JPH04149009A - Production of low-oxygen aluminum nitride powder - Google Patents

Production of low-oxygen aluminum nitride powder

Info

Publication number
JPH04149009A
JPH04149009A JP2270379A JP27037990A JPH04149009A JP H04149009 A JPH04149009 A JP H04149009A JP 2270379 A JP2270379 A JP 2270379A JP 27037990 A JP27037990 A JP 27037990A JP H04149009 A JPH04149009 A JP H04149009A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride powder
oxygen
low
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2270379A
Other languages
Japanese (ja)
Other versions
JP3046339B2 (en
Inventor
Tetsuo Kaga
鉄夫 加賀
Yoshiyuki Nakamura
中村 美幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2270379A priority Critical patent/JP3046339B2/en
Publication of JPH04149009A publication Critical patent/JPH04149009A/en
Application granted granted Critical
Publication of JP3046339B2 publication Critical patent/JP3046339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a low-oxygen AlN powder having high thermal conductivity while maintaining the sintering property almost same as that of untreated AlN powder by heating the AlN powder in an atmosphere containing hydrocarbon gas, N2, NH3, etc. CONSTITUTION:A container made of graphite, alumina, etc., which is durable against high temp. of >=1500 deg.C is filled with an AlN powder. This powder is subjected to heat treatment in a mixture gas atmosphere containing hydrocarbon gas such as CH4, C2H2, etc., and N2 and/or NH3 to remove residual oxygen and to obtain the low-oxygen AlN powder. Temp. of heat treatment is preferably 1000-1500 deg.C, and 1100-1300 deg.C is optimum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高熱伝導性窒化アルミニウム焼結体を得る為
の窒化アルミニウム粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing aluminum nitride powder for obtaining a highly thermally conductive aluminum nitride sintered body.

〔従来の技術〕[Conventional technology]

窒化アルミニウム焼結体は、高熱伝導性及び電気絶縁性
を存するので電子回路用基板や高温構造材等広い範囲に
利用されている。窒化アルミニウム焼結体の熱伝導性を
左右する主な要因は焼結体中に残留する酸素量であり(
機能材料1987年9月号、p、54〜p、62)、そ
れは原料窒化アルミニウム粉末中に含まれる酸素量に大
きく影響を受ける。
Since aluminum nitride sintered bodies have high thermal conductivity and electrical insulation properties, they are used in a wide range of applications such as electronic circuit boards and high-temperature structural materials. The main factor that influences the thermal conductivity of aluminum nitride sintered bodies is the amount of oxygen remaining in the sintered bodies (
Functional Materials September 1987 issue, p. 54-p. 62), it is greatly affected by the amount of oxygen contained in the raw material aluminum nitride powder.

従来より、窒化アルミニウム粉末の低酸素化については
、活発に検討されてきているが酸素量の少ないものでも
0.8〜1重量%程度あった。
Conventionally, the reduction of oxygen content in aluminum nitride powder has been actively studied, but even those with a low oxygen content are about 0.8 to 1% by weight.

窒化アルミニウム粉末の後処理により酸素量を低減させ
る方法としては、特開平2−26813号公報に示され
ているように、カーボン容器に窒化アルミニウム粉末を
充填し1200〜1800°Cて加熱処理する方法か知
られているが、加熱温度か高い為に微粉の窒化アルミニ
ウム粉末か凝集してしまい、焼結性か損なわれるという
欠点があった。
As a method for reducing the amount of oxygen by post-processing aluminum nitride powder, as shown in Japanese Patent Application Laid-open No. 2-26813, aluminum nitride powder is filled in a carbon container and heat-treated at 1200 to 1800°C. However, due to the high heating temperature, the fine aluminum nitride powder aggregates, which impairs sinterability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らは、焼結性を損なうことなく効率的に低酸素
窒化アルミニウム粉末を製造する方法について種々検討
した結果、窒化アルミニウム粉末を炭化水素ガスとN2
及び/又はNH,雰囲気下で加熱処理をすればよいこと
を見出し本発明を完成したものである。
As a result of various studies on methods for efficiently producing low-oxygen aluminum nitride powder without impairing sinterability, the present inventors found that aluminum nitride powder was mixed with hydrocarbon gas and N2.
The present invention was completed by discovering that heat treatment can be carried out in an atmosphere of NH and/or NH.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、窒化アルミニウム粉末を炭化水素
ガスとN2及び/又はNH,雰囲気下で加熱処理するこ
とを特徴とする低酸素窒化アルミニウム粉末の製造方法
である。
That is, the present invention is a method for producing a low-oxygen aluminum nitride powder, which is characterized in that aluminum nitride powder is heat-treated in an atmosphere of hydrocarbon gas and N2 and/or NH.

以下本発明の内容を詳細に説明する。The contents of the present invention will be explained in detail below.

本発明は、黒鉛、アルミナ、窒化アルミニウム等の材質
からなる1500″C以上の温度に耐え得る容器に窒化
アルミニウム粉末を充填し、CH4、C2H2、C,H
,等に代表される炭化水素ガスとN2及び/又はNH,
の混合雰囲気下で加熱処理をするものである。
In the present invention, aluminum nitride powder is filled into a container made of materials such as graphite, alumina, and aluminum nitride that can withstand temperatures of 1500"C or higher, and CH4, C2H2, C, H
, etc. and N2 and/or NH,
The heat treatment is performed in a mixed atmosphere.

このとき混合ガスと窒化アルミニウム粉末とを十分に接
触させるために窒化アルミニウム粉末の充填密度を上げ
すぎないようにすることか好ましい。
At this time, it is preferable not to increase the packing density of the aluminum nitride powder too much in order to make sufficient contact between the mixed gas and the aluminum nitride powder.

混合ガス中の炭化水素ガスの濃度は、処理する窒化アル
ミニウム粉末の量と加熱炉の形状等により一概に特定す
ることはできないか1〜20容量%であることか好まし
い。また、混合ガスは流動させて使用することか望まし
くその流量は多い方か好ましい。
The concentration of hydrocarbon gas in the mixed gas cannot be unconditionally determined depending on the amount of aluminum nitride powder to be treated, the shape of the heating furnace, etc., or is preferably 1 to 20% by volume. Further, it is preferable to use the mixed gas in a fluidized state, and it is preferable to use a large flow rate.

加熱処理の温度は、1000’C−1500°Cである
ことか好ましい。l000°C未満の温度では全く効果
かないわけてはないが非常に長時間を要し工業的に好ま
しくない。一方、1500°Cをこえると窒化アルミニ
ウム粉末の凝集が顕著となり焼結性を損なう恐れかある
。処理効果と得られた低酸素窒化アルミニウム粉末の焼
結性を考慮すると1100°C〜1300°Cでの加熱
処理か最適である。また、処理時間については、処理す
る窒化アルミニウム粉末の量や炭化水素ガスの濃度など
により異なるが、1〜5時間長くても10時間程度か良
くこれ以上長時間処理を行なっても効果はあまり変わら
ない。
The temperature of the heat treatment is preferably 1000'C to 1500C. Temperatures below 1000°C are not completely ineffective, but require a very long time and are not industrially preferred. On the other hand, if the temperature exceeds 1500°C, agglomeration of the aluminum nitride powder becomes noticeable, which may impair sinterability. Considering the treatment effect and the sinterability of the obtained low-oxygen aluminum nitride powder, heat treatment at 1100°C to 1300°C is optimal. Furthermore, the treatment time varies depending on the amount of aluminum nitride powder to be treated, the concentration of hydrocarbon gas, etc., but the effect will not change much even if the treatment is carried out for a long time, preferably 1 to 5 hours or even 10 hours. do not have.

加熱処理に供する窒化アルミニウム粉末の量に対して過
剰な炭化水素ガスが存在する場合、その処理温度やガス
の種類によっては分解してカーボンか沈積することかあ
る。この場合、加熱処理後にNH3またはNH,を含む
不活性ガス気流中700〜1000°Cの温度で加熱す
ることによりそれを除去することかてきる。この脱カー
ボン処理を行なっても窒化アルミニウム粉末中の酸素量
か増加したり凝集したりすることはない。本発明によっ
て得られた窒化アルミニウム粉末に適当な焼結助剤を添
加して焼結すると、未処理の窒化アルミニウム粉末に近
い焼結性を維持したまま高い熱伝導率を有する窒化アル
ミニウム焼結体を得ることかできる。
If an excessive amount of hydrocarbon gas is present relative to the amount of aluminum nitride powder subjected to heat treatment, depending on the treatment temperature and the type of gas, it may decompose and deposit carbon. In this case, it can be removed by heating at a temperature of 700 to 1000° C. in an inert gas stream containing NH3 or NH after the heat treatment. Even if this decarbonization treatment is performed, the amount of oxygen in the aluminum nitride powder will not increase or agglomerate. When an appropriate sintering aid is added to the aluminum nitride powder obtained by the present invention and sintered, an aluminum nitride sintered body has high thermal conductivity while maintaining sinterability close to that of untreated aluminum nitride powder. Can you get it?

〔実施例〕〔Example〕

次に実施例と比較例をあげてさらに具体的に本発明を説
明する。なお、実施例に記載した諸物性は以下のように
して測定した。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In addition, the various physical properties described in the examples were measured as follows.

窒化アルミニウム粉末の比表面積は窒素ガス吸着による
BET法により求めた。
The specific surface area of the aluminum nitride powder was determined by the BET method using nitrogen gas adsorption.

窒化アルミニウム粉末中の酸素含有量はLECO社製T
C−136型分析装置により測定を行なった。
The oxygen content in aluminum nitride powder is LECO T.
Measurements were carried out using a C-136 type analyzer.

窒化アルミニウム焼結体の熱伝導率は真空理工社製レー
ザーフラッシュ法熱定数測定装置TC−3000型によ
り測定し、また、焼結密度はアルキメデス法で測定した
。なお、窒化アルミニウム焼結体は、窒化アルミニウム
粉末にY2O3を4重量%添加混合し、金型を使用して
プレス圧1t/aiて15mmφ×5mmtのペレット
状に成型し、この成型体を8N製容器に入れ黒鉛抵抗炉
、窒素気流中で1900’CX 2時間焼成して製造し
た。
The thermal conductivity of the aluminum nitride sintered body was measured using a laser flash method thermal constant measuring device TC-3000 manufactured by Shinku Riko Co., Ltd., and the sintered density was measured using the Archimedes method. The aluminum nitride sintered body is made by adding and mixing 4% by weight of Y2O3 to aluminum nitride powder, molding it into a pellet shape of 15 mmφ x 5 mmt using a mold at a press pressure of 1 t/ai, and molding this molded body into a pellet made of 8N. It was manufactured by putting it in a container and firing it in a graphite resistance furnace at 1900'CX for 2 hours in a nitrogen stream.

実施例1 酸素含有量1.3重量%、比表面積3.lrd/gの窒
化アルミニウム粉末をアルミナ製ポート(巾40市長さ
100 cm深さ10mm)に充填(嵩密度= I g
/cc程度)し、電気炉に入れ、CH,ガスを10容量
%混合したN1(sを5j’/minで流入しながら1
300″Cまて加熱し2時間保持した後自然冷却し取り
出した。
Example 1 Oxygen content 1.3% by weight, specific surface area 3. Fill an alumina port (width: 40 cm, length: 100 cm, depth: 10 mm) with aluminum nitride powder of lrd/g (bulk density = I g
/cc), placed in an electric furnace, and heated with N1 (s) mixed with 10% by volume of CH and gas at a rate of 5j'/min.
After heating to 300''C and holding for 2 hours, it was naturally cooled and taken out.

得られた粉末は過剰のCH,によりカーボンか沈積し全
体に黒くカーボンの存在が確認されたので再び電気炉に
入れNH3を5ffi/minで流入しながら800℃
まで加熱し5時間保持した。得られた窒化アルミニウム
粉末と焼結体の物性の測定結果を第1表に示す。
The obtained powder was deposited with carbon due to excess CH, and the presence of black carbon was confirmed throughout the powder, so it was placed in the electric furnace again and heated to 800°C while flowing NH3 at a rate of 5ffi/min.
and held for 5 hours. Table 1 shows the measurement results of the physical properties of the obtained aluminum nitride powder and sintered body.

実施例2 加熱処理条件を1200°C15時間としたこと以外は
実施例1と同様に行なった。その結果を第1表に示す。
Example 2 The same procedure as in Example 1 was conducted except that the heat treatment conditions were 1200° C. for 15 hours. The results are shown in Table 1.

実施例3 加熱処理条件をCH,濃度2容量%、脱カーボン条件を
800°Cで3時間としたこと以外は実施例1と同様に
行なった。その結果を第1表に示す。
Example 3 The same procedure as in Example 1 was conducted except that the heat treatment conditions were CH, concentration 2% by volume, and decarbonization conditions were 800° C. for 3 hours. The results are shown in Table 1.

実施例4 原料窒化アルミニウム粉末の酸素含有量か1.5重量%
で比表面積が4.6rd/gであるものを用いたこと以
外は実施例1と同様に行なった。その結果を第1表に示
す。
Example 4 Oxygen content of raw material aluminum nitride powder is 1.5% by weight
The same procedure as in Example 1 was carried out except that a material having a specific surface area of 4.6rd/g was used. The results are shown in Table 1.

実施例5 ゛実施例1で用いた原料窒化アルミニウム粉末を実施例
1と同様な電気炉に入れ、C2H2ガスを5容量%混合
したNH3を5f/minで流入しながら1200°C
まて加熱し5時間保持した。次いで、NH,を57/m
inで流入しながら800°Cて10時間保持して脱カ
ーボン処理を行った。得られた窒化アルミニウム粉末と
焼結体の物性の測定結果を第1表に示す。
Example 5 ゛The raw material aluminum nitride powder used in Example 1 was placed in the same electric furnace as in Example 1, and heated to 1200°C while flowing NH3 mixed with 5% by volume of C2H2 gas at 5f/min.
The mixture was heated and held for 5 hours. Then, NH, 57/m
Decarbonization treatment was carried out by holding the sample at 800°C for 10 hours while flowing in at 800°C. Table 1 shows the measurement results of the physical properties of the obtained aluminum nitride powder and sintered body.

実施例6 加熱処理条件を1300 ’Cて5時間、CH,濃度を
1容量%としたこと以外は実施例1と同様に処理を行な
ったところ、カーボンの沈積かほとんど見られなかった
ので脱カーボン処理を省略した。得られた窒化アルミニ
ウム粉末と焼結体の物性を測定した。その結果を第1表
に示す。
Example 6 The same treatment as in Example 1 was carried out except that the heat treatment conditions were 1300'C for 5 hours, CH concentration was 1% by volume, and almost no carbon deposits were observed, so decarbonization was performed. Processing was omitted. The physical properties of the obtained aluminum nitride powder and sintered body were measured. The results are shown in Table 1.

比較例1 実施例1で用いた原料窒化アルミニウム粉末の焼結体の
物性を第1表に示す。
Comparative Example 1 Table 1 shows the physical properties of the sintered body of the raw material aluminum nitride powder used in Example 1.

比較例2 実施例4て用いた原料窒化アルミニウム粉末の焼結体の
物性を第1表に示す。
Comparative Example 2 Table 1 shows the physical properties of the sintered body of the raw material aluminum nitride powder used in Example 4.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、窒化アルミニウム粉末の酸素含有量を
容易に低減でき、しかも熱処理温度か低温であるので、
粉末の凝集をおこすことなく、また焼結性を損なわせず
に、酸素量を低減した窒化アルミニウム粉末を製造する
ことができる。また、本発明により得られた窒化アルミ
ニウム粉末を焼結体の原料に使用した場合、焼結助剤の
添加量を少なくすることが可能であり、また得られた焼
結体は高熱伝導特性を育したものとなる。さらには、本
発明は、ガスによる処理である為、連続的かつ均一な処
理か可能となる。
According to the present invention, the oxygen content of aluminum nitride powder can be easily reduced, and the heat treatment temperature is low.
Aluminum nitride powder with reduced oxygen content can be produced without causing powder agglomeration or impairing sinterability. Furthermore, when the aluminum nitride powder obtained according to the present invention is used as a raw material for a sintered body, it is possible to reduce the amount of sintering aid added, and the obtained sintered body has high thermal conductivity. It becomes what you grew up with. Furthermore, since the present invention uses gas for treatment, continuous and uniform treatment is possible.

特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、窒化アルミニウム粉末を炭化水素ガスとN_2及び
/又はNH_3を含む雰囲気下で加熱処理することを特
徴とする低酸素窒化アルミニウム粉末の製造方法。
1. A method for producing low-oxygen aluminum nitride powder, which comprises heat-treating aluminum nitride powder in an atmosphere containing hydrocarbon gas and N_2 and/or NH_3.
JP2270379A 1990-10-11 1990-10-11 Method for producing low oxygen aluminum nitride powder Expired - Fee Related JP3046339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270379A JP3046339B2 (en) 1990-10-11 1990-10-11 Method for producing low oxygen aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270379A JP3046339B2 (en) 1990-10-11 1990-10-11 Method for producing low oxygen aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPH04149009A true JPH04149009A (en) 1992-05-22
JP3046339B2 JP3046339B2 (en) 2000-05-29

Family

ID=17485438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270379A Expired - Fee Related JP3046339B2 (en) 1990-10-11 1990-10-11 Method for producing low oxygen aluminum nitride powder

Country Status (1)

Country Link
JP (1) JP3046339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799269B2 (en) * 2007-09-25 2010-09-21 Osram Sylvania Inc. Method of sintering AIN under a methane-containing nitrogen atmosphere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799269B2 (en) * 2007-09-25 2010-09-21 Osram Sylvania Inc. Method of sintering AIN under a methane-containing nitrogen atmosphere

Also Published As

Publication number Publication date
JP3046339B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
Matsubara et al. Thermoelectric properties of spark plasma sintered Ca 2.75 Gd 0.25 Co 4 O 9 ceramics
WO2011043082A1 (en) Hexagonal boron nitride powder and method for producing same
JPH075374B2 (en) Ceramic body with high thermal conductivity and manufacturing method thereof
JPS61146769A (en) High heat conductivity ceramic body and manufacture
JPH075376B2 (en) Manufacturing method of ceramics with high thermal conductivity
JPS62197353A (en) Manufacture of silicon carbide sintered body
JPH0362643B2 (en)
JPH04149009A (en) Production of low-oxygen aluminum nitride powder
JPS63277567A (en) Sintered aluminum nitride having high thermal conductivity
JPH1129307A (en) Hexagonal boron nitride powder
JPH0329023B2 (en)
US20140144878A1 (en) Method of forming a silicon carbide body
Konno et al. Formation of oxidation resistant graphite flakes by ultrathin silicone coating
Luqian et al. Synthesis of aluminum nitride from aluminum citrate precursor
JPS6332841B2 (en)
Kalyanaraman et al. Novel technique for synthesis and consolidation of aluminium nitride nanopowders
JPS60131863A (en) Electrical insulating silicon carbide sintered body
JPH02221163A (en) Production of aluminum nitride sintered body
Konno et al. Synthesis and characterization of balloons and porous blocks of β-SiC using silicone and urethane foam
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
JP2846375B2 (en) Aluminum nitride powder and method for producing the same
JPH0224787B2 (en)
JPH0127993B2 (en)
Sukumar et al. Effect of boron nitride on the coarsening of silicon nitride powder
JPS63297207A (en) Production of aluminum nitride powder

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees