JPH0362643B2 - - Google Patents

Info

Publication number
JPH0362643B2
JPH0362643B2 JP59030350A JP3035084A JPH0362643B2 JP H0362643 B2 JPH0362643 B2 JP H0362643B2 JP 59030350 A JP59030350 A JP 59030350A JP 3035084 A JP3035084 A JP 3035084A JP H0362643 B2 JPH0362643 B2 JP H0362643B2
Authority
JP
Japan
Prior art keywords
powder
carbon
alumina
aln
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59030350A
Other languages
Japanese (ja)
Other versions
JPS60176910A (en
Inventor
Nobuyuki Kuramoto
Hitofumi Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP59030350A priority Critical patent/JPS60176910A/en
Publication of JPS60176910A publication Critical patent/JPS60176910A/en
Publication of JPH0362643B2 publication Critical patent/JPH0362643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Description

【発明の詳細な説明】 本発明は新規な窒化アルミニウム粉末の製造方
法に関する。詳しくはアルミナ粉末とカーボンと
を窒素又はアンモニア雰囲気下で反応させ窒化ア
ルミニウム粉末を製造するに際し、該アルミナ粉
末を予め反応条件下にカーボンとなる有機化合物
と溶液状態で接触させて用いる窒化アルミニウム
粉末の製造方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing aluminum nitride powder. Specifically, when producing aluminum nitride powder by reacting alumina powder and carbon in a nitrogen or ammonia atmosphere, the alumina powder is brought into contact in a solution state with an organic compound that becomes carbon under reaction conditions in advance. This is the manufacturing method.

窒化アルミニウム粉末は公知な化合物で種々の
製造方法が知られている。例えばアルミナ粉末と
カーボンとを窒素又はアンモニア雰囲気下に焼成
して窒化アンモニウムを得る所謂アルミナ還元法
も知られている。また窒化アルミニウム(AlN)
焼結体は高熱伝導性、高耐食性、高強度、等の優
れた特性を有するセラミツクである。また本発明
者等の研究によれば透光性を有するAlN焼結体
を得ることも出来る。そしてそれらのAlN焼結
体の性状は焼結体の原料であるAlN粉末に性状
に依存する。特に上記の優れた特性をもつAlN
焼結体を得るには、原料AlN粉末が高純度で、
微粉末であり、かつ凝集の少い均一な粉末である
事が強く要求される。
Aluminum nitride powder is a known compound, and various manufacturing methods are known. For example, a so-called alumina reduction method is also known in which ammonium nitride is obtained by firing alumina powder and carbon in a nitrogen or ammonia atmosphere. Also aluminum nitride (AlN)
The sintered body is a ceramic having excellent properties such as high thermal conductivity, high corrosion resistance, and high strength. Furthermore, according to the research conducted by the present inventors, it is also possible to obtain an AlN sintered body having translucency. The properties of these AlN sintered bodies depend on the properties of AlN powder, which is the raw material for the sintered bodies. In particular, AlN has the excellent properties mentioned above.
In order to obtain a sintered body, the raw material AlN powder must be of high purity,
It is strongly required that the powder be fine and uniform with little agglomeration.

本発明者等はかかる要求を満たすため鋭意研究
をしてきた。その結果アルミナ粉末とカーボンと
を窒素又はアンモニア雰囲気下で反応させAlN
粉末を製造する際、該アルミナ粉末を予め有機化
合物と接触させる事により、凝集の非常に少い、
微粉末AlNを再現性良く製造できることを見出
し本発明を完成するに到つた。
The inventors of the present invention have conducted extensive research in order to meet such requirements. As a result, alumina powder and carbon are reacted in a nitrogen or ammonia atmosphere to produce AlN.
When producing the powder, by bringing the alumina powder into contact with an organic compound in advance, the alumina powder can be produced with very little agglomeration.
The present invention was completed by discovering that fine powder AlN can be produced with good reproducibility.

本発明の最大の目的は焼結性に著るしく優れた
AlNの均質微粉末を粉砕工程を採用せずに提供
することである。AlN焼結体に高熱伝導性や透
光性などの特性を付与するためには原料となる
AlN粉末が高純度である事と並んで焼結性が著
るしく優れている事が要求される。本発明者等は
高純度AlN粉末の粒子径及び粒子の凝集状態が
焼結性に与える影響を鋭意研究し、従来の知見で
は焼結が困難とされていた比較的低い酸素含有量
のAlN粉末でも均質な微粉末とする事によつて
優れた焼結性が発現し、ホツトプレスや常圧焼結
によつて高熱伝導性や透光性を有する新しい
AlN焼結体となる事を発見し既に提案した。本
発明はこのような高性能AlN焼結体の原料とな
るAlNの均質高純度微粉末をいわゆるアルミナ
還元法によつて再現性良く製造する技術を提供す
るものである。
The main objective of the present invention is to achieve significantly superior sinterability.
The purpose of the present invention is to provide homogeneous fine powder of AlN without employing a pulverization process. It is used as a raw material to impart properties such as high thermal conductivity and translucency to AlN sintered bodies.
In addition to having high purity, the AlN powder is required to have extremely good sinterability. The present inventors have conducted extensive research into the effects of the particle size and agglomeration state of high-purity AlN powder on sinterability, and found that AlN powder with a relatively low oxygen content, which was difficult to sinter according to conventional knowledge. However, by making it into a homogeneous fine powder, excellent sinterability can be achieved, and by hot pressing or pressureless sintering, a new product with high thermal conductivity and translucency can be produced.
We have already discovered and proposed that it becomes an AlN sintered body. The present invention provides a technique for producing homogeneous high-purity fine powder of AlN, which is a raw material for such a high-performance AlN sintered body, with good reproducibility by a so-called alumina reduction method.

即ちアルミナ粉末とカーボンを窒素又はアンモ
ニア雰囲気下で反応(以下窒化反応という)さ
せ、窒化アルミニウム粉末を製造する方法におい
て、使用するアルミナは平均粒子径2μm以下で純
度99.9%以上であり、アルミナ対全カーボンの重
量比を1対0.36〜1:1の割合で用い、且つ該カ
ーボンのうち、アルミナに対して0.02〜5重量%
は有機化合物の溶液としてアルミナに含浸させて
用い、その他は、平均粒子径1μm以下で、灰分
0.2重量%以下のカーボンを混合して用い、該有
機化合物は、あらかじめ炭化処理を施した後窒化
反応を行わせることを特徴とする窒化アルミニウ
ム粉末の製造方法である。
That is, in the method of producing aluminum nitride powder by reacting alumina powder and carbon in a nitrogen or ammonia atmosphere (hereinafter referred to as nitriding reaction), the alumina used has an average particle size of 2 μm or less and a purity of 99.9% or more, and the alumina is The weight ratio of carbon is 1:0.36 to 1:1, and the carbon is 0.02 to 5% by weight relative to alumina.
is used by impregnating alumina as a solution of an organic compound, and the others have an average particle size of 1 μm or less and have an ash content.
This method of producing aluminum nitride powder is characterized in that 0.2% by weight or less of carbon is mixed and used, and the organic compound is subjected to a carbonization treatment in advance and then subjected to a nitriding reaction.

本発明の最大の特徴は原料として用いるアルミ
ナ粉末を予め反応条件下にカーボンを生成する有
機化合物と溶液状態で接触させて用いる点であ
る。該有機化合物としては、反応条件下にカーボ
ンとなり、その実質的な部分はアルミナの還元に
寄与し、自らは酸化されることにより反応性生物
である窒化アルミニウム粉末中には実質的に残存
することはない。また、該有機化合物は、アルミ
ナ粉末に可及的に均一に混合、或は含浸している
ことが好ましく、そのため、溶液としてアルミナ
に接触させることが必要である。
The most important feature of the present invention is that the alumina powder used as a raw material is brought into contact with an organic compound that generates carbon under reaction conditions in advance in a solution state. The organic compound becomes carbon under the reaction conditions, a substantial part of which contributes to the reduction of alumina, and is itself oxidized so that it substantially remains in the aluminum nitride powder, which is a reactive organism. There isn't. Further, it is preferable that the organic compound is mixed or impregnated into the alumina powder as uniformly as possible, and therefore, it is necessary to bring it into contact with the alumina in the form of a solution.

一般に、本発明は、窒化アルミニウム粉末の製
造において、該有機化合物の溶液は、アルミナと
接触させた後、加熱により溶媒が除かれ有機化合
物または有機化合物により生成したカーボンが、
均一に混合付着したアルミナは、更に別途混合さ
れるカーボンを含め、全カーボンと反応し、窒化
アルミニウム粉末となる。
Generally, in the production of aluminum nitride powder, the present invention involves contacting a solution of the organic compound with alumina, and then heating to remove the solvent, so that the organic compound or the carbon produced by the organic compound is
The uniformly mixed and deposited alumina reacts with all the carbon, including the carbon that is mixed separately, to form aluminum nitride powder.

このため、予め用いられる有機化合物は、勿
論、使用する溶媒よりも高い沸点を有するもので
ある。更に好ましくは、沸点をもたず熱分解し、
炭素を生成する物質である。一般に工業的に有効
に使用される該有機化合物を具体的に例示すれば
シヨ糖、でんぷん、ポリビニルアルコール、ポリ
ビニルブチラール、ポリエチレングリコール等の
高分子有機化合物である。 またこれらの高分子
有機化合物は前記したように溶液状態で使用され
るので一般には溶媒に溶解して用いるのが好まし
い。該溶媒としては前記有機化合物を溶解しうる
ものであれば特に限定されず用いうるが一般に工
業的にはその取扱いの容易さから水:メチルアル
コール、エチルアルコール、イソプロピルアルコ
ール等のアルコール溶媒:ヘプタン、ヘキササン
等の炭化水素溶媒:アセトン、メチルエチルケト
ン等のケトン溶媒:エーテル溶媒:エステル溶媒
等を単独又は混合して用いればよい。特に、水、
アルコール溶媒、炭化水素溶媒はその取扱いの容
易さから好適に使用される。
Therefore, the organic compound used in advance naturally has a boiling point higher than that of the solvent used. More preferably, it does not have a boiling point and is thermally decomposed,
It is a substance that produces carbon. Specific examples of such organic compounds that are generally used effectively in industry include high-molecular organic compounds such as sucrose, starch, polyvinyl alcohol, polyvinyl butyral, and polyethylene glycol. Furthermore, since these high-molecular organic compounds are used in a solution state as described above, it is generally preferable to use them by dissolving them in a solvent. The solvent is not particularly limited and can be used as long as it can dissolve the organic compound, but generally from an industrial perspective water: alcohol such as methyl alcohol, ethyl alcohol, isopropyl alcohol, etc. solvent: heptane, Hydrocarbon solvents such as hexasan; ketone solvents such as acetone and methyl ethyl ketone; ether solvents; ester solvents, etc. may be used alone or in combination. In particular, water
Alcohol solvents and hydrocarbon solvents are preferably used because of their ease of handling.

前記有機化合物はアルミナ粉末とカーボンとを
窒素又はアンモニア雰囲気下で反応させる条件下
で炭化する。該炭化は有機化合物の種類によつて
異なり、加熱温度、昇温速度等が相違する。従つ
て、予め反応条件に応じた有機化合物を選定して
用いることが好ましい。
The organic compound is carbonized under conditions in which alumina powder and carbon are reacted in a nitrogen or ammonia atmosphere. The carbonization differs depending on the type of organic compound, and the heating temperature, heating rate, etc. differ. Therefore, it is preferable to select and use an organic compound in advance according to the reaction conditions.

また、アルミナに混合、付着させる有機化合物
の量は、炭化により生成するカーボン量がアルミ
ナに対して0.02〜5重量%となるように選ぶのが
好ましい。少なくとも該カーボンの量が、アルミ
ナを完全に還元するに必要な量よりも多くなるよ
うに選定すべきではない。通常、該カーボン量が
上記下限値より少ない場合はアルミナの個々の粒
子が凝集し大きな凝集粒になる場合もあるので好
ましくない。また該有機化合物に基因するカーボ
ン量が前記好ましい上限値より大きくなると反応
で生成するAlNから酸化処理でカーボンを除去
するとき原料として用いるカーボンよりも除去し
にくい傾向があるためAlN中に不純物として残
留することもありうるので、一般には多量の有機
化合物の使用をさけた方がよい。従つて本発明に
あつては、有機化合物に由来する炭素の量は、ア
ルミナに対して0.02〜5重量%の範囲となるよう
用いる。
Further, the amount of the organic compound mixed and attached to the alumina is preferably selected so that the amount of carbon generated by carbonization is 0.02 to 5% by weight based on the alumina. At least the amount of carbon should not be selected to be greater than that required to completely reduce the alumina. Generally, if the amount of carbon is less than the above lower limit, individual particles of alumina may aggregate to form large agglomerated particles, which is not preferable. Furthermore, if the amount of carbon originating from the organic compound exceeds the above-mentioned preferred upper limit, it tends to be more difficult to remove than the carbon used as a raw material when carbon is removed from the AlN produced in the reaction by oxidation treatment, so it remains as an impurity in the AlN. Therefore, it is generally better to avoid using large amounts of organic compounds. Therefore, in the present invention, the amount of carbon derived from the organic compound is used in a range of 0.02 to 5% by weight based on the alumina.

前記アルミナに予め前記有機化合物を接触させ
た後はそのまま本発明の原料として用いればよい
が、必要に応じて該有機化合物を、前記アルミナ
とカーボンとの反応条件よりゆるやかな条件下に
例えば200〜700℃の温度で一部又は全部を予め炭
化処理して用いることも有効な手段である。
After the organic compound has been brought into contact with the alumina in advance, it may be used as it is as a raw material in the present invention, but if necessary, the organic compound may be brought into contact with the alumina under conditions milder than the reaction conditions between the alumina and carbon, for example, It is also an effective means to pre-carbonize part or all of it at a temperature of 700°C.

該アルミナ粒子の表面に前記処理を施した粉末
は、前記したように一般にAl2O3を完全に還元し
てAlNとするだけの炭素量とならないように有
機化合物の量を選ぶので、該粉末にさらにカーボ
ンを加える必要がある。通常はアルミナ対全カー
ボンの重量比で1:0.36〜1:1、好ましくは
1:0.4〜1:1の範囲で混合すればよい。該原
料として使用するカーボンとしてはカーボンブラ
ツクが好適に採用される。また有機化合物と接触
させ必要に応じて乾燥した或いは更に炭化処理を
施したアルミナ粉末と上記原料として添加するカ
ーボンとの混合は乾式混合あるいは湿式混合のい
ずれの方法かが採用される。乾式、湿式いずれの
場合にも一般的に公知の装置を採用しうる。例え
ば混合装置として球状物又は棒状物を内蔵したミ
ルを使用するのが一般的であるが、ミルの内壁、
球状物又は棒状物等の材質は、得られる窒化アル
ミニウム中に焼成後においても残存する不純物成
分が混入するのを避けるために、窒化アルミニウ
ム自身あるいは高純度アルミナ例えば99.9重量%
以上とするのがよい。また混合装置の原料と接す
る面を全て合成樹脂製とするか合成樹脂でコーテ
イングとすることも好適な手段である。該合成樹
脂としては焼成温度で焼失する限り特に限定され
ず例えばポリエチレン、ポリプロピレン、ナイロ
ン、ポリエステル、ポリウレタン等が使用出来
る。この場合、合成樹脂中には安定剤として種々
の金属成分を含む場合があるので、予めチエツク
して使用するようにすべきである。
As mentioned above, the amount of organic compound is generally selected so that the amount of carbon is not enough to completely reduce Al 2 O 3 to AlN, so the powder whose surface has been subjected to the above-mentioned treatment of the alumina particles is It is necessary to add more carbon to the Usually, the weight ratio of alumina to total carbon is 1:0.36 to 1:1, preferably 1:0.4 to 1:1. Carbon black is preferably employed as the carbon used as the raw material. Further, the alumina powder that has been brought into contact with an organic compound and dried or further subjected to a carbonization treatment if necessary, and the carbon added as the raw material are mixed by either dry mixing or wet mixing. Generally known equipment can be employed for both dry and wet methods. For example, it is common to use a mill with built-in spheres or rods as a mixing device, but the inner wall of the mill,
The material of the spherical or rod-shaped objects is aluminum nitride itself or high-purity alumina, e.g. 99.9% by weight, in order to avoid contamination of the resulting aluminum nitride with impurity components that remain even after firing.
It is better to set it to the above. It is also a suitable means to make all the surfaces of the mixing device that come into contact with the raw materials made of synthetic resin or coated with synthetic resin. The synthetic resin is not particularly limited as long as it is burned out at the firing temperature, and for example, polyethylene, polypropylene, nylon, polyester, polyurethane, etc. can be used. In this case, since the synthetic resin may contain various metal components as stabilizers, it should be checked before use.

前記湿式混合で使用することができる液体媒体
は特に限定されず湿式混合溶媒として公知のもの
が使用出来る。一般に工業的には水、炭化水素、
脂肪族アルコール、又はこれらの混合物等が好適
に採用される。炭化水素は例えばリグロイン、石
油エーテル、ヘキサン、ベンゼン、トルエン等で
あり、脂肪族アルコールは例えばメタノール、エ
タノール、イソプロパノール等である。
The liquid medium that can be used in the wet mixing is not particularly limited, and any known wet mixed solvent can be used. Generally, industrially, water, hydrocarbons,
Aliphatic alcohols, mixtures thereof, and the like are preferably employed. Hydrocarbons are, for example, ligroin, petroleum ether, hexane, benzene, toluene, etc., and aliphatic alcohols are, for example, methanol, ethanol, isopropanol, etc.

本発明の他の態様としてはアルミナ粉末を有機
化合物溶液と接触させる際同時に所定のカーボン
粉末を加えて混合する方式も採用される。該方法
の場合には湿式混合が必須となり、前記の混合装
置や液体分散媒が好適に使用される。又該方法の
場合にも炭化処理によつて生成するカーボンの量
および同時に加えるカーボン粉末の量は前記態様
と同じ範囲が採用できる。該混合粉末は場合によ
つては乾燥後非酸化性の雰囲気で加熱して有機化
合物を炭化する。
In another embodiment of the present invention, a method is adopted in which a predetermined carbon powder is added and mixed at the same time when the alumina powder is brought into contact with the organic compound solution. In the case of this method, wet mixing is essential, and the above-mentioned mixing device and liquid dispersion medium are preferably used. Also in the case of this method, the same range as in the above embodiment can be adopted for the amount of carbon produced by the carbonization treatment and the amount of carbon powder added at the same time. The mixed powder is optionally dried and then heated in a non-oxidizing atmosphere to carbonize the organic compound.

本発明で用いるアルミナ粉末及びカーボン粉末
の粒子径及び純度は、良好な窒化反応を達成する
ために必要な要素であり、更に残留しがちな炭素
残留物を残さないためにも必要な要件であると同
時に得られる窒化アルミニウムの性状に影響を与
えるので一般には次ぎのような形状、性状のもの
を使用するのが好適である。例えば平均粒子径が
2μm以下で、純度が99.9重量%以上のものを使用
するのが好ましい。またカーボン粉末は一般に灰
分に含有量が0.2重量%以下好ましくは0.1重量%
以下で、平均粒子径が1μm以下のものを使用する
のが好ましい。更にまた得られる窒化アルミニウ
ム粉末を焼結して透光性の焼結体とするときは、
該窒化アルミニウム焼結体中の不純物となる他の
金属化合物例えば炭素、珪素、マンガン、鉄、ク
ロム、ニツケル、コバルト、銅、亜鉛、チタン等
の金属化合物を金属として0.3重量%以下好まし
くは0.1重量%以下にする必要があり、これらの
不純物が導入される直接の原因は原料から不可避
的に混入されるものであるので極力純度が良好な
ものを選ぶのが好ましい。
The particle size and purity of the alumina powder and carbon powder used in the present invention are necessary elements to achieve a good nitriding reaction, and are also necessary requirements to avoid leaving carbon residues that tend to remain. At the same time, it is preferable to use aluminum nitride having the following shapes and properties since it affects the properties of the aluminum nitride obtained. For example, if the average particle size is
It is preferable to use one with a diameter of 2 μm or less and a purity of 99.9% by weight or more. In addition, carbon powder generally has an ash content of 0.2% by weight or less, preferably 0.1% by weight.
In the following, it is preferable to use particles with an average particle diameter of 1 μm or less. Furthermore, when sintering the obtained aluminum nitride powder to make a translucent sintered body,
Other metal compounds that become impurities in the aluminum nitride sintered body, such as carbon, silicon, manganese, iron, chromium, nickel, cobalt, copper, zinc, titanium, etc., should be 0.3% by weight or less, preferably 0.1% by weight of the metal. % or less, and since the direct cause of introduction of these impurities is unavoidable mixing from raw materials, it is preferable to select ones with as good purity as possible.

前記処理を施したアルミナ粉末とカーボン粉末
を含む混合粉体はAlN生成反応に供される。す
なわち該混合物は通常窒素を含む雰囲気下1400〜
1800℃、好ましくは1450〜1750℃の温度で通常1
〜10時間焼成すると前記窒化アルミニウム粉末を
得ることができる。該温度が1400℃より低い温度
では窒化反応が十分完了せず目的の酸素含有量の
窒化アルミニウム粉末が得られない場合があり、
該温度が1800℃以上の温度では生成AlNの粒子
径が大きくなつたり、炭化アルミニウムが副成す
ることもあるので予め好適な条件を決定するのが
好ましい。また該焼成に際しては炉材や焼成ボー
ドなどが不純物混入の原因とならないよう十分な
材質の検討が望ましい。前記焼成の雰囲気として
は通常窒素ガスかあるいはアンモニアガスが好適
であり、通常これらの反応ガスを窒化反応が速か
に進行するに十分な量、連続的あるいは間欠的に
供給しつつ焼成を行うとよい。焼成後のAlN粉
体は生成AlNの他に未反応のカーボンを含むの
で、これを通常650〜750℃の温度で空気中あるい
は酸素中で焼成し過剰のカーボンを酸化除去する
のが好ましい。該酸化温度が高すぎると窒化アル
ミニウム粉末の表面が過剰に酸化され高純度の粉
末が得られない場合があり、また該温度が低すぎ
るとカーボンがAlN中に残留して高純度微粉末
とならない場合があるので予め適当な酸化温度と
時間を選択するとよい。以上述べた本発明の方法
によつて得られるAlN粉末は、一次粒子径がサ
ブミクロンの均一な微粉末で、粒度分布測定器に
よる、凝集粒子の平均粒子径が2μm以下且つ、
4μm以上の粒子の割合が20容量%且つ10μm以上
の凝集粒子を実質的に含まない極めて微細な均一
粉末である。このように本発明の方法によつて極
めて微細なAlN粉末が再現性よく得られる理由
について、本発明者等は次のように推察してい
る。即ち、微細なアルミナを反応条件下でカーボ
ンを生成する有機化合物と溶液状態で接触させた
後炭化処理することによつて、アルミナの個々の
粒子は完全にカーボンの被膜によつて分離されて
いるため、高温でAlNの生成反応が起こる際ア
ルミナ粒子どうしの融着とそれに伴う粗粒子化が
阻止され、結果として微細なAlN粒子が再現性
良く生成するものと考えている。本発明の方法に
よる粉砕工程を経ることなく微細なAlN粉末を
製造する技術は工業的に極めて重要である。その
大きな理由は、他の非酸化物の粉末例えば炭化ケ
イ素や窒化ケイ素などでは鉄系の材質による粉砕
により微粉化した後酸処理などによつて粉砕工程
中に混入した不純物を除去することで高純度な粉
末を得ることができるが、微粉の窒化アルミニウ
ムの場合は、水や酸で容易に加水分解されるので
これらの後処理を施すことが非常に難しい。また
もうひとつの理由は例え粉砕工程中に混入する不
純物を極力抑えたとしても、粉砕によつて生じた
AlN粒子の新しい破面は非常に活性に富み空気
中の酸素や水分と容易に反応してその純度を低下
させることである。本発明の方法によつて得られ
るAlN粉末は、粉砕工程を経ていないので空気
中でも非常に安定であり、しかも均質微粉末であ
るのでそのまま焼結用原料、サイアロン系化合物
用原料、各種添加物、などとして使用することが
可能である。以下実施例によつて本発明をより詳
細に説明するが本発明はこれらの実施例に限定さ
れるものではない。
The mixed powder containing alumina powder and carbon powder subjected to the above treatment is subjected to an AlN production reaction. That is, the mixture is usually heated under a nitrogen-containing atmosphere at a temperature of 1,400 to
Usually 1 at a temperature of 1800℃, preferably 1450-1750℃
The aluminum nitride powder can be obtained by firing for ~10 hours. If the temperature is lower than 1400°C, the nitriding reaction may not be completed sufficiently and aluminum nitride powder with the desired oxygen content may not be obtained.
If the temperature is 1800° C. or higher, the particle size of the AlN produced becomes large and aluminum carbide may be formed as a by-product, so it is preferable to determine suitable conditions in advance. Further, during the firing, it is desirable to carefully consider the materials so that the furnace material, firing board, etc. do not become a source of contamination with impurities. Nitrogen gas or ammonia gas is usually suitable as the atmosphere for the calcination, and the calcination is usually carried out while continuously or intermittently supplying these reaction gases in sufficient quantities for the nitriding reaction to proceed rapidly. good. Since the AlN powder after firing contains unreacted carbon in addition to the AlN produced, it is preferable to oxidize and remove excess carbon by firing it in air or oxygen at a temperature of usually 650 to 750°C. If the oxidation temperature is too high, the surface of the aluminum nitride powder may be excessively oxidized and high-purity powder may not be obtained; if the oxidation temperature is too low, carbon may remain in AlN and high-purity fine powder may not be obtained. Therefore, it is advisable to select an appropriate oxidation temperature and time in advance. The AlN powder obtained by the method of the present invention described above is a uniform fine powder with a submicron primary particle size, and the average particle size of aggregated particles is 2 μm or less as measured by a particle size distribution analyzer, and
It is an extremely fine, uniform powder in which the proportion of particles of 4 μm or more is 20% by volume, and there is substantially no agglomerated particles of 10 μm or more. The present inventors speculate as follows about the reason why extremely fine AlN powder can be obtained with good reproducibility by the method of the present invention. That is, by bringing fine alumina into contact in a solution state with an organic compound that generates carbon under reaction conditions and then carbonizing it, individual particles of alumina are completely separated by a carbon film. Therefore, we believe that when the AlN production reaction occurs at high temperatures, the fusion of alumina particles and the accompanying coarsening are prevented, and as a result, fine AlN particles are produced with good reproducibility. The technique of producing fine AlN powder without going through a pulverization process by the method of the present invention is extremely important industrially. The main reason for this is that other non-oxide powders, such as silicon carbide and silicon nitride, are pulverized by iron-based materials and then treated with acid to remove impurities mixed in during the pulverization process. Although a pure powder can be obtained, it is very difficult to perform these post-treatments on fine powdered aluminum nitride because it is easily hydrolyzed with water or acid. Another reason is that even if impurities mixed in during the grinding process are suppressed as much as possible, the
The new fracture surface of AlN particles is very active and easily reacts with oxygen and moisture in the air, reducing its purity. The AlN powder obtained by the method of the present invention does not undergo a pulverization process, so it is very stable even in the air, and since it is a homogeneous fine powder, it can be used as a raw material for sintering, a raw material for sialon compounds, various additives, etc. It is possible to use it as such. The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

実施例 1 重合度800のポリビニルブチラール2.5gを100c.c.
のエタノールに溶解した溶液と、純度99.99%,
平均粒子径0.6μmのアルミナ粉末10gとをポリエ
チレン製のポツトに入れ、均一に混合しながら乾
燥した。この混合粉末をアルミナ製の平皿に入れ
窒素気流中450℃の温度で5時間加熱処理をした。
得られた粉末はアルミナに対し0.7重量%の炭素
を含む粉末であつた。該粉末8gに、灰分0.08%で
平均粒子径が0.45μmのカーボンブラツク4gを加
えナイロン製ポツトとボールを用いてエタノール
を分散媒として湿式混合した。混合粉末を乾燥
後、高純度黒鉛製平皿に移し窒素ガスを供給しつ
つ1600℃の温度で6時間加熱した。反応混合物は
空気中750℃の温度で3時間加熱し、未反応のカ
ーボンを酸化除去した。この粉末のX線回析パタ
ーンはAlNのみのピークを示し、アルミナの回
析線は無かつた。またこの粉末の平均粒子径は
1.20μmであり、3μm以下の粒子が97容量%を占
めた。
Example 1 2.5 g of polyvinyl butyral with a degree of polymerization of 800 was added to 100 c.c.
solution dissolved in ethanol and purity 99.99%,
10 g of alumina powder with an average particle size of 0.6 μm was placed in a polyethylene pot, and dried while being mixed uniformly. This mixed powder was placed in a flat plate made of alumina and heat-treated at a temperature of 450° C. for 5 hours in a nitrogen stream.
The obtained powder contained 0.7% by weight of carbon based on alumina. To 8 g of the powder, 4 g of carbon black having an ash content of 0.08% and an average particle size of 0.45 μm was added and wet-mixed using a nylon pot and ball using ethanol as a dispersion medium. After drying the mixed powder, it was transferred to a flat plate made of high-purity graphite and heated at a temperature of 1600° C. for 6 hours while supplying nitrogen gas. The reaction mixture was heated in air at a temperature of 750° C. for 3 hours to oxidize and remove unreacted carbon. The X-ray diffraction pattern of this powder showed only AlN peaks and no alumina diffraction lines. Also, the average particle size of this powder is
The particle size was 1.20 μm, and particles of 3 μm or less accounted for 97% by volume.

実施例 2 実施例1で得られたAlN粉末1gを20mm径の黒
鉛ダイスに入れ100Kg/cm3,2000℃,3時間の条
件で1気圧の窒素気流中でホツトプレス焼結し
た。得られた焼結体はやや黄味を帯びた均一な白
色半透明体であり、密度は3.26g/cm3であつた。
この焼結体を0.5mmの厚みに研削研磨したものに
対する波長6μmの光の直線透過率は28%であつ
た。
Example 2 1 g of the AlN powder obtained in Example 1 was placed in a 20 mm diameter graphite die and hot press sintered at 100 kg/cm 3 at 2000° C. for 3 hours in a nitrogen stream at 1 atmosphere. The obtained sintered body was a uniform white translucent body with a slight yellowish tinge, and had a density of 3.26 g/cm 3 .
This sintered body was ground and polished to a thickness of 0.5 mm, and the linear transmittance of light with a wavelength of 6 μm was 28%.

実施例 3 可溶性でんぷん2.0gを40c.c.のエタノールに溶解
した溶液と純度99.99%,平均粒子径0.6μmのアル
ミナ粉末20gとをポリエチレン製ポツトに入れ、
実施例1と同様の方法で混合,乾燥後、炭化処理
した。得られた粉末はアルミナに対し2.1重量%
の炭素を含む粉末であつた。該粉末を用いて実施
例1と同様の手順によつて窒化アンモニウム粉末
を得た。得られた粉末のX線回析パターンは
AlNのみのピークを示した。また、この粉末の
平均粒子径は1.42μmであり、3μm以下の粒子が
92容量%を占めた。この粉末を実施例2と同様の
方法で焼結し、得られた0.5mm厚みの焼結体の光
透過率を測定したところ6μmの波長の光に対し25
%であつた。
Example 3 A solution of 2.0 g of soluble starch dissolved in 40 c.c. of ethanol and 20 g of alumina powder with a purity of 99.99% and an average particle size of 0.6 μm were placed in a polyethylene pot.
After mixing and drying, the mixture was carbonized in the same manner as in Example 1. The obtained powder is 2.1% by weight based on alumina.
It was a powder containing carbon. Ammonium nitride powder was obtained using the powder in the same manner as in Example 1. The X-ray diffraction pattern of the obtained powder is
Only AlN peak was shown. In addition, the average particle size of this powder is 1.42μm, and particles of 3μm or less are
It accounted for 92% capacity. This powder was sintered in the same manner as in Example 2, and the light transmittance of the obtained 0.5 mm thick sintered body was measured.
It was %.

実施例 3 実施例1で用いたものと同じアルミナ粉末
10g,カーボンブラツク5gにシヨ糖1.5gを加え、
エタノール40c.c.を分散媒としてナイロン製ポツト
とボールを用いて均一に混合した。混合後、スラ
リーをポリエチレン製乳ばちに移し、ポリエチレ
ン製乳棒で攪拌しつつアルコールを飛ばして乾燥
粉末を得た。この粉末を高純度黒鉛製平皿に移
し、窒素気流中で500℃に5時間保ち、次いで温
度を1650℃まで上げ5時間焼成した。次いで得ら
れた反応混合物を空気中で750℃,3時間処理し、
過剰のカーボンを除去した。得られた粉末のX線
回析パターンはAlNのみのピークを示した。ま
た、この粉末の平均粒子径は1.30μmであり3μm
以下の粒子が95%を占めた。またこの粉末を用い
て実施例2の方法と同様にして0.5mmの焼結体を
作成し、光透過率を求めたところ6μmの波長の光
に対して26%であつた。
Example 3 Same alumina powder as used in Example 1
Add 1.5g of sugar to 10g, 5g of carbon black,
40 c.c. of ethanol was used as a dispersion medium and mixed uniformly using a nylon pot and ball. After mixing, the slurry was transferred to a polyethylene mortar, and the alcohol was removed while stirring with a polyethylene pestle to obtain a dry powder. This powder was transferred to a flat plate made of high-purity graphite, kept at 500°C for 5 hours in a nitrogen stream, and then raised to 1650°C and fired for 5 hours. The resulting reaction mixture was then treated in air at 750°C for 3 hours,
Excess carbon was removed. The X-ray diffraction pattern of the obtained powder showed only AlN peaks. Also, the average particle size of this powder is 1.30μm and 3μm
The following particles accounted for 95%. A 0.5 mm sintered body was prepared using this powder in the same manner as in Example 2, and the light transmittance was determined to be 26% for light with a wavelength of 6 μm.

実施例 4 実施例3で得られた炭化処理後の2.4重量%の
炭素を含むアルミナ粉末10に灰分0.08平均粒子径
0.45μmのカーボンブラツク5gを加え、ポリエチ
レン製ポツトとボールを用いて乾式混合を行つ
た。該混合粉末を実施例1と同様の条件で反応
し、窒化アルミニウム粉末を得た。得られた粉末
のX線回析パターンはAlNのみのピークを示し
た。またこの粉末の平均粒子径は1.48μmであり
3μm以下の粒子が90容量%を占めた。またこの粉
末を用いて実施例2と同様にして0.5mm焼結体を
作成し光透過率を測定したところ6μmの波長の光
に対して22%であつた。
Example 4 The alumina powder 10 containing 2.4% by weight of carbon after carbonization obtained in Example 3 had an ash content of 0.08 average particle size.
5 g of 0.45 μm carbon black was added and dry mixing was performed using a polyethylene pot and ball. The mixed powder was reacted under the same conditions as in Example 1 to obtain aluminum nitride powder. The X-ray diffraction pattern of the obtained powder showed only AlN peaks. Also, the average particle size of this powder is 1.48μm.
Particles smaller than 3 μm accounted for 90% by volume. A 0.5 mm sintered body was prepared using this powder in the same manner as in Example 2, and the light transmittance was measured to be 22% for light with a wavelength of 6 μm.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ粉末とカーボンを窒素又はアンモニ
ア雰囲気下で反応(以下窒化反応という)させ、
窒化アルミニウム粉末を製造する方法において、
使用するアルミナは平均粒子径2μm以下で純度
99.9%以上であり、アルミナ対全カーボンの重量
比を1対0.36〜1:1の割合で用い、且つ該カー
ボンのうち、アルミナに対して0.02〜5重量%は
有機化合物の溶液としてアルミナに含浸させて用
い、その他は、平均粒子径1μm以下で、灰分0.2
重量%以下のカーボンを混合して用い、該有機化
合物は、あらかじめ炭化処理を施した後窒化反応
を行わせることを特徴とする窒化アルミニウム粉
末の製造方法。
1 Reacting alumina powder and carbon in a nitrogen or ammonia atmosphere (hereinafter referred to as nitriding reaction),
In a method of producing aluminum nitride powder,
The alumina used is pure with an average particle size of 2 μm or less
99.9% or more, the weight ratio of alumina to total carbon is 1:0.36 to 1:1, and 0.02 to 5% by weight of the carbon to the alumina is impregnated into the alumina as a solution of an organic compound. Others have an average particle size of 1 μm or less and an ash content of 0.2.
1. A method for producing aluminum nitride powder, characterized in that carbon is mixed in an amount of % by weight or less, and the organic compound is subjected to a carbonization treatment in advance and then subjected to a nitriding reaction.
JP59030350A 1984-02-22 1984-02-22 Production of aluminum nitride powder Granted JPS60176910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59030350A JPS60176910A (en) 1984-02-22 1984-02-22 Production of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030350A JPS60176910A (en) 1984-02-22 1984-02-22 Production of aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS60176910A JPS60176910A (en) 1985-09-11
JPH0362643B2 true JPH0362643B2 (en) 1991-09-26

Family

ID=12301396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030350A Granted JPS60176910A (en) 1984-02-22 1984-02-22 Production of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS60176910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548591B (en) * 2015-03-06 2016-09-11 Nat Inst Chung Shan Science & Technology An atmosphere - controlled method for the preparation of aluminum nitride powder by carbothermal reduction
TWI579231B (en) * 2016-05-20 2017-04-21 國家中山科學研究院 A method for preparing spherical aln granules

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651561B2 (en) * 1986-04-11 1994-07-06 住友電気工業株式会社 Aluminum nitride powder
KR900004488B1 (en) * 1986-12-11 1990-06-28 아사히 가세이 고오교 가부시끼가이샤 Aluminium nitride products and process for the production thereof
CA1329461C (en) * 1987-04-14 1994-05-17 Alcan International Limited Process of producing aluminum and titanium nitrides
CA1269404A (en) * 1987-11-03 1990-05-22 Mukesh K. Jain Porous membrane of sinterable refractory metal oxides or silica
US4975260A (en) * 1988-04-18 1990-12-04 Toshiba Ceramics Co., Ltd. Process for preparing metal nitride powder
US5080879A (en) * 1988-12-01 1992-01-14 Alcan International Limited Process for producing silicon carbide platelets and the platelets so produced
JPH0617214B2 (en) * 1989-12-29 1994-03-09 ナショナル サイエンス カウンシル Method for producing ultrafine aluminum nitride powder
JPH06505955A (en) * 1991-03-22 1994-07-07 ザ・ダウ・ケミカル・カンパニー Moving-bed carbonothermal synthesis method for non-oxide ceramic powders
CN105884372B (en) * 2016-04-12 2018-11-13 武汉理工大学 Organic network method synthesizes AlN ceramic powder method
CN109912309B (en) * 2019-04-01 2022-05-10 浙江工业大学 Novel mixing process for preparing aluminum nitride powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515946A (en) * 1978-07-19 1980-02-04 Toray Ind Inc Production of metal nitride fine powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515946A (en) * 1978-07-19 1980-02-04 Toray Ind Inc Production of metal nitride fine powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548591B (en) * 2015-03-06 2016-09-11 Nat Inst Chung Shan Science & Technology An atmosphere - controlled method for the preparation of aluminum nitride powder by carbothermal reduction
TWI579231B (en) * 2016-05-20 2017-04-21 國家中山科學研究院 A method for preparing spherical aln granules

Also Published As

Publication number Publication date
JPS60176910A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
CA1096408A (en) Method of producing hign density silicon carbide product
US4948761A (en) Process for making a silicon carbide composition
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPH0362643B2 (en)
JPS62241811A (en) Powder for manufacturing ceramics of metal carbide and nitride by hot carbon reduction and manufacture
Koc et al. β-SiC production by reacting silica gel with hydrocarbon gas
US4224073A (en) Active silicon carbide powder containing a boron component and process for producing the same
JPH0251863B2 (en)
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
JPH0428645B2 (en)
JPH0617214B2 (en) Method for producing ultrafine aluminum nitride powder
CN109369191B (en) Preparation method of yttrium-containing boron nitride-aluminum nitride composite powder
JPH0348123B2 (en)
JPH0454612B2 (en)
JPH0583482B2 (en)
JPH0253388B2 (en)
IE870755L (en) Silicon nitride powders for ceramics
JPH02111663A (en) Porous conductive material
JPS61132509A (en) Production of silicon carbide
JPH02271919A (en) Production of fine powder of titanium carbide
JPH0512299B2 (en)
JPH02160610A (en) Production of aluminum nitride powder
JPH02120214A (en) Production of aluminum nitride powder
WO1990003956A1 (en) Process for making a silicon carbide composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees