 100.8 to 500.8°. Next, Figure 1 (b
), the entire surface is nitrided by heat treatment for a short time using a carbon heater in a nitrogen gas atmosphere or an ammonia scum atmosphere. The temperature during nitriding is 1000 DEG C. to 1200 DEG C. in a nitrogen gas atmosphere, and 900 DEG C. to 1150 DEG C. in an ammonia gas atmosphere. Thereafter, short-term thermal oxidation is performed using a carbon heater at, for example, 800 DEG C. to 1150 DEG C. in order to homogenize the film quality. The first oxide film 6 thus nitrided is obtained as the first gate insulating film. Then, as shown in FIG. 1(c), the element region on the right side of the figure and the nitrided first oxide film 6 in the vicinity thereof are removed using, for example, hydrofluoric acid, using the photoresist M4. Then, as shown in FIG. 1(d), the second oxide film 5 is heated to 800° C. as a second gate insulating film.
1008-500 by short-term thermal oxidation at ~1150°C
Forms about A.

この時窒化された第1の酸化膜6はほとんど酸化されず
膜厚の増大はほとんと無い。そして、第1図(e)に示
すように、第1のゲート絶縁膜上および第2のゲート絶
縁膜上にそれぞれ多結晶シリコン膜からなるゲート電極
10を形成し、第1図(f)に示すように、ソース及び
トレインとなる拡散層11を形成し、層間絶縁M12を
形成し、コンタクト孔を形成して配線電極13を形成し
、保護膜としてカバー絶縁膜14と形成する。
At this time, the nitrided first oxide film 6 is hardly oxidized and there is almost no increase in film thickness. Then, as shown in FIG. 1(e), a gate electrode 10 made of a polycrystalline silicon film is formed on the first gate insulating film and the second gate insulating film, respectively, and as shown in FIG. 1(f). As shown, a diffusion layer 11 serving as a source and a train is formed, an interlayer insulation M12 is formed, a contact hole is formed, a wiring electrode 13 is formed, and a cover insulating film 14 is formed as a protective film.

第1のゲート絶縁膜の厚さは第2のゲート絶縁膜の形成
工程にほとんど影響を受けないので、独立に設定するこ
とができる。
The thickness of the first gate insulating film is hardly affected by the process of forming the second gate insulating film, so it can be set independently.

第3図(a)〜(d)は本願第2の発明の一実施例にお
ける工程順断面図である。
FIGS. 3(a) to 3(d) are sectional views in the order of steps in an embodiment of the second invention of the present application.

第1図(a)を参照して説明した工程の後に、第3図(
a)に示すように、フォトレジスト膜4を用いて図の左
側の素子領域上の第1の酸化膜3を、例えば弗酸により
選択的にエツチング除去し、第3図(b)に示すように
、フォトレジスト膜4を除去した後に第2の酸化膜5を
例えば800°C〜1150°Cの短時間熱酸化により
50八〜200A程度形成する。この時には、第1の酸
化膜3も熱酸化に晒されるので膜厚が厚くなり3aとな
る。こうして素子領域に厚くなった第1の酸化膜3aと
第2の酸化膜5の二種類の酸化膜を形成した後に、窒素
ガス雰囲気又はアンモニアカス雰囲気で短時間熱処理を
行ない全面を窒化する。窒化の時の温度は窒素ガス雰囲
気の場合は1000℃〜1200℃、アンモニアガス雰
囲気の場合は900℃〜1150℃で行なう。その後に
膜質の均質化の為に熱酸化を例えば800℃〜1150
℃で行なう。そして、第3図(d)に示すように、フォ
トレジスト膜4を用いて選択的に(図の右側の素子領域
の)、窒化された第1の酸化膜6を例えば弗酸を用いて
除去する。このようにして、図の左側の素子領域に段差
のある第1のゲート絶縁膜を形成することができる。そ
れから、第3図(e)に示すように、第3の酸化膜9を
第2のゲート絶縁膜として例えば800°C〜1150
°Cの短時間の熱酸化により100A〜500A程度形
成する。この時、窒化された第1の酸化膜6及び窒化さ
れた第2の酸化膜7はほとんど酸化されず膜厚の増大は
ほとんど無い。そして第3図(f)に示すように、多結
晶シリコン膜から成るゲート電fi10を形成し、第3
図(g>に示すように、ソース及びドレインとなる拡散
層11を形成し、眉間絶縁11g12を形成し、コンタ
クト孔を形成して配線電極13を形成し、保護膜として
カバー絶縁膜14を形成する。
After the process described with reference to FIG. 1(a), the process shown in FIG.
As shown in FIG. 3(a), the first oxide film 3 on the element region on the left side of the figure is selectively etched away using, for example, hydrofluoric acid using the photoresist film 4, and as shown in FIG. 3(b). After removing the photoresist film 4, a second oxide film 5 of about 50.degree. At this time, the first oxide film 3 is also exposed to thermal oxidation, so that the film thickness increases to 3a. After two thick oxide films, the first oxide film 3a and the second oxide film 5, are formed in the element region in this manner, the entire surface is nitrided by heat treatment for a short time in a nitrogen gas atmosphere or an ammonia gas atmosphere. The temperature during nitriding is 1000°C to 1200°C in a nitrogen gas atmosphere, and 900°C to 1150°C in an ammonia gas atmosphere. After that, thermal oxidation is carried out at, for example, 800°C to 1150°C to homogenize the film quality.
Perform at ℃. Then, as shown in FIG. 3(d), the nitrided first oxide film 6 is selectively removed using the photoresist film 4 (in the device region on the right side of the figure) using, for example, hydrofluoric acid. do. In this way, a first gate insulating film having a step can be formed in the element region on the left side of the figure. Then, as shown in FIG. 3(e), the third oxide film 9 is used as a second gate insulating film and heated at a temperature of, for example, 800°C to 1150°C.
Forms about 100A to 500A by short-time thermal oxidation at °C. At this time, the nitrided first oxide film 6 and the nitrided second oxide film 7 are hardly oxidized and there is almost no increase in film thickness. Then, as shown in FIG. 3(f), a gate electrode fi10 made of a polycrystalline silicon film is formed, and a third
As shown in the figure (g>), a diffusion layer 11 serving as a source and a drain is formed, a glabellar insulation 11g12 is formed, a contact hole is formed, a wiring electrode 13 is formed, and a cover insulating film 14 is formed as a protective film. do.

この実施例では、窒化された第1の酸化膜6と窒化され
た第2の酸化膜とで段差のある第1のゲート絶縁膜を有
するMOS)−ランジスタを形成したが、これらの窒化
された酸化膜を別々の素子領域に形成すれば、ゲート絶
縁膜が異なる三種類のMOS)ランジスタを同一のシリ
コン基板に集積することができる。
In this example, a MOS)-transistor having a first gate insulating film with a step between a nitrided first oxide film 6 and a nitrided second oxide film was formed. By forming oxide films in separate device regions, three types of MOS transistors with different gate insulating films can be integrated on the same silicon substrate.

二のようにして、酸化膜の形成、窒化処理、エノチンク
を適当に組合せることにより、複数のMOS)ランジス
タを形成することかてきる。そうして、これらのMOS
トランジスタのゲート絶縁膜の厚さは、互いにほぼ独立
に設定することがてきる。
A plurality of MOS transistors can be formed by appropriately combining the formation of an oxide film, nitriding treatment, and etching as described in 2. Then these MOS
The thicknesses of the gate insulating films of transistors can be set almost independently from each other.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、酸化膜を形成した後に、
窒素カス雰囲気又はアンモニアガス雰囲気て熱処理を行
なって窒化を行なったのちに、これを耐酸化性膜として
別の酸化膜を形成することにより、窒化された酸化膜と
後に形成した酸化膜の厚さをそれぞれほぼ独立に設定す
ることができるので、ゲート絶縁膜の種類や厚さの異な
る複数のMOSトランジスタを制御性よく確実に同一の
半導体基板上に集積することができるという効果がある
As explained above, in the present invention, after forming an oxide film,
After nitriding by heat treatment in a nitrogen gas atmosphere or an ammonia gas atmosphere, this is used as an oxidation-resistant film and another oxide film is formed, thereby reducing the thickness of the nitrided oxide film and the oxide film formed later. can be set almost independently, which has the effect that a plurality of MOS transistors having different types and thicknesses of gate insulating films can be reliably integrated on the same semiconductor substrate with good controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(fンは本願第1の発明の一実施例にお
ける工程順断面図、第2図(a)〜(e)は従来例にお
ける工程順断面図、第3図(a)〜(g>は本願第2の
発明の一実施例の工程順段面図である。 1・・一導電型半導体基板、2・・素子分離絶縁膜、3
・・・第1の酸化膜、3a・・・厚くなった第1の酸化
膜、4・・フォトレジスト膜、6・・・窒化された第1
の酸化膜、7・窒化された第2の酸化膜、8・・フォト
レジスト膜、9・・・第3の酸化膜、10・・・ゲート
電極、11・・・拡散層、12・・・層間絶縁膜、13
・・配線電極、14・・・カバー絶縁膜。
1(a) to (f) are sectional views in the order of steps in an embodiment of the first invention of the present application, FIGS. 2(a) to (e) are sectional views in order of steps in the conventional example, and FIG. ) to (g> are step-by-step sectional views of an embodiment of the second invention of the present application. 1. Semiconductor substrate of one conductivity type, 2. Element isolation insulating film, 3
...First oxide film, 3a... Thickened first oxide film, 4... Photoresist film, 6... Nitrided first
oxide film, 7. nitrided second oxide film, 8.. photoresist film, 9.. third oxide film, 10.. gate electrode, 11.. diffusion layer, 12.. Interlayer insulation film, 13
...Wiring electrode, 14...Cover insulating film.

Claims (1)

【特許請求の範囲】 1、一導電型半導体基板に選択的に素子分離領域を形成
して素子領域を区画する工程と、前記素子領域に熱酸化
法により第1の酸化膜を形成する工程と、窒素又はアン
モニア雰囲気中で熱処理を行ない全面を窒化した後に熱
酸化を行ない第1のゲート絶縁膜を形成する工程と、フ
ォトエッチング技術により所定の領域の前記第1のゲー
ト絶縁膜を除去し、熱酸化法により前記窒化された前記
第1の酸化膜をマスクとして所定の領域に第2のゲート
絶縁膜として第2の酸化膜を形成する工程と、前記第1
のゲート絶縁膜上および第2のゲート絶縁膜上にそれぞ
れゲート電極を形成する工程とを有する事を特徴とする
MOS型半導体装置の製造方法。 2、一導電型半導体基板に選択的に素子分離領域を形成
して素子領域を区画する工程と、前記素子領域に熱酸化
法により第1の酸化膜を形成する工程と、フォトエッチ
ング技術により所定の前記素子領域の前記第1の酸化膜
を選択的に除去し熱酸化法により第2の酸化膜を形成す
る工程と、窒素又はアンモニア雰囲気中で熱処理を行な
い全面を窒化した後に熱酸化を行ない前記素子領域に段
差のある第1のゲート絶縁膜を形成する工程と、フォト
エッチング技術により他の所定の素子領域の窒化された
前記第1の酸化膜を除去し熱酸化法により前記窒化され
た前記第1の酸化膜及び窒化された前記第2の酸化膜を
マスクとして前記所定の素子領域に第2のゲート絶縁膜
として第3の酸化膜を形成する工程と、前記第1のゲー
ト絶縁膜上および第2のゲート絶縁膜上にそれぞれゲー
ト電極を形成する工程とを有する事を特徴とするMOS
型半導体装置の製造方法。
[Claims] 1. A step of selectively forming an element isolation region on a semiconductor substrate of one conductivity type to partition an element region, and a step of forming a first oxide film in the element region by a thermal oxidation method. , performing heat treatment in a nitrogen or ammonia atmosphere to nitrid the entire surface, and then performing thermal oxidation to form a first gate insulating film; and removing the first gate insulating film in a predetermined region by photo-etching technology; forming a second oxide film as a second gate insulating film in a predetermined region using the nitrided first oxide film as a mask by a thermal oxidation method;
1. A method for manufacturing a MOS type semiconductor device, comprising the step of forming gate electrodes on a gate insulating film and a second gate insulating film, respectively. 2. A step of selectively forming an element isolation region on a semiconductor substrate of one conductivity type to partition the element region, a step of forming a first oxide film in the element region by a thermal oxidation method, and a step of forming a first oxide film by a photo-etching technique. selectively removing the first oxide film in the element region and forming a second oxide film by a thermal oxidation method, and performing thermal oxidation after nitriding the entire surface by heat treatment in a nitrogen or ammonia atmosphere. forming a first gate insulating film with a step in the element region; removing the nitrided first oxide film in another predetermined element region by photo-etching; and removing the nitrided first oxide film by a thermal oxidation method; forming a third oxide film as a second gate insulating film in the predetermined device region using the first oxide film and the nitrided second oxide film as a mask; and forming gate electrodes on the upper and second gate insulating films, respectively.
A method for manufacturing a type semiconductor device.
JP2280393A 1990-10-18 1990-10-18 Manufacture of mos-type semiconductor device Pending JPH04154162A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2280393A JPH04154162A (en) 1990-10-18 1990-10-18 Manufacture of mos-type semiconductor device
KR1019910018258A KR940011478B1 (en) 1990-10-18 1991-10-17 Method of manufacturing semiconductor device
US07/779,078 US5254489A (en) 1990-10-18 1991-10-18 Method of manufacturing semiconductor device by forming first and second oxide films by use of nitridation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280393A JPH04154162A (en) 1990-10-18 1990-10-18 Manufacture of mos-type semiconductor device

Publications (1)

Publication Number Publication Date
JPH04154162A true JPH04154162A (en) 1992-05-27

Family

ID=17624404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280393A Pending JPH04154162A (en) 1990-10-18 1990-10-18 Manufacture of mos-type semiconductor device

Country Status (2)

Country Link
JP (1) JPH04154162A (en)
KR (1) KR940011478B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597124A1 (en) * 1992-05-29 1994-05-18 Citizen Watch Co. Ltd. Semiconductor nonvolatile storage device, semiconductor device, and its manufacture method
KR100344825B1 (en) * 1999-11-12 2002-07-20 주식회사 하이닉스반도체 Method for fabricating of semiconductor device
US6458663B1 (en) * 2000-08-17 2002-10-01 Micron Technology, Inc. Masked nitrogen enhanced gate oxide
US6475862B1 (en) * 1999-08-13 2002-11-05 Nec Corporation Semiconductor device having gate insulating layers different in thickness and material and process for fabrication thereof
KR100400764B1 (en) * 1997-12-29 2003-12-24 주식회사 하이닉스반도체 Method for forming dual gate of semiconductor device
EP1548823A1 (en) * 2002-11-25 2005-06-29 Texas Instruments Inc. Reliable high voltage gate dielectric layers using a dual nitridation process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0597124A1 (en) * 1992-05-29 1994-05-18 Citizen Watch Co. Ltd. Semiconductor nonvolatile storage device, semiconductor device, and its manufacture method
EP0597124A4 (en) * 1992-05-29 1995-02-15 Citizen Watch Co Ltd Semiconductor nonvolatile storage device, semiconductor device, and its manufacture method.
KR100400764B1 (en) * 1997-12-29 2003-12-24 주식회사 하이닉스반도체 Method for forming dual gate of semiconductor device
US6475862B1 (en) * 1999-08-13 2002-11-05 Nec Corporation Semiconductor device having gate insulating layers different in thickness and material and process for fabrication thereof
KR100344825B1 (en) * 1999-11-12 2002-07-20 주식회사 하이닉스반도체 Method for fabricating of semiconductor device
US6458663B1 (en) * 2000-08-17 2002-10-01 Micron Technology, Inc. Masked nitrogen enhanced gate oxide
US6699743B2 (en) 2000-08-17 2004-03-02 Micron Technology, Inc. Masked nitrogen enhanced gate oxide
US7186608B2 (en) 2000-08-17 2007-03-06 Micron Technology, Inc. Masked nitrogen enhanced gate oxide
EP1548823A1 (en) * 2002-11-25 2005-06-29 Texas Instruments Inc. Reliable high voltage gate dielectric layers using a dual nitridation process
US7183165B2 (en) 2002-11-25 2007-02-27 Texas Instruments Incorporated Reliable high voltage gate dielectric layers using a dual nitridation process
US7560792B2 (en) 2002-11-25 2009-07-14 Texas Instruments Incorporated Reliable high voltage gate dielectric layers using a dual nitridation process

Also Published As

Publication number Publication date
KR940011478B1 (en) 1994-12-19

Similar Documents

Publication Publication Date Title
JPH05109737A (en) Manufacture of thin film transistor
JPS638622B2 (en)
JPH04154162A (en) Manufacture of mos-type semiconductor device
JPS5854638A (en) Manufacture of semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JP2001036078A (en) Mos-type transistor and manufacture thereof
JPH03227024A (en) Manufacture of semiconductor device
JPH03116968A (en) Manufacture of semiconductor device
JPH04208570A (en) Manufacture of semiconductor device
JPS63281424A (en) Formation of polycide electrode
JPS6068656A (en) Manufacture of semiconductor device
JPH02208943A (en) Manufacture of silicon thin film semiconductor device
JPS6097662A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JP3538969B2 (en) Method of forming oxide film on polysilicon semiconductor layer
JPS62131538A (en) Manufacture of semiconductor device
JPH05326938A (en) Thin film transistor and manufacture thereof
JPS61212041A (en) Formation of metal silicide electrode and wiring
JPH07283323A (en) Manufacture of semiconductor device
JPS592191B2 (en) Method for manufacturing electrodes for semiconductor devices
JPH01289165A (en) Manufacture of semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPS63237568A (en) Manufacture of semiconductor device
JPS63274160A (en) Manufacture of semiconductor device
JP2001110912A (en) Manufacturing method of semiconductor device