JPH0415358A - Compressor equipped with frictional type continuously variable transmission - Google Patents

Compressor equipped with frictional type continuously variable transmission

Info

Publication number
JPH0415358A
JPH0415358A JP2118175A JP11817590A JPH0415358A JP H0415358 A JPH0415358 A JP H0415358A JP 2118175 A JP2118175 A JP 2118175A JP 11817590 A JP11817590 A JP 11817590A JP H0415358 A JPH0415358 A JP H0415358A
Authority
JP
Japan
Prior art keywords
gear ratio
rotation speed
transmission
abnormal operation
speed change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2118175A
Other languages
Japanese (ja)
Inventor
Takeshi Takemoto
剛 竹本
Takao Kasagi
笠木 孝雄
Kimihiro Ishikawa
石川 公寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2118175A priority Critical patent/JPH0415358A/en
Publication of JPH0415358A publication Critical patent/JPH0415358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Transmission Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Friction Gearing (AREA)

Abstract

PURPOSE:To maintain the normal power transmission state by installing a speed change ratio control means for once setting the speed change ratio of a speed change gear to zero and then returning the speed change ratio to a prescribed value again, on the basis of the abnormal operation detection signal supplied from an abnormal operation detecting means. CONSTITUTION:A speed change ratio calculating circuit 95 calculates the necessary speed change ratio delta, and a speed change gear driving circuit 96 is controlled according to the result of the calculation, and the operation of a driving motor 29 is controlled, and shift is performed so that the speed change ratio delta for the calculation of a speed change ring 11 is obtained. Then, a revolution speed calculating circuit 97 calculates the theoretical output revolution speed Noid of a speed change gear A on the basis of the number Nr of revolution and the number Ne of revolution of an engine. If, between the cooling operation output revolution speed No and the theoretical output revolution speed Noid, it is judged that No not equal to Noid, it is judged that abnormal slip (gross slip) is generated. When a comparison judging circuit 98 detects anomaly, the speed change ratio delta is once returned to zero and the regular speed change gear control is carried out again, and the abnormal operation for a long time is prevented, and also the abnormal abrasion due to the slippage in each contact paret of the speed change gear A is prevented.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は摩擦無段変速機付圧縮機に関するものである。[Detailed description of the invention] "Industrial application field" The present invention relates to a compressor with a continuously variable friction transmission.

「従来の技術」 自動車空調用圧縮機に、摩擦無段変速機を一体的に組み
込んだものは、既に開発されている。摩擦無段変速機は
、特公昭57−13221号公報に開示されるように、
同軸上にある入力軸と出力軸との間の伝動系に、伝動媒
介体として介在する複数の遊星コーンと、各遊星コーン
を囲むように各々の伝動面において摩擦接合する入力デ
ィスク、出力ディスク及び変速リングと、各伝動面に圧
縮機の負荷トルクに応じた大きさの圧接力を発生させる
圧接力発生装置を備えている。そして、入力軸の回転が
入力ディスクに伝達されると、各遊星コーンの遊星運動
を介して出力ディスクが回転されて、圧縮機が駆動され
るとともに変速リングの軸線方向への移動により、空調
負荷に応じた変速比が設定される。
"Prior Art" A compressor for automobile air conditioning in which a continuously variable friction transmission is integrated has already been developed. The friction continuously variable transmission is disclosed in Japanese Patent Publication No. 57-13221,
A transmission system between an input shaft and an output shaft coaxially includes a plurality of planetary cones interposed as transmission media, and input disks, output disks, and It is equipped with a speed change ring and a pressing force generating device that generates a pressing force of a magnitude corresponding to the load torque of the compressor on each transmission surface. When the rotation of the input shaft is transmitted to the input disk, the output disk is rotated through the planetary motion of each planetary cone, driving the compressor and moving the speed change ring in the axial direction to load the air conditioning load. The gear ratio is set accordingly.

「発明が解決しようとする課題J しかしながら、空調負荷に応じて変速比を変化させて圧
縮機を駆動中に、急激な加速運転を行うと前記摩擦無段
変速機の伝動面で動力伝達が行えなくなるグロススリッ
プが発生する場合がある。
``Problem to be Solved by the Invention J''However, when a sudden acceleration is performed while the compressor is being driven by changing the gear ratio according to the air conditioning load, the power transmission surface of the frictionally variable transmission cannot be transmitted. Gross slips that disappear may occur.

グロススリップは、過大な負荷変動により摩擦伝動面が
滑ってしまい動力伝達が不可能となる現象であり、特に
前記遊星コーンと出力ディスク間で発生し易い。グロス
スリップ現象が生じたまま運転を継続すると、圧縮機に
負荷トルクが発生しない。このため、前記圧接力発生装
置による適切な圧接力が得られず、正常な摩擦伝動状態
に復帰できないという問題点があった。
Gross slip is a phenomenon in which the friction transmission surface slips due to excessive load fluctuations, making power transmission impossible, and is particularly likely to occur between the planetary cone and the output disk. If operation continues with the gross slip phenomenon occurring, load torque will not be generated in the compressor. For this reason, there is a problem in that an appropriate pressure contact force cannot be obtained by the pressure contact force generating device, and a normal frictional transmission state cannot be restored.

本発明は、上記問題点を解決するためになされたもので
、グロススリップ現象のような異常運転状態が生じた際
は変速機の変速比を一旦Oとした後、再度設定変速比へ
戻すようにして、正常な動力伝達状態を維持できる摩擦
無段変速機付圧縮機を提供することを目的とするもので
ある6「課題を解決するための手段J 上記目的を達成するための具体的手段として、空調負荷
に応じ摩擦無段変速機の変速比を調節して圧縮機の作動
を制御する圧縮機制御手段を備えた摩擦無段変速機付圧
縮機において、前記摩擦無断変速機の入力回転数、出力
回転数、及び変速比のうち少なくとも2つを検出して、
その2つの検出値より他の1つの値を算出し、この算出
値と現実の摩擦無断変速機付圧縮機の回転状態における
前記算出値に対応する値とを対比し、両者の値が所定値
以上のとき異常運転を検出して異常運転信号を出力する
異常運転検出手段と、この異常運転検出手段からの異常
運転検出信号に基づいて、変速機の変速比を一旦Oとし
た後再度所定の変速比に戻す変速比制御手段とを具備す
ることを特徴とする摩擦無段変速機付圧縮機が提供され
る。
The present invention was made in order to solve the above problems, and when an abnormal operating condition such as a gross slip phenomenon occurs, the gear ratio of the transmission is set to O, and then the gear ratio is returned to the set gear ratio again. The purpose of the present invention is to provide a compressor with a continuously variable friction transmission that can maintain a normal power transmission state. In a compressor with a friction continuously variable transmission, the input rotation of the friction continuously variable transmission is equipped with a compressor control means that controls the operation of the compressor by adjusting the gear ratio of the friction continuously variable transmission according to the air conditioning load. detecting at least two of the number, output rotation speed, and gear ratio;
One other value is calculated from the two detected values, and this calculated value is compared with a value corresponding to the calculated value in the actual rotational state of the compressor with continuously variable transmission, and both values are determined to be a predetermined value. In the above case, based on the abnormal operation detection means that detects abnormal operation and outputs an abnormal operation signal, and the abnormal operation detection signal from this abnormal operation detection means, the gear ratio of the transmission is once set to O, and then the gear ratio is set to O again. A compressor with a continuously variable friction transmission is provided, which is characterized by comprising a gear ratio control means for returning the gear ratio to the gear ratio.

そして、前記異常運転検出手段は、前記摩擦無断変速機
の入力回転数と変速比とに基づいて出力回転数を算出し
、この算出値と実際の出力回転数とを比較して両者の値
が所定値以上のとき、異常運転を検出して異常運転信号
を出力するようにしてもよい。
The abnormal operation detection means calculates an output rotation speed based on the input rotation speed and gear ratio of the frictionless transmission, and compares this calculated value with an actual output rotation speed to determine whether both values are correct. When the value exceeds a predetermined value, abnormal operation may be detected and an abnormal operation signal may be output.

さらに、前記異常運転検出手段は、前記摩擦無断変速機
の変速比変更前の入力回転数と出力回転数とに基づいて
変速比を算出し、この算出値と前記摩擦無断変速機の変
速比変更後の実際の入力回転数及び出力回転数より算出
される変速比とを対比し、両者の値が所定の変動範囲に
ないとき異常運転を検出して異常運転信号を出力するよ
うにできる。
Further, the abnormal operation detecting means calculates a gear ratio based on the input rotation speed and output rotation speed before changing the gear ratio of the frictionless transmission, and uses this calculated value and changing the gear ratio of the frictionless transmission. The gear ratio calculated from the actual input rotation speed and output rotation speed is then compared, and when both values are not within a predetermined fluctuation range, abnormal operation can be detected and an abnormal operation signal can be output.

また、前記異常運転検出手段は、前記摩擦無断変速機へ
の入力が無くなる直前の入力回転数と出力回転数とに基
づいて変速比を算出し、この算出値と前記摩擦無断変速
機への入力再導入直後の実際の入力回転数及び出力回転
数より算出される変速比とを対比し、両者の値が所定値
以上のとき異常運転を検出して異常運転信号を出力する
ようにしてもよい。
Further, the abnormal operation detection means calculates a gear ratio based on the input rotation speed and the output rotation speed immediately before the input to the frictionless transmission disappears, and calculates a gear ratio based on the calculated value and the input to the frictionless transmission. The actual input rotation speed immediately after reintroduction and the gear ratio calculated from the output rotation speed may be compared, and when both values are equal to or higher than a predetermined value, abnormal operation may be detected and an abnormal operation signal may be output. .

「作用」 上記摩擦無段変速機付圧縮機の作用は以下の通りである
"Function" The function of the above-mentioned compressor with continuously variable friction transmission is as follows.

圧縮機制御手段が、空調負荷に応じ変速機の変速比を調
節して、圧縮機の作動を制御する。異常運転検出手段は
、入力回転数、出力回転数、及び変速比のうち少なくと
も2つを検出して、その2つの検出値より他の1つの値
を算出し、この算出値と現実の摩擦無断変速機付圧縮機
の回転状態における前記算出値に対応する値とを対比し
、両者の値が所定値以上のとき異常運転を検出して異常
運転信号を出力する。異常運転信号が出力されると、変
速比制御手段は変速機の変速比を一旦0とした後、再度
所定の変速比に戻すことにより所期の動力伝達状態に復
帰させ、圧縮機の作動を正常に維持する。
The compressor control means controls the operation of the compressor by adjusting the gear ratio of the transmission according to the air conditioning load. The abnormal operation detection means detects at least two of the input rotation speed, output rotation speed, and gear ratio, calculates another value from the two detected values, and compares this calculated value with the actual friction. A value corresponding to the calculated value in the rotating state of the compressor with a variable transmission is compared, and when both values are equal to or higher than a predetermined value, abnormal operation is detected and an abnormal operation signal is output. When the abnormal operation signal is output, the gear ratio control means temporarily sets the gear ratio of the transmission to 0 and then returns it to a predetermined gear ratio again to return to the desired power transmission state and restart the operation of the compressor. Maintain normally.

異常運転の検出は具体的には、入力回転数と変速比を検
出して、この2つの値により出力回転数を算出し、この
算出値と実際の出力回転数とを比較して、両者の値が所
定値以上か否かにより行う。
Specifically, the detection of abnormal operation involves detecting the input rotation speed and gear ratio, calculating the output rotation speed from these two values, comparing this calculated value with the actual output rotation speed, and determining the difference between the two. This is done depending on whether the value is greater than or equal to a predetermined value.

また、変速比変更前後の入力回転数及び出力回転数から
それぞれ変速比を算出し、両者を対比して両者の値が所
定の変動範囲にあるか否かにより行うことも可能である
。さらに、摩擦無断変速機への入力が無くなる直前の入
力回転数と出力回転数とに基づいて変速比を算出し、こ
の算出値と前記摩擦無断変速機への入力再導入直後の実
際の入力回転数及び出力回転数より算出される変速比と
を対比し、両者の値が所定値以上か否かにより行う。
It is also possible to calculate the gear ratio from the input rotational speed and output rotational speed before and after changing the gear ratio, and compare the two to determine whether the values of both are within a predetermined fluctuation range. Furthermore, a gear ratio is calculated based on the input rotation speed and output rotation speed immediately before the input to the frictionless variable transmission disappears, and this calculated value and the actual input rotation immediately after the input to the frictionless variable transmission are reintroduced. This is done by comparing the number and the gear ratio calculated from the output rotation number and determining whether both values are equal to or greater than a predetermined value.

「実施例」 本発明の実施例を添付図面に基づいて説明する。"Example" Embodiments of the present invention will be described based on the accompanying drawings.

第1図は摩擦無段変速機付圧縮機の縦断面図であって、
摩擦無段変速機(以下単に変速機と称す)Aと圧縮機B
とが一体的に組み込まれている。変速機Aにおいて、1
は入力ディスク2を嵌着固定した入力軸で、一端にプー
リ3が取り付けられており、■ベルト等を介して車両走
行用エンジン(図示せず〉から回転駆動力が伝達される
64は入力軸1と同軸的に設けられた出力軸で、圧縮機
Bの駆動軸を兼ねている。5は出力ディスクであって、
入力軸1上に回転自由に支持されるとともに、後記する
押圧力発生装置20を介して出力軸4と連結される。6
は遊星コーンで、入力軸1及び出力軸4の軸線Xのまわ
りに設けられており、自転かつ公転し、遊星コーン6の
公転速度を変えることによって、入力軸1からの回転速
度を無段変速することができる。7は変速機Aのハウジ
ングで、圧縮機Bのフロントサイド101に図示しない
ボルトによって一体的に固定されている。
FIG. 1 is a longitudinal sectional view of a compressor with a continuously variable friction transmission,
Friction continuously variable transmission (hereinafter simply referred to as transmission) A and compressor B
are integrally incorporated. In transmission A, 1
64 is an input shaft to which the input disk 2 is fitted and fixed, and a pulley 3 is attached to one end; An output shaft is provided coaxially with 1 and also serves as a drive shaft for compressor B. 5 is an output disk,
It is rotatably supported on the input shaft 1 and connected to the output shaft 4 via a pressing force generating device 20, which will be described later. 6
is a planetary cone, which is installed around the axis X of the input shaft 1 and output shaft 4, rotates on its own axis and revolves, and by changing the revolution speed of the planetary cone 6, the rotational speed from the input shaft 1 is continuously variable. can do. Reference numeral 7 denotes a housing of the transmission A, which is integrally fixed to the front side 101 of the compressor B by bolts (not shown).

遊星コーン6は鈍角の頂角を有する円錐部6aと、該円
錐部6aの底部に同軸に一体的に設けられたディスク部
6bと、ディスク部6bの底部に同軸に一体的に設けら
れた取付軸6Cとを備えている。そして遊星コーン6は
、3つの伝動面を有する。第1の伝動面8は円錐底面に
同軸に設けられたディスク部6bの側面部でありその断
面形状は、入力ディスク2と摩擦係合するよう凹状をな
している。第2伝動面9は、円錐部6aの底面周縁部で
、平面又はそれに近い面であり、出力ディスク5と摩擦
係合している。第3伝動面10は、円錐部6aの側面で
、後述する変速リング11と摩擦係合する。遊星コーン
6を取り付けた状態において、変速リング11と接する
側の円錐部6aの母線は、軸線Xとほぼ平行である。1
1は複数の遊星コーン6を囲む変速リングで軸線Xの方
向に移動可能であるが、回転不可能にハウジング7に支
持され、遊星コーン6の第3伝動面10に摩擦係合し、
駆動モータ29により軸線Xの方向に往復移動させるこ
とによって、変速比を無段階に変化させることができる
。遊星コーン6は、取付軸6cを介して保持具12に適
当なりリアランスを有して、回転自在に取り付けられて
いる。保持具12は、環状であって円錐台形状を呈し、
複数の遊星コーン6を相互に連結し、軸線Xの周りに回
転自在に設けられている。
The planetary cone 6 includes a conical portion 6a having an obtuse apex angle, a disk portion 6b coaxially provided integrally with the bottom of the conical portion 6a, and a mounting portion coaxially provided integrally with the bottom of the disk portion 6b. It is equipped with a shaft 6C. The planetary cone 6 has three transmission surfaces. The first transmission surface 8 is a side surface of a disk portion 6b provided coaxially with the conical bottom surface, and its cross-sectional shape is concave so as to frictionally engage with the input disk 2. The second transmission surface 9 is a bottom peripheral edge of the conical portion 6a, is a flat surface or a surface close to it, and is frictionally engaged with the output disk 5. The third transmission surface 10 is a side surface of the conical portion 6a, and frictionally engages with a speed change ring 11, which will be described later. With the planetary cone 6 attached, the generatrix of the conical portion 6a on the side in contact with the speed change ring 11 is substantially parallel to the axis X. 1
1 is a speed change ring that surrounds a plurality of planetary cones 6, is movable in the direction of the axis X, but is non-rotatably supported by the housing 7, and is frictionally engaged with the third transmission surface 10 of the planetary cones 6;
By reciprocating the drive motor 29 in the direction of the axis X, the gear ratio can be changed steplessly. The planetary cone 6 is rotatably attached to the holder 12 via a mounting shaft 6c with an appropriate clearance. The holder 12 is annular and has a truncated conical shape,
A plurality of planetary cones 6 are interconnected and rotatably provided around an axis X.

20は押圧力発生装置であり、カムディスク21と、こ
のカムディスク21に対向して配置された前記出力ディ
スク5と、これらカムディスク21と出力ディスク5と
の間に挟持される複数の鋼球22とを具備する。出力デ
ィスク5とカムディスク21とは、軸線X方向に相対変
位可能であり出力ディスク5の回転はカムディスク21
に伝達される。また出力ディスク5とカムディスク21
との間にに―圧縮ばね23が配置され、出力ディスク5
を遊星コーン6に常に付勢している。これによって回転
初期に変速機Aの各摩擦係合部に予圧を与え、摩擦係合
力を付与することができる。
Reference numeral 20 denotes a pressing force generating device, which includes a cam disk 21, the output disk 5 disposed opposite to the cam disk 21, and a plurality of steel balls sandwiched between the cam disk 21 and the output disk 5. 22. The output disk 5 and the cam disk 21 can be relatively displaced in the axis X direction, and the rotation of the output disk 5 is caused by the cam disk 21.
transmitted to. In addition, the output disk 5 and the cam disk 21
A compression spring 23 is arranged between the output disk 5 and the output disk 5.
The planetary cone 6 is always energized. As a result, preload can be applied to each frictional engagement portion of the transmission A at the initial stage of rotation, and a frictional engagement force can be applied.

出力ディスク5とハブ24とは、複数のボルト25によ
り連結固定される。そして、ハブ24は前記出力軸4の
先端部のねじ部4aに螺合固定される。また、カムディ
スク21の外周には複数の油跳ね上げ片21aを配設し
、出力軸4の回転とともに回転してハウジング7の油溜
まり部7aに溜ま−)た潤滑油26を跳ね上げ、変速機
Aの各摺動部を潤滑する。その他27及び28はハウジ
ング7に固定した出力回転数検出器及び公転回転数検出
器である。出力回転数検出器27は回転数検出センサ2
7aを、回転する前記油跳ね上げ片21 aに対応させ
てその回転を検出する。公転回転数検出器28は、回転
数検出センサ28aを前記遊星コーン6に対応させてそ
の公転回転数を検出する。
The output disk 5 and the hub 24 are connected and fixed by a plurality of bolts 25. The hub 24 is screwed and fixed to the threaded portion 4a at the tip of the output shaft 4. In addition, a plurality of oil splashing pieces 21a are arranged on the outer periphery of the cam disc 21, and rotate with the rotation of the output shaft 4 to splash up the lubricating oil 26 accumulated in the oil reservoir 7a of the housing 7, thereby changing the speed. Lubricate each sliding part of machine A. Others 27 and 28 are an output rotation speed detector and a revolution rotation speed detector fixed to the housing 7. The output rotation speed detector 27 is the rotation speed detection sensor 2
7a is made to correspond to the rotating oil splashing piece 21a, and its rotation is detected. The revolution speed detector 28 detects the revolution speed of the planetary cone 6 by making the rotation speed detection sensor 28a correspond to the planetary cone 6.

圧縮機Bは公知のウェーブプレート型圧縮機である。円
板状のウェーブプレート105が前記出力軸4を兼ねる
駆動軸104に一体回転するように取り付けられ、ウェ
ーブプレート105の両側面はその円周方向に沿って、
波状に凹部及び凸部が形成されているシリンダ106の
両端は第1および第2バルブプレート組立体107,1
08によって閉鎖されている。ピストン109に取り付
けられた2つのローラ11’0.111は、軸線JKの
周りに回転可能であり、これら2つのローラ110.1
11の間にウェーブプレート105が挟持されている。
Compressor B is a known wave plate type compressor. A disk-shaped wave plate 105 is attached to the drive shaft 104 that also serves as the output shaft 4 so as to rotate integrally with the drive shaft 104, and both side surfaces of the wave plate 105 are arranged along the circumferential direction.
Both ends of the cylinder 106, which has concave and convex portions formed in a wave shape, are connected to first and second valve plate assemblies 107, 1.
Closed by 08. Two rollers 11'0.111 attached to the piston 109 are rotatable around the axis JK, and these two rollers 110.1
A wave plate 105 is held between the two.

複数のピストン109が、ウェーブプレート105の周
に沿って等距離間隔で配設されている。ピストン109
は軸線X方向に左右に往復動可能である。圧縮機駆動軸
104が回転してウェーブプレート105が回転すると
、ウェーブプレート105の波状の凹凸によりピストン
109が往復運動する6シリンダ室112はシリンダ1
06、ピストン109および第1バルブプレート組立体
107によって形成される。略環状のフロントサイド1
01には高圧室113および低圧室114が形成され、
第1バルブプレート組立体107の周縁部をシリンダ1
06に押圧するようにして取り付けられる、 90は前記変速機Aの変速比を調節し圧縮機Bの作動を
制御する制御部(マイクロコンピュータおよびその周辺
回路よりなる)である。この制御部90には操作部91
が接続されていて、設定温度等の冷房運転に必要な情報
を入力できるようになっている。また制御部90には、
図示しない冷凍サイクルを構成する蒸発器から吹き出さ
れる空気の温度Taを検出する吹出口温度センサ(以下
Taセンサと称す)92、前記変速機Aのフランジ7に
設けられ変速機Aの出力回転数Noを検出する出力回転
数検出器27の回転数検出センサ(以下Noセンサと称
す)27a、変速機Aの遊星コーン6の公転回転数N「
を検出する公転回転数検出器28の回転数検出センサ(
以下Nrセンサと称す)28a及び車両走行用エンジン
の回転数Neを検出するエンジン回転数検出センサ(以
下Neセンサと称す)93がそれぞれ接続されている。
A plurality of pistons 109 are arranged along the circumference of the wave plate 105 at equal distance intervals. piston 109
is capable of reciprocating left and right in the axis X direction. When the compressor drive shaft 104 rotates and the wave plate 105 rotates, the piston 109 reciprocates due to the wave-like unevenness of the wave plate 105. The 6-cylinder chamber 112 moves into the cylinder 1
06, formed by the piston 109 and the first valve plate assembly 107. Almost annular front side 1
A high pressure chamber 113 and a low pressure chamber 114 are formed in 01,
The peripheral part of the first valve plate assembly 107 is connected to the cylinder 1.
Reference numeral 90 is a control unit (consisting of a microcomputer and its peripheral circuits) that adjusts the gear ratio of the transmission A and controls the operation of the compressor B. This control section 90 includes an operation section 91.
is connected so that information necessary for cooling operation, such as set temperature, can be entered. In addition, the control unit 90 includes
An outlet temperature sensor (hereinafter referred to as Ta sensor) 92 that detects the temperature Ta of air blown out from an evaporator constituting a refrigeration cycle (not shown) is provided on the flange 7 of the transmission A, and is installed at the output rotation speed of the transmission A. The rotation speed detection sensor 27a of the output rotation speed detector 27 (hereinafter referred to as the No sensor) detects the number of revolutions N'' of the planetary cone 6 of the transmission A.
The rotation speed detection sensor (
An engine rotational speed detection sensor (hereinafter referred to as Ne sensor) 93 that detects the rotational speed Ne of the vehicle running engine is connected to the engine rotational speed detection sensor 28a (hereinafter referred to as an Nr sensor) 28a.

また制御部90には第2図に示されるように圧縮機Bの
目標回転数設定回路94.変速比算出回路95゜変速機
Aの駆動モータ29につながる変速機駆動回路96が内
蔵されている6そして、上記Taセンサ92に上記各回
路94〜96が順次接続されている。また圧縮機Bの目
標回転数設定回路94には上記操作部91が接続されて
いて、上記目標回転数設定回路94において、Taセン
サ92から入力される吹出空気温度Taと操作部91か
ら入力される目標温度TaOとの偏差に応じた目標回転
数を算出するようにしている。さらにまた変速比算出回
路95には上記Neセンサ93が接続されていて、この
変速比算出回路95において、目標回転数設定回路94
から入力される目標回転数とNeセンサ93から入力さ
れるエンジン回転数Neとから必要な変速比δを算出す
るようにしている。そして、この変速比δにしたがって
変速機駆動回路96が、変速機Aの駆動モータ29を制
御して変速比δを可変するようにしている。つまり、蒸
発器から吹き出される空気の吹出空気温度Taをパラメ
ータとして、変速機Aの変速比δを冷房(空調)負荷に
応じて制御するもので、上記制御部90が圧縮機Bを制
御する圧縮機制御手段の具体的構成となっている。
The control unit 90 also includes a target rotation speed setting circuit 94 for the compressor B, as shown in FIG. A transmission drive circuit 96 connected to the drive motor 29 of the transmission A is incorporated in the transmission ratio calculation circuit 95. The circuits 94 to 96 are sequentially connected to the Ta sensor 92. Further, the operation section 91 is connected to the target rotation speed setting circuit 94 of the compressor B. In the target rotation speed setting circuit 94, the blown air temperature Ta input from the Ta sensor 92 and the input from the operation section 91 are connected to the target rotation speed setting circuit 94. The target rotation speed is calculated according to the deviation from the target temperature TaO. Furthermore, the above-mentioned Ne sensor 93 is connected to the gear ratio calculation circuit 95, and in this gear ratio calculation circuit 95, the target rotation speed setting circuit 94
The required gear ratio δ is calculated from the target rotation speed input from the engine rotation speed Ne input from the Ne sensor 93. Then, the transmission drive circuit 96 controls the drive motor 29 of the transmission A in accordance with this gear ratio δ to vary the gear ratio δ. That is, the speed ratio δ of the transmission A is controlled according to the cooling (air conditioning) load using the blowing air temperature Ta of the air blown out from the evaporator as a parameter, and the control section 90 controls the compressor B. This is a specific configuration of the compressor control means.

また前記制御部90には、Neセンサ93とNrセンサ
28aにつながる出力回転数算出回路(以下No算出回
路と称す〉97と、NOセンサ27aにつながる出力回
転数比較判定回路(以下NO比較判定回路と称す)98
が内蔵されている。このN。
The control unit 90 also includes an output rotation speed calculation circuit (hereinafter referred to as the NO calculation circuit) 97 connected to the Ne sensor 93 and the Nr sensor 28a, and an output rotation speed comparison and determination circuit (hereinafter referred to as NO comparison determination circuit) connected to the NO sensor 27a. )98
is built-in. This N.

比較判定回路98には、No算出回路97により算出さ
れた出力回転数が記憶されていて、NOセンサ27aか
ら入力される変速機の出力回転数Noとを比較するよう
にしている。
The comparison determination circuit 98 stores the output rotation speed calculated by the No. calculation circuit 97, and compares it with the output rotation speed No. of the transmission inputted from the NO sensor 27a.

上記構成の本実施例装置の変速機Aの作動について、第
3図の説明図を参照して説明する。
The operation of the transmission A of the apparatus of this embodiment having the above configuration will be explained with reference to the explanatory diagram of FIG.

入力軸1は、ラジアルベアリング30を介してハウジン
グ7に回転自在に取り付けられており、図示しないエン
ジンを起動させると、入力軸1が回転して入力ディスク
2が連動回転し、複数の遊星コーン6と摩擦係合し、こ
れを回転させる。変速リング11は回転不可能すなわち
円周方向には回転変位しないように取り付けられている
ので、遊星コーン6は自転するとともに、変速リング1
1の内周に沿って公転し、出力ディスク5に摩擦係合し
てこれに回転を伝達する。
The input shaft 1 is rotatably attached to the housing 7 via a radial bearing 30, and when an engine (not shown) is started, the input shaft 1 rotates and the input disk 2 rotates in conjunction with the rotation of the plurality of planetary cones 6. frictionally engages and rotates it. Since the speed change ring 11 is attached so that it cannot rotate, that is, cannot be rotated in the circumferential direction, the planetary cone 6 rotates and the speed change ring 1
1, and frictionally engages with the output disk 5 to transmit rotation thereto.

入力軸1及び出力軸4の軸線Xがら、入力ディスク2と
第1の伝動面8との接触点までの距離をa、出力ディス
ク5と第2の伝動面9との接触点までの距離をf、変速
リング11と第3の伝動面10との接触点までの距離を
dとし、取付軸6cの中心から、入力ディスク2と第1
の伝動面8との接触点までの距離をb、出力ディスク5
と第2の伝動面9との接触点までの距離をe、変速リン
グ11と第3の伝動面9との接触点までの距離をCとす
ると、変速比δは、 aX(c f−e d)/ fX
(ac+bd)で与えられる。したがって変速リング1
1を前記軸線Xの方向に移動させることによって、半径
Cが変わり変速させることができる。
From the axis X of the input shaft 1 and the output shaft 4, the distance to the contact point between the input disk 2 and the first transmission surface 8 is a, and the distance to the contact point between the output disk 5 and the second transmission surface 9 is a. f, the distance to the contact point between the speed change ring 11 and the third transmission surface 10 is d, and the distance from the center of the mounting shaft 6c to the input disk 2 and the first
The distance to the point of contact with the transmission surface 8 is b, and the distance between the output disk 5 and the contact point with the transmission surface 8 is
If e is the distance to the contact point between the transmission ring 11 and the second transmission surface 9, and C is the distance to the contact point between the transmission ring 11 and the third transmission surface 9, then the transmission ratio δ is aX(c fe - e d) / fX
It is given by (ac+bd). Therefore, gear ring 1
1 in the direction of the axis X, the radius C changes and the speed can be changed.

なおc = e d / fの位置が、変速比δをOと
する唯一の位置である。駆動モータ29により変速リン
グ11を第1図に示すように左側へ移動すれば、変速比
は大きくなる。
Note that the position c=ed/f is the only position where the gear ratio δ is O. If the drive motor 29 moves the speed change ring 11 to the left as shown in FIG. 1, the speed change ratio increases.

ここで、前記操作部91から冷房運転を開始する信号が
制御部90に入力されなければ、遊星コーン6の第3の
伝動面10に対する変速リング11の接触位置は変速比
0の位置のままで、エンジンの回転は圧縮機Bの駆動軸
104には伝達されない。
Here, if a signal to start cooling operation is not inputted to the control section 90 from the operation section 91, the contact position of the speed change ring 11 with the third transmission surface 10 of the planetary cone 6 remains at the speed ratio 0 position. , the rotation of the engine is not transmitted to the drive shaft 104 of the compressor B.

しかし、操作部91から冷房運転を開始する信号が制御
部90に入力されると、変速リング11が冷房負荷に応
じて定められた変速比δ分、変位していく。すると、変
速比δで得られる出力回転が出力ディスク5.カムディ
スク21.圧縮機Bの駆動軸104を兼ねる出力軸4に
伝達され、圧縮機Bは圧縮仕事を行う。そして圧縮され
た冷媒は、図示しない冷凍サイクル回路に吐出されてい
く。こうした冷媒の流通中、当該冷媒に含まれる潤滑油
の成分が、圧縮機の各摺動部に供給されて各部の潤滑を
行う。
However, when a signal to start cooling operation is input from the operation unit 91 to the control unit 90, the speed change ring 11 is displaced by a speed ratio δ determined according to the cooling load. Then, the output rotation obtained at the gear ratio δ is the output rotation of the output disk 5. Cam disc 21. It is transmitted to the output shaft 4 which also serves as the drive shaft 104 of the compressor B, and the compressor B performs compression work. The compressed refrigerant is then discharged to a refrigeration cycle circuit (not shown). During the circulation of the refrigerant, lubricating oil components contained in the refrigerant are supplied to each sliding part of the compressor to lubricate each part.

以下、空調装置の冷房運転の際の変速機Aの制御につい
て、第4図のフローチャートに基づいて説明する。
Hereinafter, the control of the transmission A during the cooling operation of the air conditioner will be explained based on the flowchart of FIG. 4.

すなわち、操作部91の操作によって、ステップ(以下
省略する)30のように冷房運転が開始されると、Sl
に示される事項の初期条件が設定されていく。但し、「
Kp・フィードバック制御の比例ゲイン」、「θ1:フ
ィードバック制御のサンプリングタイム(温度制御)J
、「θ2 フィードフォワード制御のサンプリングタイ
ム(変速比制御)」’Tag二目標吹出空気温度」、「
L:カウンタj。
That is, when the cooling operation is started in step (hereinafter omitted) 30 by operating the operation unit 91, the Sl
Initial conditions for the items shown in are set. however,"
Kp/Proportional gain of feedback control", "θ1: Sampling time of feedback control (temperature control) J
, "θ2 Feedforward control sampling time (gear ratio control)"'Tag 2 target outlet air temperature", "
L: counter j.

「Δ:出力回転数の許容誤差(rps)Jである。"Δ: Tolerance error (rps) J of output rotation speed.

続いて、S2でフィードバック制御のサンプリングタイ
ムθ1に対するフィードフォワード制御のサンプリング
タイムの回数の割合LsetがLset=θ、/θ2に
より算出される。ついで、s3ではTaセンサ92から
出力される吹出空気温度TaNoセンサ27aがら出力
される変速機Aの出力回転数Noが検出される。S4で
は、目標回転数設定回路94において、吹出空気温度T
aと目標吹出空気温度TaOとの偏差に応じて、圧縮機
Bの目標回転数Neon、。1を次式 %式%) 算出する(フィードバック制御〉。続(S5ではNeセ
ンサ93から現在のエンジン回転数Neが検出される。
Subsequently, in S2, the ratio Lset of the number of sampling times of the feedforward control to the sampling time θ1 of the feedback control is calculated by Lset=θ, /θ2. Next, in s3, the output rotation speed No of the transmission A is detected from the blown air temperature TaNo output from the Ta sensor 92 and the output rotation speed No from the sensor 27a. In S4, the target rotation speed setting circuit 94 sets the blowing air temperature T.
The target rotational speed Neon of the compressor B is determined according to the deviation between a and the target outlet air temperature TaO. 1 is calculated using the following formula (% formula %) (Feedback control).Continued (In S5, the current engine rotation speed Ne is detected from the Ne sensor 93.

そして、上記算出結果をもとに変速比算出回路95にて
、S6で示す年式δ=N co O、、* +/Neに
したがって必要な変速比δを算出する。
Then, based on the above calculation results, the gear ratio calculation circuit 95 calculates the necessary gear ratio δ according to the model year δ=N co O, *+/Ne shown in S6.

この算出結果にしたがって変速機駆動回路96が制御さ
れ、S7で変速機駆動回路96を介して駆動モータ29
の作動を制御して、変速リング11を算出した変速比δ
となるよう変位させる。
The transmission drive circuit 96 is controlled according to this calculation result, and the drive motor 29 is controlled via the transmission drive circuit 96 in S7.
The speed change ratio δ calculated for the speed change ring 11 by controlling the operation of
Displace it so that

続いて、S8では、Neセンサ93から現在のエンジン
回転数Ne、公転回転検出器28のNrセンサ28aか
ら現在の遊星コーン6の公転回転数Nr、 Noセンサ
27aから変速機Aの現在の出力回転数Noが検出され
る。そして、S9では、NO回転数算出回路97にて、
公転回転数N「とエンジン回転数(入力回転数)Neと
に基づき、4弐N0d=Nr−(Ne−Nr>・ae/
(bf)で変速機Aの理論上の出力回転数No1dを算
出する。そして出力回転数No1d±Δと、Noセンサ
27aより検出された出力回転数Noとの比較判定をS
10で行い、その結果出力回転数NOがNo=Noid
±△となって正常であれば、つぎのSllでサンプリン
グタイムθ2を設定して、同S12でカウンタLを加算
し、S13で同カウンタLと上記Lsetとを比較し、
’L<LseJであればS5に戻り、変速比δの調整を
くり返す。もし[L≧LsetJであれば、S14でカ
ウンタLをクリアした後、S15では圧縮機Bの目標回
転数NoOの更新が行われていく、こうした冷房運転中
上記SIOの判定において、出力回転数NOと理論上の
出力回転数No1dがNo#No1dと判定されると、
異常スリップ(グロススリップ)が発生していると判断
する。
Subsequently, in S8, the current engine rotation speed Ne is determined from the Ne sensor 93, the current revolution speed Nr of the planetary cone 6 is determined from the Nr sensor 28a of the revolution rotation detector 28, and the current output rotation of the transmission A is determined from the No sensor 27a. The number No. is detected. Then, in S9, the NO rotation speed calculation circuit 97
Based on the revolution speed N" and the engine speed (input speed) Ne, 42N0d=Nr-(Ne-Nr>・ae/
The theoretical output rotation speed No. 1d of the transmission A is calculated using (bf). Then, S
10, and as a result, the output rotation speed NO is No=Noid
If ±△ is normal, set the sampling time θ2 in the next Sll, add the counter L in S12, compare the counter L with the above Lset in S13,
If 'L<LseJ, the process returns to S5 and the adjustment of the gear ratio δ is repeated. If [L≧LsetJ, after clearing the counter L in S14, the target rotation speed NoO of the compressor B is updated in S15. When the theoretical output rotation speed No1d is determined to be No#No1d,
It is determined that an abnormal slip (gross slip) has occurred.

そこで、上記NO比較判定回路98での異常検出によっ
て、S16では比較比δを一旦Oに戻して前記S2に戻
り、再度正規の変速機制御を行うことにより長時間の異
常運転が防止でき、また、変速機Aの各接合部でのすべ
りによる異常摩耗も防止することができる。SIOは本
発明の異常運転検出手段を構成し、S2〜S9及びS1
6は本発明の変速比制御手段を構成する。
Therefore, by detecting the abnormality in the NO comparison/judgment circuit 98, in S16, the comparison ratio δ is temporarily returned to O, and the process returns to S2, and normal transmission control is performed again, thereby preventing a long period of abnormal operation. It is also possible to prevent abnormal wear due to slippage at each joint of the transmission A. The SIO constitutes the abnormal operation detection means of the present invention, and includes S2 to S9 and S1.
Reference numeral 6 constitutes a gear ratio control means of the present invention.

なおフローチャート内S9の式中のa〜tは、前記第3
図に示す各接合部の接触回転半径を示す。
Note that a to t in the formula S9 in the flowchart are the third
The contact rotation radius of each joint shown in the figure is shown.

理論上の出力回転を検出する方法として、変速リングの
位置検出を行ってもよい、すなわち、第3図に示すよう
に、変速リングの位置と変速比の関係から変速比を求め
、この変速比に入力回転数を乗じたものが出力回転数と
なる。位1検出は、位置センサによる変速リングの位置
、又はモータの回転数による変速リングの移動距離を算
出してもよい。
As a method of detecting the theoretical output rotation, the position of the speed change ring may be detected. In other words, as shown in FIG. 3, the speed change ratio is determined from the relationship between the position of the speed change ring and the speed change ratio, is multiplied by the input rotation speed and becomes the output rotation speed. The position 1 detection may be performed by calculating the position of the speed change ring using a position sensor or the moving distance of the speed change ring using the rotation speed of a motor.

「他の実施例」 上記したように、算出された変速比δに従って変速機駆
動回路96を介して駆動モータ29が制御され、変速リ
ング11が変位して、変速比δが変化する。従って、駆
動モータ29が制御されると、その前後では当然実際の
変速機Aの変速比δは変化しているはずである。しかし
ながら、このとき依然として変速比δが変化しない場合
は、前記したグロススリップが発生した異常運転状態と
判断される。このことにより、変速機Aの変速比変更前
の入力回転数と出力回転数とに基づいて変速比δを算出
し、この算出値と前記串擦無断変速機の変速比変更後の
実際の入力回転数及び出力回転数より算出される変速比
δ′とを対比し、両者の値が所定の変動範囲にあるか否
かにより、異常運転状態の検出を行うこともできる。上
記の場合、変速比δが算出され制御される毎に、異常運
転状態の検出が可能になる。
"Other Embodiments" As described above, the drive motor 29 is controlled via the transmission drive circuit 96 according to the calculated speed ratio δ, the speed change ring 11 is displaced, and the speed ratio δ is changed. Therefore, when the drive motor 29 is controlled, the actual gear ratio δ of the transmission A should naturally change before and after that. However, if the gear ratio δ still does not change at this time, it is determined that the above-mentioned gross slip has occurred in an abnormal operating state. As a result, the gear ratio δ is calculated based on the input rotation speed and output rotation speed before the gear ratio change of the transmission A, and this calculated value and the actual input after the gear ratio change of the non-skew transmission are calculated. It is also possible to detect an abnormal operating state by comparing the speed ratio δ' calculated from the rotation speed and the output rotation speed and determining whether or not both values are within a predetermined fluctuation range. In the above case, the abnormal operating state can be detected every time the gear ratio δ is calculated and controlled.

また、変速リング11を変位させない限り変速比δは変
化しない。エンジンが停止中は、変速機Aの入力軸1が
回転しないため、変速リング11を変位させることがで
きず、変速比δを変化させることができない。従って、
エンジン停止直前と、次のエンジン起動時の変速比δは
変化しないはずである。しかしながら、このとき現実に
変速比δが変化した場合には、前記グロススリップが発
生した異常運転状態と判断される。このことにより、変
速機Aへの入力が無くなる直前の入力回転数と出力回転
数とに基づいて変速比δを算出し、この算出値と前記摩
擦無断変速機への入力再導入直後の実際の入力回転数及
び出力回転数より算出される変速比δ′とを対比し、両
者の値が所定値以上か否かにより、異常運転状態の検出
を行うこともできる。上記の場合、エンジン始動時に異
常運転状態の検出が可能になる。
Further, unless the speed change ring 11 is displaced, the speed ratio δ does not change. While the engine is stopped, the input shaft 1 of the transmission A does not rotate, so the speed change ring 11 cannot be displaced and the speed ratio δ cannot be changed. Therefore,
The gear ratio δ should not change between immediately before the engine is stopped and when the engine is next started. However, if the gear ratio δ actually changes at this time, it is determined that the abnormal operating state has occurred in which the gross slip has occurred. As a result, the gear ratio δ is calculated based on the input rotational speed and output rotational speed just before the input to the transmission A disappears, and this calculated value is combined with the actual value immediately after the input to the frictionless transmission is reintroduced. It is also possible to detect an abnormal operating state by comparing the speed ratio δ' calculated from the input rotation speed and the output rotation speed and determining whether both values are equal to or higher than a predetermined value. In the above case, abnormal operating conditions can be detected when the engine is started.

尚、上記能の実施例では入力及び出力回転数を常時モニ
タし、これを前記制御部90に備えられるメモリ(図示
しない)に記憶することにより、変速比δの変更前やエ
ンジン停止直前の入力及び出力回転数等と、現実の入力
及び出力回転数等との対比を行うことができるとともに
、これらの回転数により算出される変速比の対比も可能
となる。
In the embodiment of the above function, the input and output rotational speeds are constantly monitored and stored in a memory (not shown) provided in the control section 90, so that the input and output rotation speeds can be checked before changing the gear ratio δ or just before stopping the engine. It is possible to compare the output rotation speed, etc. with the actual input and output rotation speed, etc., and it is also possible to compare the gear ratio calculated from these rotation speeds.

上記各実施例では、変速機として遊星コーン型無段変速
機について説明したが、他の摩擦無段変速機、例えばハ
ーフトロイダル型無段変速機であってもよい。
In each of the above embodiments, a planetary cone type continuously variable transmission has been described as the transmission, but other friction continuously variable transmissions, such as a half toroidal type continuously variable transmission, may be used.

また圧縮機はウェーブプレート型圧縮機に限られず、例
えば斜板型圧縮機であってもよい。
Further, the compressor is not limited to a wave plate type compressor, and may be, for example, a swash plate type compressor.

「発明の効果」 本発明は上記した構成になるもので、それぞれ異常運転
検出手段により異常運転が検出された場合には、動力伝
達を可能にするため直ちに変速比を0とし、その後再び
所定の変速比に戻すようにしたから、異常運転状態が直
ちに解消され正常な動力伝達状態に復帰でき、摩擦無段
変速機付圧縮機の作動の信頼性を高めることができる効
果がある。
"Effects of the Invention" The present invention has the above-mentioned configuration, and when abnormal operation is detected by the abnormal operation detection means, the gear ratio is immediately set to 0 to enable power transmission, and then the gear ratio is set to a predetermined value again. Since the gear ratio is restored, the abnormal operating condition is immediately resolved and the normal power transmission condition can be restored, which has the effect of increasing the reliability of the operation of the compressor with the continuously variable friction transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の摩擦無段変速機付圧縮機の一実施例を
示す縦断面図、第2図は制御部の構成を示すブロック図
、第3図は説明図、第4図はフローチャートである。 A91.摩擦無段変速機、 B91.圧縮機、  1人
力軸、 4.1.出力軸、 27 、、、出力回転数検
出器、 8a 90゜ 96、。 出回路、 282.公転回転数検出器、 27a。 、回転数センサ、 29 、、、駆動モータ、制御部、
 95.、、変速比算出回路、変速機駆動回路、 97
1.出力回転数算98、、、出力回転数比較判定回路。 s 3 図
Fig. 1 is a longitudinal sectional view showing an embodiment of a compressor with a continuously variable friction transmission according to the present invention, Fig. 2 is a block diagram showing the configuration of the control section, Fig. 3 is an explanatory diagram, and Fig. 4 is a flow chart. It is. A91. Friction continuously variable transmission, B91. Compressor, 1-man powered shaft, 4.1. Output shaft, 27, Output rotation speed detector, 8a 90°96. Output circuit, 282. Revolutionary rotation speed detector, 27a. , rotation speed sensor, 29 , , drive motor, control section,
95. , , speed ratio calculation circuit, transmission drive circuit, 97
1. Output rotation speed calculation 98, Output rotation speed comparison judgment circuit. s3 diagram

Claims (4)

【特許請求の範囲】[Claims] (1)空調負荷に応じ摩擦無段変速機の変速比を調節し
て圧縮機の作動を制御する圧縮機制御手段を備えた摩擦
無段変速機付圧縮機において、前記摩擦無断変速機の入
力回転数、出力回転数、及び変速比のうち少なくとも2
つを検出して、その2つの検出値より他の1つの値を算
出し、この算出値と現実の摩擦無断変速機付圧縮機の回
転状態における前記算出値に対応する値とを対比し、両
者の値が所定値以上のとき異常運転を検出して異常運転
信号を出力する異常運転検出手段と、この異常運転検出
手段からの異常運転検出信号に基づいて、変速機の変速
比を一旦0とした後再度所定の変速比に戻す変速比制御
手段とを具備することを特徴とする摩擦無段変速機付圧
縮機。
(1) In a compressor with a friction continuously variable transmission equipped with a compressor control means that controls the operation of the compressor by adjusting the gear ratio of the friction continuously variable transmission according to the air conditioning load, the input of the friction continuously variable transmission is provided. At least 2 of rotation speed, output rotation speed, and gear ratio
Detect one, calculate another value from the two detected values, and compare this calculated value with a value corresponding to the calculated value in the actual rotational state of the compressor with a continuously variable friction transmission, Abnormal operation detection means detects abnormal operation and outputs an abnormal operation signal when both values are greater than a predetermined value, and once the gear ratio of the transmission is set to 0 based on the abnormal operation detection signal from this abnormal operation detection means. 1. A compressor with a continuously variable friction transmission, comprising a gear ratio control means for returning the gear ratio to a predetermined gear ratio.
(2)前記異常運転検出手段は、前記摩擦無断変速機の
入力回転数と変速比とに基づいて出力回転数を算出し、
この算出値と実際の出力回転数とを比較して両者の値が
所定値以上のとき、異常運転を検出して異常運転信号を
出力することを特徴とする請求項(1)記載の摩擦無断
変速機付圧縮機。
(2) The abnormal operation detection means calculates the output rotation speed based on the input rotation speed and gear ratio of the frictionless transmission,
The friction control system according to claim (1), wherein the calculated value and the actual output rotation speed are compared, and when both values are equal to or higher than a predetermined value, abnormal operation is detected and an abnormal operation signal is output. Compressor with variable speed.
(3)前記異常運転検出手段は、前記摩擦無断変速機の
変速比変更前の入力回転数と出力回転数とに基づいて変
速比を算出し、この算出値と前記摩擦無断変速機の変速
比変更後の実際の入力回転数及び出力回転数より算出さ
れる変速比とを対比し、両者の値が所定の変動範囲にな
いとき異常運転を検出して異常運転信号を出力すること
を特徴とする請求項(1)記載の摩擦無断変速機付圧縮
機。
(3) The abnormal operation detection means calculates a gear ratio based on the input rotation speed and output rotation speed before changing the gear ratio of the frictionless transmission, and combines this calculated value with the gear ratio of the frictionless transmission. The system compares the actual input rotation speed after the change with the gear ratio calculated from the output rotation speed, and when both values are not within a predetermined variation range, abnormal operation is detected and an abnormal operation signal is output. A compressor with a frictionally variable transmission according to claim (1).
(4)前記異常運転検出手段は、前記摩擦無断変速機へ
の入力が無くなる直前の入力回転数と出力回転数とに基
づいて変速比を算出し、この算出値と前記摩擦無断変速
機への入力再導入直後の実際の入力回転数及び出力回転
数より算出される変速比とを対比し、両者の値が所定値
以上のとき異常運転を検出して異常運転信号を出力する
ことを特徴とする請求項(1)記載の摩擦無断変速機付
圧縮機。
(4) The abnormal operation detection means calculates a gear ratio based on the input rotational speed and output rotational speed immediately before the input to the frictionless transmission disappears, and calculates a gear ratio based on this calculated value and the output rotational speed to the frictionless transmission. It is characterized by comparing the actual input rotation speed immediately after the input is reintroduced and the gear ratio calculated from the output rotation speed, and when both values are equal to or higher than a predetermined value, abnormal operation is detected and an abnormal operation signal is output. A compressor with a frictionally variable transmission according to claim (1).
JP2118175A 1990-05-08 1990-05-08 Compressor equipped with frictional type continuously variable transmission Pending JPH0415358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2118175A JPH0415358A (en) 1990-05-08 1990-05-08 Compressor equipped with frictional type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2118175A JPH0415358A (en) 1990-05-08 1990-05-08 Compressor equipped with frictional type continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH0415358A true JPH0415358A (en) 1992-01-20

Family

ID=14729987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2118175A Pending JPH0415358A (en) 1990-05-08 1990-05-08 Compressor equipped with frictional type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH0415358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211639A (en) * 2011-03-31 2012-11-01 Honda Motor Co Ltd Stepless transmission for vehicle
US11021144B2 (en) * 2018-09-20 2021-06-01 Dana Automotive Systems Group, Llc Slip detection and mitigation for an electric drive powertrain having a high ratio traction drive transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211639A (en) * 2011-03-31 2012-11-01 Honda Motor Co Ltd Stepless transmission for vehicle
US11021144B2 (en) * 2018-09-20 2021-06-01 Dana Automotive Systems Group, Llc Slip detection and mitigation for an electric drive powertrain having a high ratio traction drive transmission
US11485346B2 (en) 2018-09-20 2022-11-01 Dana Automotive Systems Group, Llc Slip detection and mitigation for an electric drive powertrain having a high ratio traction drive transmission
US12017635B2 (en) 2018-09-20 2024-06-25 Dana Automotive Systems Group, Llc Slip detection and mitigation for an electric drive powertrain having a high ratio traction drive transmission

Similar Documents

Publication Publication Date Title
JP2004301251A (en) Full toroidal-type continuously variable transmission
JP3531607B2 (en) Toroidal continuously variable transmission and full toroidal continuously variable transmission
US7988573B2 (en) Device and method for controlling belt-type continuously variable transmission
US9091344B2 (en) Medium pressure control device of continuously variable transmission and continuously variable transmission
EP2650571B1 (en) Belt-type continuously variable transmission having an abnormality determining device
JPH0415358A (en) Compressor equipped with frictional type continuously variable transmission
JPH10281269A (en) Toroidal type continuously variable transmission
JPH0634027A (en) Friction transmission with torque detecting function
WO2020195563A1 (en) Bearing device
US7166055B2 (en) Toroidal type continuously variable transmission
JP2001065683A (en) Method and device for controlling gear ratio of transmission equipped with continuously variable gear ratio
JP4055615B2 (en) Toroidal continuously variable transmission
JP2002070732A (en) Variable displacement controller for refrigeration cycle
WO2000034688A1 (en) Power transmission mechanism
JP2007107626A (en) Toroidal type continuously variable transmission
JP4807547B2 (en) Toroidal continuously variable transmission
JPH0420750A (en) Compressor capacity control device in freezing cycle
JPH0446820A (en) Compressor with transmission gear for automobile air conditioning
JPH04252882A (en) Compressor with friction continuously variable transmission
JPH04285360A (en) Compressor with speed change gear
JPH0463976A (en) Compressor with transmission for air conditioner of automobile
JP2009510309A (en) Method to detect deviation between actual torque and calculated torque
JPH05322677A (en) Power transmission mechanism with torque detecting function
JPH04331858A (en) Compressor equipped with transmission for air-conditioning automobile
JPH0539777A (en) Compressor provided with transmission