JPH04147950A - Sintered alloy steel excellent in machinability and corrosion resistance and its manufacture - Google Patents

Sintered alloy steel excellent in machinability and corrosion resistance and its manufacture

Info

Publication number
JPH04147950A
JPH04147950A JP27027390A JP27027390A JPH04147950A JP H04147950 A JPH04147950 A JP H04147950A JP 27027390 A JP27027390 A JP 27027390A JP 27027390 A JP27027390 A JP 27027390A JP H04147950 A JPH04147950 A JP H04147950A
Authority
JP
Japan
Prior art keywords
weight
sintered
corrosion resistance
alloy steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27027390A
Other languages
Japanese (ja)
Inventor
Keiichi Maruta
慶一 丸田
Sadakimi Kiyota
禎公 清田
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27027390A priority Critical patent/JPH04147950A/en
Publication of JPH04147950A publication Critical patent/JPH04147950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered alloy steel having high density and contg. an optimum amt. of ferritic phase, in an austenitic stainless alloy steel by specifying the componental amounts of Cr, Ni, C or the like, and combining vacuum sintering and a nonoxidizing atmosphere. CONSTITUTION:This sintered alloy steel is a one contg., by weight, 15 to 30% Cr, 7 to 25% Ni, <=0.06% C and <=0.03% 0, in which the ratio of an ferritic phase in the sintered body is regulated to, by volume, 0.5 to 25% and the density of the sintered body is regulated to >=92%. For manufacturing the above alloy, steel powder contg. Cr and Ni by the above amounts and having <=15mu average grain diameter is mixed with a binder; this mixture is compacted; after that, the binder in the green compact is heated away under the reduced pressure or in a nonoxidizing atmosphere; and the molar ratio of C/O in the green compact is regulated to 0.3 to 3. After that, the green compact is sintered at <=1350 deg.C under the reduced pressure of <=30Torr and is furthermore sintered in a nonoxidizing atmosphere.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、粉末冶金法によって製造される被削性および
耐食性に優れた焼結合金鋼およびその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a sintered alloy steel having excellent machinability and corrosion resistance manufactured by a powder metallurgy method and a method for manufacturing the same.

〈従来の技術〉 近年、粉末冶金による焼結部品の適用分野は、著しい伸
びを示している。 その中でも焼結ステンレス鋼はその
需要が増大し、複雑な形状の部品への要求が高まってき
ている。 形状の複雑さが増すにつれて焼結後の後加工
が必須となり、工程的にも重要になっている。 しかし
、ステンレス鋼は加工が困難であり、特に耐食性に優れ
ているオーステナイト系ステンレスは一般にねばく、ま
た加工硬化が顕著であるために工具の摩耗が著しく被削
性が劣悪であることが問題である。 さらに鋼粉の焼結
体では内部に多数の空孔が存在するために、被削性が悪
いとともに耐食性も低下する。
<Prior Art> In recent years, the field of application of sintered parts using powder metallurgy has shown remarkable growth. Among these, the demand for sintered stainless steel is increasing, and the demand for parts with complex shapes is increasing. As the complexity of the shape increases, post-processing after sintering becomes essential and becomes more important from a process standpoint. However, stainless steel is difficult to machine, and austenitic stainless steel, which has excellent corrosion resistance, is generally sticky and has significant work hardening, resulting in significant tool wear and poor machinability. be. Furthermore, since a sintered body of steel powder has a large number of pores inside, machinability is poor and corrosion resistance is also reduced.

ステンレス鋼の被削性を向上させるために改良されたA
l5I303という快削ステンレス鋼があるが、この材
料は耐食性が著しく低下してしまう、 このように耐食
性と被削性は相反するものであり、この両者に優れた材
料が望まれている。
Improved A to improve machinability of stainless steel
There is a free-cutting stainless steel called 15I303, but this material has significantly reduced corrosion resistance.Corrosion resistance and machinability are contradictory, so a material that is excellent in both is desired.

焼結体の場合は、たとえば、特公昭58−52001号
、特公昭59−25002号にのべられているような快
削性ステンレス鋼粉、または特公昭54−28818号
、特公昭55−14862号に記されている焼結合金が
開発されている。 この前者の鋼粉はS、Se等の成分
を混入し、マトリックス中にM n S e、MnSを
生成させて被削性を向上させようとするものであり、後
者は焼結体の空孔な切り屑破砕性に利用し焼結体の密度
をある程度まで下げることで被削性の向上を狙ったもの
である。
In the case of a sintered body, for example, free-cutting stainless steel powder as described in Japanese Patent Publication No. 58-52001 and Japanese Patent Publication No. 59-25002, or Japanese Patent Publication No. 54-28818 and Japanese Patent Publication No. 55-14862 are used. The sintered alloy mentioned in this issue has been developed. The former type of steel powder is intended to improve machinability by mixing components such as S and Se to generate MnSe and MnS in the matrix, while the latter is intended to improve machinability by mixing components such as S and Se. The aim is to improve machinability by reducing the density of the sintered body to a certain extent by utilizing the chip crushability.

しかし、MnSeやMnSなどの非金属介在物は人工汗
の環境下で溶出し耐食性を低下させる。 また、焼結体
中の空孔は耐食性を低下させるばかりでなく、部材の熱
伝導率が減少することで切削時に発生する熱が工具近傍
から逃げず、その結果工具摩耗を早めることになる。
However, nonmetallic inclusions such as MnSe and MnS are eluted in an environment of artificial sweat and reduce corrosion resistance. In addition, pores in the sintered body not only reduce corrosion resistance, but also reduce the thermal conductivity of the member, preventing heat generated during cutting from escaping from the vicinity of the tool, resulting in faster tool wear.

〈発明が解決しようとする課題〉 本発明の目的は、ステンレス焼結体の耐食性を低下させ
ることなく被削性を向上させようとするものである。
<Problems to be Solved by the Invention> An object of the present invention is to improve the machinability of a stainless steel sintered body without reducing its corrosion resistance.

具体的には、オーステナイト系ステンレスにフェライト
相を適正な割合だけ含む2相ステンレスで、かつ焼結体
密度を92%以上有する被削性および耐食性に優れた焼
結合金鋼およびその製造方法を提供する。
Specifically, we provide a sintered alloy steel that is a two-phase stainless steel that contains an appropriate proportion of ferrite phase in austenitic stainless steel, has a sintered body density of 92% or more, and has excellent machinability and corrosion resistance, and a method for producing the same. do.

〈課題を解決するための手段〉 本発明者らは種々の検討を重ねた結果、次のような結論
にいたった。 すなわち、Cr。
<Means for Solving the Problems> As a result of various studies, the present inventors came to the following conclusion. That is, Cr.

Ni、Mo等の基本成分をある割合で含有し、平均粒径
を15μm以下としたものを原料粉末とし、これを成形
、脱脂した後、真空焼結と非酸化性雰囲気とを組み合わ
せることで、焼結体密度を92%以上とすることができ
、焼結体中にフェライト相を適正な割合生成させること
で、耐食性の低下を防ぎつつ被削性を著しく向上させる
ことを見出した。
A raw material powder that contains basic components such as Ni and Mo in a certain proportion and has an average particle size of 15 μm or less is molded and degreased, and then vacuum sintering and a non-oxidizing atmosphere are combined. It has been found that the density of the sintered body can be increased to 92% or more, and that by generating an appropriate proportion of ferrite phase in the sintered body, machinability can be significantly improved while preventing a decrease in corrosion resistance.

すなわち、本発明の第1の態様によれば、オーステナイ
ト系焼結ステンレス合金鋼であって、Cr:15〜30
重量%、Niミニフル2重量%、C:0.06重量%以
下、および0:0.3重量%以下をそれぞれ含有し、該
焼結体中のフェライト相が0.5〜25体積%で、かつ
焼結体密度が92%以上であることを特徴とする被削性
および耐食性に優れた焼結合金鋼が提供される。
That is, according to the first aspect of the present invention, the austenitic sintered stainless steel alloy has Cr: 15 to 30.
% by weight, Ni Miniful 2% by weight, C: 0.06% by weight or less, and 0:0.3% by weight or less, and the ferrite phase in the sintered body is 0.5 to 25% by volume, A sintered alloy steel having excellent machinability and corrosion resistance, and having a sintered body density of 92% or more, is provided.

また、本発明の第2の態様によれば、オーステナイト系
焼結ステンレス合金鋼であって、Cr:15〜30重量
%、Niミニフル2重量%、Mo:0.5〜5重量%、
C:0.Q6重量%以下、およびO:0.3重量%以下
であり、焼結体中のフェライト相が0.5〜25体積%
で、かつ焼結体密度が92%以上であることを特徴とす
る被削性および耐食性に優れた焼結合金鋼が提供される
Further, according to the second aspect of the present invention, the austenitic sintered stainless steel alloy steel includes Cr: 15 to 30% by weight, Ni minifull 2% by weight, Mo: 0.5 to 5% by weight,
C: 0. Q is 6% by weight or less, O: 0.3% by weight or less, and the ferrite phase in the sintered body is 0.5 to 25% by volume.
Provided is a sintered alloy steel having excellent machinability and corrosion resistance, and having a sintered body density of 92% or more.

ここで、さらに、S:0.02〜0.30重量%、Se
 : 0.01〜0.30重量%、およびTe:0.0
1〜0.30重量%のうち1種または2種以上を含んで
いてもよい。
Here, S: 0.02 to 0.30% by weight, Se
: 0.01 to 0.30% by weight, and Te: 0.0
It may contain one or more of 1 to 0.30% by weight.

さらに、本発明の第3の態様によればCr:15〜30
重量%、およびNiミニフル2重量%を含み、平均粒径
15μm以下の鋼粉を用い、これに結合剤を添加混合し
て成形した後、該成形体中の結合剤を減圧下または非酸
化性雰囲気中で加熱して除去し、成形体中のC/Oモル
比を0.3〜3に調整し、その後1350’C以下、圧
力30torr以下の減圧下で焼結し、さらに非酸化性
雰囲気下で焼結することを特徴とする被削性および耐食
性に優れた焼結合金銅の製造方法が提供される。
Furthermore, according to the third aspect of the present invention, Cr: 15 to 30
% by weight, and 2% by weight of Ni Miniful, and has an average particle size of 15 μm or less. After adding and mixing a binder to this and molding, the binder in the molded body is removed under reduced pressure or in a non-oxidizing state. The molded body is removed by heating in an atmosphere to adjust the C/O molar ratio in the compact to 0.3 to 3, and then sintered under reduced pressure of 1350'C or less and a pressure of 30 torr or less, and then heated in a non-oxidizing atmosphere. Provided is a method for producing a sintered copper alloy having excellent machinability and corrosion resistance, which is characterized by sintering the copper alloy at a lower temperature.

さらに、本発明の第4の態様によれば、Cr:15〜3
0重量%、Niミニフル2重量%、およびMo:0.5
〜5重量%を含み、平均粒径15μm以下の鋼粉を用い
、これに結合剤を添加混合して成形した後、該成形体中
の結合剤を減圧下または非酸化性雰囲気中で加熱して除
去し、成形体中のC/Oモル比を0.3〜3に調整し、
その後1350℃以下、圧力30torr以下の減圧下
で焼結し、さらに非酸化性雰囲気下で焼結することを特
徴とする被削性および耐食性に優れた焼結合金鋼の製造
方法が提供される。
Furthermore, according to the fourth aspect of the present invention, Cr: 15-3
0% by weight, Ni Miniful 2% by weight, and Mo: 0.5
Using steel powder containing ~5% by weight and having an average particle size of 15 μm or less, a binder is added and mixed and molded, and then the binder in the molded product is heated under reduced pressure or in a non-oxidizing atmosphere. to adjust the C/O molar ratio in the molded body to 0.3 to 3,
Provided is a method for producing a sintered alloy steel with excellent machinability and corrosion resistance, which is then sintered under reduced pressure of 1350° C. or less and a pressure of 30 torr or less, and further sintered in a non-oxidizing atmosphere. .

ここで、さらに、S:0.02〜0.30重量%、Se
 : 0.01〜0.30重量%、およびTe:O,O
f 〜0.30重量%のうち1種または2種以上を含ん
でいてもよい。
Here, S: 0.02 to 0.30% by weight, Se
: 0.01 to 0.30% by weight, and Te:O,O
One or more of f may be included in an amount of 0.30% by weight.

C/Oモル比を0.3〜3に調整するに際し、湿潤水素
下または大気中で熱処理するのが好ましい。
When adjusting the C/O molar ratio to 0.3 to 3, heat treatment is preferably performed under wet hydrogen or in the atmosphere.

以下に本発明をさらに詳細に説明する。 まず、上述し
たように、本発明においてCr。
The present invention will be explained in more detail below. First, as mentioned above, in the present invention, Cr.

Ni、Mo、C,Oの組成および量を規定したのは、被
削性および耐食性に太き(影響する元素であると考えら
れるからである。
The compositions and amounts of Ni, Mo, C, and O were specified because they are considered to be elements that significantly affect machinability and corrosion resistance.

Cr:15〜30重量% Cr含有量が高い程、耐食性は向上する。Cr: 15-30% by weight The higher the Cr content, the better the corrosion resistance.

下限値を15重量%としたのは、これ未満では充分な耐
食性が得られず、また、適正なオーステナイト相および
フェライト相の2相組織にならない。 また30重量%
を越えて加えるとフェライト相が適正な範囲を越えて多
量に発生し部材自身が脆化する。 よって、上記の範囲
と規定した。
The lower limit is set at 15% by weight because if it is less than this, sufficient corrosion resistance cannot be obtained and an appropriate two-phase structure of austenite phase and ferrite phase cannot be obtained. Also 30% by weight
If it is added in excess of this amount, a large amount of ferrite phase will be generated beyond the appropriate range, and the member itself will become brittle. Therefore, the above range was defined.

Niミニフル2重量% Niはオーステナイト相の生成に最も有効な元素であり
、焼結体耐食性を向上させる。 7重量%未満ではフェ
ライト相が多くなり過ぎて耐食性が低下し、25重量%
を越えて加えると逆にフェライト相が無くなり被削性が
低下する、 有効な2相ステンレス組織とし、被削性お
よび耐食性を向上させるために上記の範囲と規定した。
Ni Miniful 2% by weight Ni is the most effective element for forming the austenite phase and improves the corrosion resistance of the sintered body. If it is less than 7% by weight, the ferrite phase becomes too large and the corrosion resistance decreases;
If added in excess of this amount, the ferrite phase disappears and machinability deteriorates.The above range was defined in order to create an effective two-phase stainless steel structure and improve machinability and corrosion resistance.

C:0.06重量% Cは低い程、耐食性が向上するのは一般に知られている
。  0.06重量%を越えて含有すると、焼結体中に
Crの炭化物が生成しCr欠乏相ができて耐食性が極端
に低下する。 また焼結中に液相が発生し空孔が粗大化
することもある。 よって上記範囲とした。
C: 0.06% by weight It is generally known that the lower the C content, the better the corrosion resistance. If the content exceeds 0.06% by weight, Cr carbides will form in the sintered body, creating a Cr-deficient phase, resulting in an extremely low corrosion resistance. Additionally, a liquid phase may be generated during sintering, causing the pores to become coarse. Therefore, the above range was set.

0:0.3重量%以下 鋼粉表面に酸化物の層が残っていると、焼結を阻害する
ことは知られている。 0は低い程焼結体の緻密化は進
行するが、0.3重量%を越えて残っていると焼結が進
行せず所定の密度が達成できず、その結果耐食性、被削
性ともに低下する。 よって上記範囲とした。
0:0.3% by weight or less It is known that sintering is inhibited if an oxide layer remains on the surface of the steel powder. The lower the value of 0, the more densification of the sintered body progresses, but if more than 0.3% by weight remains, sintering will not proceed and the desired density will not be achieved, resulting in a decrease in both corrosion resistance and machinability. do. Therefore, the above range was set.

Mo二0.5〜5重量% MOは耐食性向上に最も有効な元素である。Mo2 0.5-5% by weight MO is the most effective element for improving corrosion resistance.

そこで、Moを上記した成分Cr、Ni。Therefore, Mo is replaced by the above-mentioned components Cr and Ni.

C90に加える場合、5重量%の上限を越えて含有した
場合は部材の脆化が著しく、よって上記範囲と規定した
When added to C90, if the content exceeds the upper limit of 5% by weight, the component becomes extremely brittle, so the above range is defined.

S : 0.02〜0.30重量%、Se+0.01〜
0.30重量%、Te:0.01〜0.30重量%のう
ち1種または2種以上これらの元素は快削成分であり、
焼結体の被削性を高める効果がある。 そこで上記した
成分に必要に応じて付加する場合、過度の添加は耐食性
を低下させ、鋼粉の圧縮性を阻害したりするため、添加
成分数および添加量を上記のように規定した。
S: 0.02~0.30% by weight, Se+0.01~
0.30% by weight, Te: one or more of 0.01 to 0.30% by weight These elements are free-cutting components,
It has the effect of improving the machinability of the sintered body. Therefore, when adding to the above-mentioned components as necessary, the number and amount of added components were specified as described above, since excessive addition lowers the corrosion resistance and inhibits the compressibility of the steel powder.

フェライト相は脆い組織であるが、焼結体中の粒界に生
成し切削加工する際に切り屑破砕性が助長され、被削性
を向上させる効果がある。
Although the ferrite phase is a brittle structure, it is generated at the grain boundaries in the sintered body, and during cutting, it promotes chip crushability and has the effect of improving machinability.

ただし0.5体積%未満であると被削性に対する効果が
無(、逆に25体積%を越えた場合には被削性に対する
効果は変わらないが焼結体が脆くなりすぎ、さらに耐食
性が急激に低下するため、フェライト量は上記範囲に規
定した。
However, if it is less than 0.5% by volume, there is no effect on machinability (on the contrary, if it exceeds 25% by volume, the effect on machinability remains the same, but the sintered body becomes too brittle and the corrosion resistance is reduced. Since the amount of ferrite decreases rapidly, the amount of ferrite is specified within the above range.

焼結体密度比は耐食性および被削性に直接影響を及ぼす
因子である。 密度比が92%未満の焼結体中には気孔
が多数残っており、しかも閉塞化していす外部と通じて
いるので焼結体の内部まで腐食環境にさらされることに
なり耐食性が著しく低下する。 また、空孔が残ってい
ると焼結体の熱伝導率が低下するため、切削加工時に工
具近傍に熱がたまり、その結果工具摩耗が促進する。 
従って密度比の下限を92%とした。
The sintered compact density ratio is a factor that directly affects corrosion resistance and machinability. Many pores remain in the sintered body with a density ratio of less than 92%, and since they are closed and communicate with the outside of the chair, the inside of the sintered body is exposed to the corrosive environment, resulting in a significant decrease in corrosion resistance. . Further, if pores remain, the thermal conductivity of the sintered body decreases, so heat accumulates near the tool during cutting, resulting in accelerated tool wear.
Therefore, the lower limit of the density ratio was set to 92%.

上述したような組成および特性を有する焼結合金鋼を製
造する方法につき以下に説明する。
A method for manufacturing a sintered alloy steel having the composition and properties as described above will be explained below.

まず、上記組成の原料粉を用意する。 このとき、原料
粉の平均粒径は焼結体の密度を大きく左右する。 微粉
を用いる程焼結が進行し密度が上昇する。 原料粉の平
均粒径が15%m以上の粗粉を使用した場合、焼結体密
度比は92%を越えず焼結体内部の空孔が粗大で、要求
される耐食性および被削性が得られない。
First, raw material powder having the above composition is prepared. At this time, the average particle size of the raw material powder greatly influences the density of the sintered body. The finer the powder is used, the more the sintering progresses and the density increases. When coarse powder with an average grain size of 15% or more is used, the density ratio of the sintered body does not exceed 92%, and the pores inside the sintered body are coarse, resulting in insufficient corrosion resistance and machinability. I can't get it.

従って、原料粉の平均粒径を15μm以下と規定した。Therefore, the average particle size of the raw material powder was defined as 15 μm or less.

使用する鋼粉(原料粉)の平均粒径が小さいため鋼粉の
みでは成形が困難であり、また成形したとしても成形体
に割れが生じたり、金型を傷める等の問題がある。 そ
こで鋼粉に結合剤を混合して成形をおこなう、 結合剤
としては、一般に用いられているワックス、樹脂または
これらの混合物等を用いても成形は可能である。 結合
剤の添加量は成形方法によって異なる。 成形方法とし
ては射出成形、押出成形、金型を用いたプレス成形のい
ずれでも良いが、たとえば射出成形では結合剤は/O〜
15重量%必要であり、金型成形では0.5〜2重量%
である。
Since the average particle size of the steel powder (raw material powder) used is small, it is difficult to mold with steel powder alone, and even if molded, there are problems such as cracks in the molded product and damage to the mold. Therefore, molding is performed by mixing a binder with steel powder. Molding is also possible using commonly used waxes, resins, or mixtures thereof as the binder. The amount of binder added varies depending on the molding method. The molding method may be injection molding, extrusion molding, or press molding using a mold. For example, in injection molding, the binder is /O ~
15% by weight is required, and 0.5-2% by weight for mold molding.
It is.

成形後、結合剤を除去するために減圧下または非酸化性
雰囲気中で加熱する。 加熱温度および昇温速度は結合
剤の分解、蒸発する温度により決定される。
After shaping, heat under reduced pressure or in a non-oxidizing atmosphere to remove the binder. The heating temperature and heating rate are determined by the temperature at which the binder decomposes and evaporates.

結合剤を除去した後、C/Oモル比が所定の範囲内に入
っているかいないかを確認し、入っていなければC/O
調整をおこないC/Oモル比を適正値に調整する。 C
/Oモル比が0.3〜3の範囲に入っていない場合、焼
結後のC90の量が前述した値にならず、その結果、耐
食性、被削性ともに低下する。 そのため、焼結前のC
/Oモル比を前記の通り規定する。 C/Oモル比の調
整は脱脂体を湿潤水素または大気中で加熱することによ
っておこなわれる。
After removing the binder, check whether the C/O molar ratio is within the specified range or not.
Adjust the C/O molar ratio to an appropriate value. C
/O molar ratio is not within the range of 0.3 to 3, the amount of C90 after sintering will not reach the above-mentioned value, and as a result, both corrosion resistance and machinability will decrease. Therefore, C before sintering
/O molar ratio is defined as above. The C/O molar ratio is adjusted by heating the degreased body in wet hydrogen or air.

その後、焼結をおこなう。 その際、1350℃以下の
温度で30torr以下の真空中で焼結し、その後、非
酸化性雰囲気中で焼結することで密度比92%以上の焼
結体を得ることができる。
After that, sintering is performed. At that time, a sintered body having a density ratio of 92% or more can be obtained by sintering in a vacuum of 30 torr or less at a temperature of 1350° C. or less, and then sintering in a non-oxidizing atmosphere.

焼結の前段ではCrの還元が目的である。The purpose of the first stage of sintering is to reduce Cr.

しかし、1350℃を越えた温度では焼結体表面よりC
rが過度に蒸発し過ぎて耐食性が劣化するため、温度の
上限を1350℃とした。
However, at temperatures exceeding 1350°C, C
Since r evaporates too much and corrosion resistance deteriorates, the upper limit of the temperature was set at 1350°C.

Cr酸化物の還元には減圧下が適している。Reduced pressure is suitable for reducing Cr oxide.

しかし、30torrを越えるとCr酸化物の還元が進
行しにくいため、上限を30torrと規定した。
However, if the pressure exceeds 30 torr, the reduction of Cr oxide is difficult to proceed, so the upper limit was set at 30 torr.

焼結の後段では焼結体の緻密化および合金元素の均一化
が目的である。 雰囲気を非酸化性としたのは高温下で
のCrの蒸発を抑制するためであり、Ar、He、N2
などの不活性ガスや、H2、Co、CH4等の還元ガス
、または燃焼排ガスを用いる。
The purpose of the subsequent stage of sintering is to densify the sintered body and homogenize the alloying elements. The reason why the atmosphere was non-oxidizing was to suppress the evaporation of Cr at high temperatures, and Ar, He, N2
An inert gas such as, a reducing gas such as H2, Co, CH4, or combustion exhaust gas is used.

〈実施例〉 以下、本発明を実施例に従って具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained according to examples.

(実施例1) Cr、Ni、Mo合金元素の添加量の影響を調べるため
に、表1に組成を示す鋼粉(残部は不可避的不純物およ
びFe)を高圧水アトマイズによって製造した。 粉末
の平均粒径を同表中に示すが、15μm以下となってい
る。 これらの鋼粉に結合剤(熱可塑性樹脂、ポリマー
およびパラフィン)を/O〜15重量%の範囲で加え、
混練してコンパウンドを作製した。
(Example 1) In order to examine the influence of the amounts of Cr, Ni, and Mo alloying elements added, steel powder having the composition shown in Table 1 (the remainder being unavoidable impurities and Fe) was produced by high-pressure water atomization. The average particle size of the powder is shown in the same table and is 15 μm or less. A binder (thermoplastic resin, polymer and paraffin) is added to these steel powders in a range of /O to 15% by weight,
A compound was prepared by kneading.

このコンパウンドを用いて射出成形をおこない、シャル
ピー試験片を成形した。 結合剤の除去は窒素雰囲気中
/O℃/hの昇温速度で600℃まで加熱しておこなっ
た。 結合剤除去の後、C/Oモル比が0.5〜1の範
囲であることを確認して、O,1torr以下の真空中
で1150℃で60m1n焼結し、引き続いてAr雰囲
気中で1350℃で120m1n焼結し供試材を製造し
た。
Injection molding was performed using this compound to form Charpy test pieces. The binder was removed by heating to 600° C. in a nitrogen atmosphere at a heating rate of 0° C./h. After removing the binder, confirming that the C/O molar ratio is in the range of 0.5 to 1, sintering is performed for 60ml at 1150°C in a vacuum of O,1torr or less, and then sintered at 1350°C in an Ar atmosphere. A sample material was produced by sintering 120 ml at ℃.

この焼結体を用いて耐食性および被削性の評価をおこな
った。
Corrosion resistance and machinability were evaluated using this sintered body.

(1)耐食性 耐食性はシャルピー試験片を各鋼種/O個ずつ5%Na
C1水溶液中に温度50℃で24h保持し試験片全量に
発錆が認められない場合を良好、その中の1個にでも錆
が出た場合は発錆として評価した。
(1) Corrosion resistance Corrosion resistance is determined by measuring Charpy test pieces with 5% Na for each steel type.
The specimen was maintained in a C1 aqueous solution at a temperature of 50° C. for 24 hours, and if no rust was observed in all of the specimens, it was evaluated as good, and if rust appeared in even one of the specimens, it was evaluated as rusted.

(2)切削性 切削性試験はシャルピー試験片に1mmφドリル(ハイ
ス製)による穴明は加工をおこない、ドリルが使用不能
になり破断するまでの八個数で被削性を評価した。
(2) Machinability In the machinability test, holes were drilled in a Charpy test piece using a 1 mmφ drill (made of high-speed steel), and the machinability was evaluated based on the number of eight pieces until the drill became unusable and broke.

(3)フェライト量 焼結体中のフェライト量はX線回折によって定量化した
(3) Amount of ferrite The amount of ferrite in the sintered body was quantified by X-ray diffraction.

表2に各鋼種の実験結果を示す。 各焼結体ともに密度
およびC1O量は適正値が得られている。 発明例1〜
4および比較例1〜4はCr量をかえたもの、発明例5
〜8および比較例5〜7はNi量をかえたもの、発明例
9〜11および比較例8,9はMo量をかえたものであ
る。 Cr、Ni、Moが本発明の範囲内であ□るもの
は被削性および耐食性ともに良好な結果を示す。 しか
し比較例1はCr、フェライト量が少なく被削性、耐食
性ともに悪(、比較例2はフェライト量は適正な範囲で
あるが、Crが少ないために耐食性が悪い。 逆に比較
例3.4はCr、フェライト量が高すぎるために耐食性
が低下している。 Ni量についても比較例5は少なす
ぎて耐食性が悪く、比較例6.7は高すぎるために有効
な2相組織ができず被削性が急激に悪くなる。 Moは
添加しすぎる(比較例8.9)とフェライト相が多くな
り耐食性が低下する。
Table 2 shows the experimental results for each steel type. Appropriate values were obtained for the density and C1O content of each sintered body. Invention example 1~
4 and Comparative Examples 1 to 4 have different amounts of Cr, Invention Example 5
-8 and Comparative Examples 5-7 have different amounts of Ni, and Inventive Examples 9-11 and Comparative Examples 8 and 9 have different amounts of Mo. Those in which Cr, Ni, and Mo are within the range of the present invention show good results in both machinability and corrosion resistance. However, Comparative Example 1 has a low amount of Cr and ferrite, resulting in poor machinability and corrosion resistance (Comparative Example 2 has a ferrite amount within an appropriate range, but has poor corrosion resistance due to a small amount of Cr. On the other hand, Comparative Example 3.4) The corrosion resistance is reduced because the amount of Cr and ferrite is too high.The amount of Ni is also too low in Comparative Example 5, resulting in poor corrosion resistance, and the amount of Ni in Comparative Examples 6 and 7 is too high, making it impossible to form an effective two-phase structure. Machinability deteriorates rapidly. If Mo is added too much (Comparative Example 8.9), the ferrite phase increases and corrosion resistance decreases.

更にMoを添加しない系においても、Cr。Furthermore, even in systems where Mo is not added, Cr.

Ni添加量の効果については同様なことがいえる。The same can be said about the effect of the amount of Ni added.

(実施例2) ここでは、同じ組成における焼結体中のフェライト量の
影響について述べる。 Cr=26.2wt%、N1=
15.1wt%、M o =3.5wt%であるアトマ
イズ鋼粉を用いて実施例1と同じようにしてシャルピー
試験片を製造した。 c、olおよび密度が適性値であ
ることを確認して、フェライト量を変えるためにAr雰
囲気中で1/O0〜1300℃の温度で20分間の容体
化処理を施し、表3に示すフェライト量の試験片を製造
し、被削性および耐食性を評価した。 同表中に実験結
果を示す。
(Example 2) Here, the influence of the amount of ferrite in the sintered body with the same composition will be described. Cr=26.2wt%, N1=
A Charpy test piece was produced in the same manner as in Example 1 using atomized steel powder having a content of 15.1 wt% and M o =3.5 wt%. After confirming that c, ol, and density were appropriate values, we performed a capacitive treatment for 20 minutes at a temperature of 1/O0 to 1300°C in an Ar atmosphere to change the amount of ferrite, and the amount of ferrite shown in Table 3 was obtained. Test pieces were manufactured and their machinability and corrosion resistance were evaluated. The experimental results are shown in the same table.

耐食性はすべて良好であるが、被削性はフェライト量が
減少する程低下し、フェライト量が0.5vo1%未満
(比較例14)になると急激に悪化している。
Although the corrosion resistance is good in all cases, the machinability decreases as the amount of ferrite decreases, and rapidly deteriorates when the amount of ferrite becomes less than 0.5 vol% (Comparative Example 14).

(実施例3) 次に、鋼粉の平均粒径の影響について調べた。 表4に
示すように平均粒径が15μm以下のものと20μmを
越えるものと2種類製造し、この鋼粉を用いて実施例1
と同じようにして試験片を製造し、被削性および耐食性
を評価した。 実験結果を表5に示す。 平均粒径が1
5μm以下のものは焼結体密度比も92%を越えており
、被削性および耐食性も良好である。 しかし、平均粒
径が20μmを越えたものでは焼結体密度比が92%を
達成できず、耐食性、被削性ともに急激に低下している
(Example 3) Next, the influence of the average particle size of steel powder was investigated. As shown in Table 4, two types of steel powder were manufactured, one with an average particle size of 15 μm or less and one with an average particle size of more than 20 μm, and using this steel powder, Example 1
Test pieces were manufactured in the same manner as described above, and machinability and corrosion resistance were evaluated. The experimental results are shown in Table 5. Average particle size is 1
The sintered body density ratio of 5 μm or less is over 92%, and the machinability and corrosion resistance are also good. However, when the average grain size exceeds 20 μm, the sintered body density ratio cannot reach 92%, and both corrosion resistance and machinability are sharply decreased.

(実施例4) 次に、焼結条件の影響について述べる。(Example 4) Next, we will discuss the influence of sintering conditions.

表4(発明例21)に示す15μm以下の鋼粉を用いて
、実施例1と同じようにして成形、脱脂をおこなった。
Molding and degreasing were performed in the same manner as in Example 1 using steel powder of 15 μm or less shown in Table 4 (Invention Example 21).

 焼結は■1150’Cx 1 h (/O−’tor
r) −+ 1350℃X2h(Ar)   0135
0℃X2h(0,1torr) 、■1350℃X 2
 h (/O0torr)、■1350℃×2h(水素
中、露点−40℃)の4条件で実施した。 実験結果を
表6に示す。 条件■のみが適正なC1O値が得られ特
性も良好であり、他の条件ではC/Oが適正値とならず
耐食性が低下している。
Sintering is ■1150'Cx 1 h (/O-'tor
r) −+ 1350℃×2h(Ar) 0135
0℃×2h (0.1torr),■1350℃×2
The test was carried out under four conditions: h (/O0 torr), (1) 1350°C x 2h (in hydrogen, dew point -40°C). The experimental results are shown in Table 6. Only under condition (2), an appropriate C1O value was obtained and the properties were good; under other conditions, C/O did not reach an appropriate value and the corrosion resistance deteriorated.

(実施例5) 次に、C/O調整の効果について述べる。(Example 5) Next, the effect of C/O adjustment will be described.

表7に示すC量の高い鋼粉を用いて、実施例1と同じよ
うにして試験片を成形、脱脂をおこなった。 この段階
でのC/Oモル比は3.8である。 次にこの中の一部
の試験片について、■湿潤水素中450℃で/O L′
Ii n保持(発明例23) ■大気中350℃で/O
m i n保持(発明例24)、の2条件でC/′0モ
ル比を各々0.6.0.7に調整した。 その後−C/
’ O調整しないもの(比較例19)を含め、実施例゛
と同じ条件で焼結し、被削性および耐食性の評価をおこ
なった。 実験結果を表8に示す。 r/O調整したも
のは適正なC9O値が得られ特性も良好であるが、C/
O調整しないものはC+ O値が適正でな(耐食性が急
激に低下している。
Test pieces were molded and degreased in the same manner as in Example 1 using steel powder with a high C content shown in Table 7. The C/O molar ratio at this stage is 3.8. Next, some of the test pieces were tested at 450℃ in wet hydrogen /O L'
Holding Ii n (Invention Example 23) ■/O at 350°C in the atmosphere
The C/'0 molar ratio was adjusted to 0.6 and 0.7 under two conditions: maintaining min (invention example 24). Afterwards -C/
The samples, including one without O adjustment (Comparative Example 19), were sintered under the same conditions as in Example 2, and the machinability and corrosion resistance were evaluated. The experimental results are shown in Table 8. Those with r/O adjustment can obtain appropriate C9O values and have good characteristics, but C/O
For those without O adjustment, the C+O value is not appropriate (corrosion resistance is rapidly decreasing).

(実施例6) ここでは、S、SeおよびTeなどの快削性元素添加の
効果について述べる。 表9に示すようにS、Seおよ
びTeを単独または複合添加した鋼粉を水アトマイズに
よって噴霧製造した。 この鋼粉を用いて、実施例1と
同じように成形、脱脂および焼結をおこない、耐食性と
被削性を評価した。 表/Oに実験結果を示す。 快削
性元素を添加することで、被削性の一層の向上が図れる
ことがわかる。 ただし、比較例20のように添加しす
ぎると耐食性を低下させることになる。
(Example 6) Here, the effect of adding free-machining elements such as S, Se, and Te will be described. As shown in Table 9, steel powder to which S, Se, and Te were added singly or in combination was produced by spraying by water atomization. Using this steel powder, molding, degreasing, and sintering were performed in the same manner as in Example 1, and the corrosion resistance and machinability were evaluated. Experimental results are shown in Table/O. It can be seen that machinability can be further improved by adding free-machining elements. However, if too much is added as in Comparative Example 20, the corrosion resistance will be lowered.

表 実施例1で使用した鋼粉 (その1) アンダーラインは本発明範囲をはずれていることを示す
Steel powder used in Table Example 1 (Part 1) Underlined indicates outside the scope of the present invention.

表 実施例1で使用した鋼粉 (その2) アンダーラインは本発明範囲をはずれていることを示す
Steel powder used in Table Example 1 (Part 2) Underlined indicates outside the scope of the present invention.

表 実施例1の実験結果 (そのl) アンダーラインは本発明範囲をはずれていることを示す
Experimental results in Table Example 1 (Part 1) Underlining indicates that the results are outside the scope of the present invention.

表 実施例1の実験結果 (その2) アンダーラインは本発明範囲をはずれていることを示す
Experimental results in Table Example 1 (Part 2) Underlining indicates that the results are outside the scope of the present invention.

表 実施例2の実験結果 表 実施例3で使用した鋼粉 アンダーラインは本発明範囲をはずれていることを示す
The underline of the steel powder used in Example 3 of the experimental results table in Table Example 2 indicates that the steel powder was outside the scope of the present invention.

表 実施例3の実験結果 アンダーラインは本発明範囲をはずれていることを示す
The underlined experimental results in Table Example 3 indicate that the results were outside the scope of the present invention.

表 実施例4の実験結果 アンダーラインは本発明範囲をはずれていることを示す
The underlined experimental results in Table Example 4 indicate that the results were outside the scope of the present invention.

表 実施例5で使用した鋼粉 表 実施例5の実験結果 アンダーラインは本発明範囲をはずれていることを示す
The experimental results of the steel powder used in Table Example 5 are underlined to indicate that they are outside the scope of the present invention.

表 実施例6で使用した鋼粉の組成 表 実施例6の実験結果 〈発明の効果〉 本発明によれば、オーステナイト相にフェライト相を適
正量含有させ、焼結体密度を92%以上とすることで被
削性および耐食性に優れた焼結合金鋼を得ることができ
る。
Table Composition Table of Steel Powder Used in Example 6 Experimental Results of Example 6 <Effects of the Invention> According to the present invention, the austenite phase contains an appropriate amount of ferrite phase, and the sintered body density is 92% or more. This makes it possible to obtain a sintered alloy steel with excellent machinability and corrosion resistance.

Claims (8)

【特許請求の範囲】[Claims] (1)オーステナイト系焼結ステンレス合金鋼であって
、Cr:15〜30重量%、Ni:7〜25重量%、C
:0.06重量%以下、および0:0.3重量%以下を
それぞれ含有し、該焼結体中のフェライト相が0.5〜
25体積%で、かつ焼結体密度が92%以上であること
を特徴とする被削性および耐食性に優れた焼結合金鋼。
(1) Austenitic sintered stainless steel alloy steel, Cr: 15-30% by weight, Ni: 7-25% by weight, C
:0.06% by weight or less and 0:0.3% by weight or less, respectively, and the ferrite phase in the sintered body is 0.5 to 0.5% by weight.
A sintered alloy steel with excellent machinability and corrosion resistance, characterized by a sintered body density of 25% by volume and a sintered body density of 92% or more.
(2)オーステナイト系焼結ステンレス合金鋼であって
、Cr:15〜30重量%、Ni:7〜25重量%、M
o:0.5〜5重量%、C:0.06重量%以下、およ
びO:0.3重量%以下であり、焼結体中のフェライト
相が0.5〜25体積%で、かつ焼結体密度が92%以
上であることを特徴とする被削性および耐食性に優れた
焼結合金鋼。
(2) Austenitic sintered stainless steel alloy steel, Cr: 15-30% by weight, Ni: 7-25% by weight, M
o: 0.5 to 5% by weight, C: 0.06% by weight or less, and O: 0.3% by weight or less, and the ferrite phase in the sintered body is 0.5 to 25% by volume, and A sintered alloy steel with excellent machinability and corrosion resistance, characterized by a compact density of 92% or more.
(3)さらに、S:0.02〜0.30重量%、Se:
0.01〜0.30重量%、およびTe:0.01〜0
.30重量%のうち1種または2種以上を含む請求項1
または2に記載の被削性および耐食性に優れた焼結合金
鋼。
(3) Furthermore, S: 0.02 to 0.30% by weight, Se:
0.01-0.30% by weight, and Te: 0.01-0
.. Claim 1 containing one or more of 30% by weight
Or the sintered alloy steel having excellent machinability and corrosion resistance according to item 2.
(4)Cr:15〜30重量%、およびNi:7〜25
重量%を含み、平均粒径15μm以下の鋼粉を用い、こ
れに結合剤を添加混合して成形した後、該成形体中の結
合剤を減圧下または非酸化性雰囲気中で加熱して除去し
、成形体中のC/Oモル比を0.3〜3に調整し、その
後1350℃以下、圧力30torr以下の減圧下で焼
結し、さらに非酸化性雰囲気下で焼結することを特徴と
する被削性および耐食性に優れた焼結合金鋼の製造方法
(4) Cr: 15-30% by weight, and Ni: 7-25
% by weight and with an average particle size of 15 μm or less, a binder is added to the powder, mixed and molded, and then the binder in the molded product is removed by heating under reduced pressure or in a non-oxidizing atmosphere. The C/O molar ratio in the compact is adjusted to 0.3 to 3, and then sintered under reduced pressure of 1350°C or less and 30 torr or less, and further sintered in a non-oxidizing atmosphere. A method for manufacturing sintered alloy steel with excellent machinability and corrosion resistance.
(5)Cr:15〜30重量%、Ni:7〜25重量%
、およびMo:0.5〜5重量%を含み、平均粒径15
μm以下の鋼粉を用い、これに結合剤を添加混合して成
形した後、該成形体中の結合剤を減圧下または非酸化性
雰囲気中で加熱して除去し、成形体中のC/Oモル比を
0.3〜3に調整し、その後1350℃以下、圧力30
torr以下の減圧下で焼結し、さらに非酸化性雰囲気
下で焼結することを特徴とする被削性および耐食性に優
れた焼結合金鋼の製造方法。
(5) Cr: 15-30% by weight, Ni: 7-25% by weight
, and Mo: 0.5 to 5% by weight, average particle size 15
After molding a steel powder with a diameter of less than μm and adding a binder to it, the binder in the molded body is removed by heating under reduced pressure or in a non-oxidizing atmosphere, and the C/ The O molar ratio was adjusted to 0.3 to 3, and then the temperature was 1350°C or lower and the pressure was 30°C.
A method for producing a sintered alloy steel having excellent machinability and corrosion resistance, which comprises sintering under a reduced pressure of torr or less and further sintering in a non-oxidizing atmosphere.
(6)さらに、S:0.02〜0.30重量%、Se:
0.01〜0.30重量%、およびTe:0.01〜0
.30重量%のうち1種または2種以上を含む請求項4
または5に記載の被削性および耐食性に優れた焼結合金
鋼の製造方法。
(6) Furthermore, S: 0.02 to 0.30% by weight, Se:
0.01-0.30% by weight, and Te: 0.01-0
.. Claim 4 containing one or more of 30% by weight
or 5. The method for producing a sintered alloy steel having excellent machinability and corrosion resistance.
(7)C/Oモル比を0.3〜3に調整するに際し、湿
潤水素下で熱処理する請求項4〜6のいずれかに記載の
焼結合金鋼の製造方法。
(7) The method for producing sintered alloy steel according to any one of claims 4 to 6, wherein heat treatment is performed under wet hydrogen when adjusting the C/O molar ratio to 0.3 to 3.
(8)C/Oモル比を0.3〜3に調整するに際し、大
気中で熱処理する請求項4〜6のいずれかに記載の焼結
合金鋼の製造方法。
(8) The method for producing sintered alloy steel according to any one of claims 4 to 6, wherein heat treatment is performed in the atmosphere when adjusting the C/O molar ratio to 0.3 to 3.
JP27027390A 1990-10-08 1990-10-08 Sintered alloy steel excellent in machinability and corrosion resistance and its manufacture Pending JPH04147950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27027390A JPH04147950A (en) 1990-10-08 1990-10-08 Sintered alloy steel excellent in machinability and corrosion resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27027390A JPH04147950A (en) 1990-10-08 1990-10-08 Sintered alloy steel excellent in machinability and corrosion resistance and its manufacture

Publications (1)

Publication Number Publication Date
JPH04147950A true JPH04147950A (en) 1992-05-21

Family

ID=17483955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27027390A Pending JPH04147950A (en) 1990-10-08 1990-10-08 Sintered alloy steel excellent in machinability and corrosion resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPH04147950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537050A (en) * 2017-10-06 2020-12-17 バイオ ディージー, インコーポレイテッド FE-MN Absorbent Implant Alloy with Increased Degradation Rate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537050A (en) * 2017-10-06 2020-12-17 バイオ ディージー, インコーポレイテッド FE-MN Absorbent Implant Alloy with Increased Degradation Rate

Similar Documents

Publication Publication Date Title
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
KR101867843B1 (en) Iron based powders for powder injection molding
US6761751B2 (en) Method of making a FeCrAl material and such material
JPH11501700A (en) Stainless steel powder and products manufactured by powder metallurgy from the powder
CN108367356B (en) Iron-based powder for powder injection molding
KR101350944B1 (en) Ferrous-alloys for powder injection molding
JP3856294B2 (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
JPH02138435A (en) Sintered alloy steel having excellent corrosion resistance and its manufacture
JP2009544841A (en) Iron-based powder
JPH0257606A (en) Stainless steel fine powder and sintering material
JPH04147950A (en) Sintered alloy steel excellent in machinability and corrosion resistance and its manufacture
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH03247743A (en) Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture
JPH10317009A (en) Production of stainless sintered body
JPH01283340A (en) Manufacture of high density and high strength sintered body
JP2786303B2 (en) Method for producing sintered alloy with excellent corrosion resistance and machinability
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JPH11181541A (en) Production of stainless steel sintered body
JPH10287901A (en) Production of stainless sintered body
JPS5920401A (en) Alloy powder for powder metallurgy and its sintered body
JPH0610084A (en) High hardness sintered alloy excellent in corrosion resistance and machinability and its manufacture
JPH0257660A (en) Manufacture of sintered alloy steel having excellent corrosion resistance
JPH0867951A (en) Steel sintered body
JPH0356647A (en) Sintered chromium-molybdenum alloy