JPH04146762A - Hard tissue prosthetic material and manufacture thereof - Google Patents

Hard tissue prosthetic material and manufacture thereof

Info

Publication number
JPH04146762A
JPH04146762A JP2270420A JP27042090A JPH04146762A JP H04146762 A JPH04146762 A JP H04146762A JP 2270420 A JP2270420 A JP 2270420A JP 27042090 A JP27042090 A JP 27042090A JP H04146762 A JPH04146762 A JP H04146762A
Authority
JP
Japan
Prior art keywords
inorganic compound
bone
hard tissue
organism
plastic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2270420A
Other languages
Japanese (ja)
Inventor
Takaaki Osawa
孝明 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2270420A priority Critical patent/JPH04146762A/en
Publication of JPH04146762A publication Critical patent/JPH04146762A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a hard tissue prosthetic material having elasticity analogous to an organism bone, sufficient affinity with the organism bone, and excellent safety by directly fixing an inorganic compound having affinity with an organism on the surface of a substrate made of a plastic material having elasticity via no binder. CONSTITUTION:A material giving no adverse effect to an organism and having proper strength and elasticity analogous to an organism bone is preferable for a plastic material. Fiber-reinforced plastics is preferable in particular, and a composite of the plastic material such as polyether ether ketone, polyimide, polyphyenylene sulfide, polyether sulfide with carbon fiber or glass fiber is preferable, for example. An inorganic compound having affinity with the organism is directly fixed to the surface of a substrate made of the plastic material via no binder. Calcium phosphate ceramics such as hydroxyapatite and tricalcium phosphate, alumina ceramics, zirconia ceramics or a glass inorganic material containing them are used for the inorganic compound.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人工骨、人工関節あるいは人工歯根等の硬組
織補綴材料およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hard tissue prosthetic material such as an artificial bone, an artificial joint or an artificial tooth root, and a method for manufacturing the same.

さらに詳しくは、本発明は、生体親和性が高く、かつ生
体組織と強固に固着することが可能な硬組織補綴材料お
よびその製造方法に関する。
More specifically, the present invention relates to a hard tissue prosthetic material that has high biocompatibility and can firmly adhere to living tissue, and a method for manufacturing the same.

(従来の技術および問題点) 人体内の骨、歯等の硬組織の変形や欠損を、人工材料を
用いて代替する治療は、歯科や整形外科等で広く行われ
ている。例えば、歯科においては、顎骨中に人工歯根を
埋入し、その上に人工歯を固定し、損歯の代替を行う。
(Prior Art and Problems) Treatments that use artificial materials to replace deformations and defects in hard tissues such as bones and teeth within the human body are widely practiced in dentistry, orthopedics, and the like. For example, in dentistry, an artificial tooth root is implanted in the jawbone and an artificial tooth is fixed thereon to replace a damaged tooth.

また、整形外科においても、変形した関節を除去した後
、人工関節を補綴し、関節機能を再建することも極めて
繁雑に行われている。
Furthermore, in orthopedic surgery, it is extremely complicated to remove a deformed joint and then apply an artificial joint to reconstruct the joint function.

このような治療においては、人工骨、人工関節あるいは
人工歯根等の硬組織補綴材料(以下、単に補綴材料とい
う)が生体骨に強固に支持、固定されることが必要であ
る。しかしながら、生体骨では、常に骨吸収と骨形成が
行われるため常に形状が一定しているとはいえず、また
力学的には粘弾性体であっである程度の弾性力を持って
いる。
In such treatments, it is necessary that hard tissue prosthetic materials (hereinafter simply referred to as prosthetic materials) such as artificial bones, artificial joints, or artificial tooth roots be firmly supported and fixed to living bones. However, living bone does not always have a constant shape because bone resorption and bone formation occur constantly, and mechanically, it is a viscoelastic body and has a certain degree of elasticity.

そのような生体骨の中に、常に増減変化する機械的なス
トレスにさらされる人工物を補綴するのであるから、補
綴物と生体骨と間に緩みが生じるのは避けられない問題
であった。特に、従来より使用されている金属合金やア
ルミナセラミックスは、生体骨に比べて曲げ弾性率が著
しく大きいために、たわんだりねじれたりすることによ
り、生体骨との間にズレが生じるばかりか、局所的に応
力が集中するので、集中部において生体骨を破壊してし
まう虞れもあった。また、応力がまったくかからない部
位では、骨組織の吸収が起こり、従ってより緩みが増長
されることが危惧されるものであった。
Since a prosthesis is placed in such living bone, which is exposed to mechanical stress that constantly increases and decreases, loosening between the prosthesis and the living bone is an unavoidable problem. In particular, conventionally used metal alloys and alumina ceramics have significantly higher flexural modulus than living bone, so when they bend or twist, they not only cause misalignment with living bone, but also cause local Since the stress is concentrated in the area, there is a risk that the living bone may be destroyed in the concentrated area. Furthermore, in areas where no stress is applied, it is feared that bone tissue will be resorbed, resulting in increased loosening.

生体骨と補綴材料の間の固着性を高める手法としては、
以下のような方法が知られている。
As a method to increase the adhesion between living bone and prosthetic materials,
The following methods are known.

■生体骨と補綴材料の間に、メチルメタクリレート等の
セメントを充填する。充填されたセメントは、人工骨側
では、海綿骨の網状構造内に(いこみ、補綴材料側では
その凹凸部分にくいこんで硬化し、補綴材料を生体骨に
強固に固着する。
■Fill cement such as methyl methacrylate between the living bone and the prosthetic material. The filled cement is embedded into the network structure of the cancellous bone on the artificial bone side, and hardens by being embedded into the uneven portions on the prosthetic material side, thereby firmly fixing the prosthetic material to the living bone.

■補綴材料表面に、階段状の溝や、気孔状の凹凸を付け
て、当該溝、凹凸部分に新生骨を形成させ、楔効果によ
り固着を強固にする。
■By adding step-like grooves and pore-like unevenness to the surface of the prosthetic material, new bone is formed in the grooves and uneven areas, and the wedge effect strengthens the bond.

■生体骨の弾性に近似するプラスチック材料を用い、ス
トレスの集中を防止する。
■Using a plastic material that approximates the elasticity of living bones to prevent stress concentration.

しかしながら、■の方法では、セメントの毒性が心配さ
れるとともに、セメントの重合の際に発生する熱が周辺
の生体組織に悪影響を及ぼす、あるいはセメント内に残
留している低分子物質が生体内に流出し、悪影響を及ぼ
す虞れがある等の問題点を有する。さらには、セメント
の存在により骨組織を素置する細胞やセメントを素置す
る細胞が出現し、骨組織が破壊される虞れのあることが
指摘されており(人工股関節緩み例の病理組織学的およ
び生化学的検素:松野 丈夫他、整形外科MOOK  
No、45.1986.247〜268)、従って安全
性に問題のあるものであった。
However, with method (2), there are concerns about the toxicity of the cement, and the heat generated during cement polymerization may have an adverse effect on surrounding living tissues, or the low-molecular substances remaining in the cement may become in vivo. There are problems such as the risk of leakage and adverse effects. Furthermore, it has been pointed out that due to the presence of cement, cells that place the bone tissue and cells that place the cement appear, which may lead to the destruction of the bone tissue (histopathology of cases of loosening of artificial hip joints). Target and biochemical tests: Takeshi Matsuno et al., Orthopedics MOOK
No. 45.1986.247-268), therefore there was a safety problem.

また、■の方法は、セメントの充填による前述のような
危惧を伴わない方法であるが、補綴すべき部位により、
付与する溝、凹凸の形状が異なったり、また当該溝、凹
凸の存在により、補綴する手技に高度な熟練を要する等
の問題があった。
In addition, method (■) does not involve the above-mentioned dangers due to cement filling, but depending on the area to be restored,
There have been problems such as the shapes of the grooves and unevenness to be applied being different, and the presence of the grooves and unevenness requiring a high level of skill in the prosthetic technique.

また、■の方法においては、プラスチックは生体親和性
が低いので、生体骨と人工骨との間にコラーゲン繊維が
成育し、このコラーゲン繊維の存在により、新生骨の形
成が阻害される。従って、強固な固着は不可能であると
いう問題があった。
Furthermore, in method (2), since plastic has low biocompatibility, collagen fibers grow between the living bone and the artificial bone, and the presence of these collagen fibers inhibits the formation of new bone. Therefore, there was a problem in that strong adhesion was impossible.

一方、生体骨の弾性に近似するプラスチック材料の表面
に、リン酸カルシウムを主成分とする繊維の集合体をポ
リメチルメタアクリレートによって接合した補綴材料が
開示されている。(特開昭63−270049号公報) この補綴材料は、基材を生体骨の弾性に近似するプラス
チック材料で構成することによって、ストレスの集中を
防止し、しかもその表面に無機化合物を接合することに
より、生体骨との親和性を発揮させようとしたものであ
る。
On the other hand, a prosthetic material has been disclosed in which an aggregate of fibers containing calcium phosphate as a main component is bonded to the surface of a plastic material whose elasticity is similar to that of living bone using polymethyl methacrylate. (Japanese Unexamined Patent Publication No. 63-270049) This prosthetic material prevents stress concentration by making the base material a plastic material that approximates the elasticity of living bones, and also has an inorganic compound bonded to its surface. This was an attempt to demonstrate compatibility with living bone.

しかしながら、この補綴材料は、プラスチック材料と無
機化合物の接合に際して、バインダーとしてポリメチル
メタアクリレートを用いている。
However, this prosthetic material uses polymethyl methacrylate as a binder when bonding the plastic material and the inorganic compound.

前述のように、ポリメチルメタアクリレートは、生体に
対する毒性が心配されるとともに、残留している低分子
物質が生体内に流出し、悪影響を及ぼす虞れがあり、ま
た骨組織の素置を惹起する虞れがある等の問題を有する
ものであり、従ってこの補綴材料は、安全性が十分であ
るとはいえないものであった。
As mentioned above, there are concerns that polymethyl methacrylate is toxic to living organisms, and residual low-molecular substances may leak into living organisms, causing adverse effects, and may also cause bone tissue deterioration. Therefore, this prosthetic material could not be said to have sufficient safety.

(発明が解決しようとする課題) 従って、本発明は、生体骨に近似した弾性を有するとと
もに、十分な生体骨との親和性を有し、しかも安全性に
優れた硬組織補綴材料を提供することを目的とする。
(Problems to be Solved by the Invention) Therefore, the present invention provides a hard tissue prosthetic material that has elasticity similar to that of living bone, has sufficient compatibility with living bone, and is highly safe. The purpose is to

(課題を解決するための手段) 前記の課題は、弾性を有するプラスチック材料よりなる
基材の表面に、生体と親和性を有する無機化合物を、バ
インダーを介在させることなく直接固着せしめたことを
特徴とする硬組織補綴材料によって達成される。
(Means for Solving the Problem) The above problem is characterized in that an inorganic compound having affinity with living organisms is directly adhered to the surface of a base material made of an elastic plastic material without intervening a binder. This is achieved by using hard tissue prosthetic materials.

前記プラスチック材料の曲げ弾性率は、3〜100GP
aであることが好ましい。
The flexural modulus of the plastic material is 3 to 100 GP.
It is preferable that it is a.

また、前記無機化合物の固着層の厚さは、20〜100
0μmであることが好ましい。
Further, the thickness of the fixed layer of the inorganic compound is 20 to 100 mm.
Preferably, it is 0 μm.

また、本発明は、弾性を有するプラスチック材料よりな
る基材の表面に、生体と親和性を有する無機化合物を、
プラズマ溶射あるいはスパッタリングにより固着させる
ことを特徴とする硬組織補綴材料の製造方法を示すもの
である。
Furthermore, the present invention provides an inorganic compound having affinity with living organisms on the surface of a base material made of an elastic plastic material.
This figure shows a method for manufacturing a hard tissue prosthetic material, which is characterized in that it is fixed by plasma spraying or sputtering.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いられるプラスチック材料の材質としては、
生体に対して悪影響を及ぼさず、しかも適度な強度と生
体骨に近似した弾性を有するものが好ましい。特に、繊
維強化プラスチックが好ましく、例えば、ポリエーテル
エーテルケトン、ポリイミド、ポリフェニレンサルフィ
ド、ポリエーテルサルフォン等のガラス繊維や炭素繊維
の複合体が好適である。プラスチックの曲げ弾性率は、
補綴箇所により異なるが、通常、3〜100GPa、特
に10〜100GPa程度が好ましい。また、重合度は
、前記弾性率により適宜決定すればよい。
The plastic material used in the present invention is as follows:
It is preferable to use a material that does not have an adverse effect on the living body and has appropriate strength and elasticity similar to that of living bone. In particular, fiber-reinforced plastics are preferred, and for example, composites of glass fibers and carbon fibers such as polyetheretherketone, polyimide, polyphenylene sulfide, and polyethersulfone are suitable. The flexural modulus of plastic is
Although it varies depending on the prosthesis location, it is usually about 3 to 100 GPa, particularly about 10 to 100 GPa. Further, the degree of polymerization may be appropriately determined based on the elastic modulus.

また、当該プラスチック材料には、必要に応じて、チタ
ン、タングステン、モリブデン等の金属あるいはリン酸
カルシウム、アルミナセラミックス等のセラミックスが
配合されていてもよい。また、上記金属は、無電解めっ
き法、溶融めっき法、電気めっき法、浸漬めっき法等の
公知の手法により、プラスチック表面に被覆されていて
もよい。
Furthermore, the plastic material may contain metals such as titanium, tungsten, and molybdenum, or ceramics such as calcium phosphate and alumina ceramics, as required. Further, the metal may be coated on the plastic surface by a known method such as electroless plating, hot-dip plating, electroplating, or dip plating.

このようなプラスチック材料よりなる基材(以下、プラ
スチック基材という)表面(場合によっては、金属めっ
きが施されたプラスチック基材表面)には、生体と親和
性を有する無機化合物がバインダーを介することなく直
接固着されている。
The surface of such a base material (hereinafter referred to as plastic base material) made of such a plastic material (in some cases, the surface of a plastic base material with metal plating) is coated with an inorganic compound that has an affinity for living organisms via a binder. It is directly attached without any problem.

無機化合物としては、ハイドロキシアパタイトやリン酸
三カルシウム等のリン酸カルシウム系セラミックス、ア
ルミナセラミックス、ジルコニアセラミックス等、ある
いはこれらを含むガラス等の無機物質があげられる。
Examples of the inorganic compound include calcium phosphate ceramics such as hydroxyapatite and tricalcium phosphate, alumina ceramics, zirconia ceramics, and inorganic substances such as glass containing these.

上記した無機化合物のなかでも、特にリン酸カルシウム
系セラミックスが好適である。このリン酸カルシウム系
セラミックスのCa / P原子量比としては、1.3
〜2.0程度が好ましい。
Among the above-mentioned inorganic compounds, calcium phosphate ceramics are particularly suitable. The Ca/P atomic weight ratio of this calcium phosphate ceramic is 1.3.
~2.0 is preferable.

このような無機化合物は、プラスチック基材表面に部分
的に固着していてもよいが、プラスチック基材表面に被
膜層として存在することが好ましい。
Although such an inorganic compound may be partially fixed to the surface of the plastic substrate, it is preferably present as a coating layer on the surface of the plastic substrate.

無機化合物の被膜層の厚さとしては、20〜1000μ
mが好適である。20μm以下であると、生体親和性が
不十分になり、コラーゲン繊維の成育を十分阻止できな
い。また、1000μm以上であると、プラスチック基
材そのものの弾性が損なわれてしまうからである。
The thickness of the inorganic compound coating layer is 20 to 1000μ
m is preferred. If it is 20 μm or less, the biocompatibility becomes insufficient and the growth of collagen fibers cannot be sufficiently inhibited. Moreover, if the thickness is 1000 μm or more, the elasticity of the plastic base material itself will be impaired.

次に、本発明の硬組織補綴材料の製造方法を説明する。Next, a method for manufacturing the hard tissue prosthetic material of the present invention will be explained.

まず、プラスチック基材を所望の形状に成形加工する。First, a plastic base material is molded into a desired shape.

次いで、必要に応じて、チタン、タングステン、モリブ
デン等の金属めっきを施した後、当該プラスチック基材
表面に無機化合物を固着させることにより本発明の硬組
織補綴材料を得ることができる。
Then, if necessary, the hard tissue prosthesis material of the present invention can be obtained by plating with a metal such as titanium, tungsten, or molybdenum, and then fixing an inorganic compound to the surface of the plastic base material.

無機化合物をプラスチック基材へ固着する方法としては
、前述のような厚さの無機化合物被膜を形成できる方法
ならば特に限定されず、例えば、プラズマ溶射法、真空
蒸着(PVD)法、化学蒸着(CVD)法、スパッタリ
ング法等があげられ、特にプラズマ溶射法またはスパッ
タリング法が好適である。
The method for fixing the inorganic compound to the plastic substrate is not particularly limited as long as it can form an inorganic compound film with the thickness described above, and examples include plasma spraying, vacuum vapor deposition (PVD), and chemical vapor deposition (PVD). (CVD) method, sputtering method, etc., and plasma spraying method or sputtering method is particularly suitable.

プラズマ溶射法は、固着させるべき無機化合物の粉末を
、プラズマトーチ内の高温プラズマガス中に落下させ、
このプラズマガスを高速で噴流させてプラスチック基材
に衝突させることにより、無機化合物被膜を形成させる
方法である。用いられる原料無機化合物粉末の粒度とし
ては、10〜200μ程度が好適である。
In the plasma spraying method, powder of an inorganic compound to be fixed is dropped into high-temperature plasma gas inside a plasma torch.
This is a method of forming an inorganic compound film by jetting this plasma gas at high speed and causing it to collide with a plastic base material. The particle size of the raw material inorganic compound powder used is preferably about 10 to 200 microns.

一方、スパッタリング法は、減圧容器中でAr3のグロ
ー放電を起こし、このAr’″を無機化合物からなるタ
ーゲットに衝突させて、はじき出された無機化合物原子
をプラスチック基材に固着させる方法である。
On the other hand, the sputtering method is a method in which a glow discharge of Ar is caused in a reduced pressure container, the Ar''' is caused to collide with a target made of an inorganic compound, and the ejected inorganic compound atoms are fixed to the plastic base material.

このようなプラズマ溶射法やスパッタリング法の処理条
件は、無機化合物被膜の厚さが所望の厚さになるように
適宜決定してやればよい。ただし、固着された無機化合
物が変性したり、プラスチック基材が変形しないように
条件を設定することが必要である。
The processing conditions for such a plasma spraying method or a sputtering method may be appropriately determined so that the thickness of the inorganic compound coating becomes a desired thickness. However, it is necessary to set conditions so that the fixed inorganic compound is not denatured and the plastic base material is not deformed.

また、このようなプラズマ溶射法やスパッタリング法で
得られた無機化合物被膜の原子組成は、原料無機化合物
の原子組成と若干変化する場合があるが、本発明の効果
を逸脱するほどの原子組成の変化は通常起こり得ない。
Furthermore, the atomic composition of the inorganic compound film obtained by such plasma spraying or sputtering methods may differ slightly from the atomic composition of the raw inorganic compound, but the atomic composition may differ slightly from the atomic composition of the raw material inorganic compound, but the atomic composition may differ slightly from the atomic composition of the raw material inorganic compound. Change usually cannot occur.

次に実施例および比較例を示して本発明をさらに詳細に
説明する。
Next, the present invention will be explained in further detail by showing Examples and Comparative Examples.

〈実施例1〉 曲げ弾性率150Paの30%カーボンファイバー人り
ポリエーテルエーテルケトン(三井東圧社製)を、直径
3mmφ、長さ60mmの棒状に成形加工した。次いで
、Ca / P原子量比が1゜66のハイドロキシアパ
タイト粉末(平均粒径15μm)をプラズマ溶射装置(
プラズマダイン社製)を用いて、成形加工品の表面に吹
き付け、補綴材料1を作製した。ハイドロキシアパタイ
ト被膜層の厚さは50μm、Ca/P原子量比は1゜8
0であった。なお、Ca / P原子量比は、ESCA
分析装置(日本電子社製)を用いて測定を行った。
<Example 1> 30% carbon fiber polyetheretherketone (manufactured by Mitsui Toatsu Co., Ltd.) with a bending modulus of elasticity of 150 Pa was molded into a rod shape with a diameter of 3 mm and a length of 60 mm. Next, hydroxyapatite powder (average particle size 15 μm) with a Ca/P atomic weight ratio of 1°66 was sprayed using a plasma spraying device (
Prosthetic material 1 was prepared by spraying the solution onto the surface of the molded product using a solution (manufactured by Plasmadyne Inc.). The thickness of the hydroxyapatite coating layer is 50 μm, and the Ca/P atomic weight ratio is 1°8.
It was 0. Note that the Ca/P atomic weight ratio is ESCA
Measurement was performed using an analyzer (manufactured by JEOL Ltd.).

得られた補綴材料1を、2匹の白色家兎の膝より大腿骨
骨髄腔に挿入し、4週間後、及び12力月後にそれぞれ
大腿骨ごと補綴材料1を取り出し、ホルマリン固定を行
った。次いでポリメチルメタアクリレート樹脂に包埋さ
せ、サンプル1a、1bとした。
The obtained prosthetic material 1 was inserted into the medullary cavity of the femur through the knee of two white domestic rabbits, and after 4 weeks and 12 months, the prosthetic material 1 was removed together with the femur and fixed in formalin. Next, they were embedded in polymethyl methacrylate resin to give samples 1a and 1b.

〈実施例2〉 曲げ弾性率4GPaのポリエーテルサルフォン(三井東
圧社製)を直径3mmφ、長さ60mmの棒状に成形加
工した。次いで、アルミナセラミックスをターゲットに
してスパッタリングを行い、成形加工品の表面にアルミ
ナセラミックス被膜を形成し、補綴材料2を作製した。
<Example 2> Polyether sulfone (manufactured by Mitsui Toatsu Co., Ltd.) having a bending modulus of elasticity of 4 GPa was molded into a rod shape with a diameter of 3 mmφ and a length of 60 mm. Next, sputtering was performed using alumina ceramic as a target to form an alumina ceramic coating on the surface of the molded product, thereby producing prosthetic material 2.

アルミナセラミックス被膜層の厚さは0.1μmであっ
た。次いで、実施例1と同様の操作によりサンプル2a
、2bを作製した。
The thickness of the alumina ceramic coating layer was 0.1 μm. Next, sample 2a was prepared in the same manner as in Example 1.
, 2b was produced.

〈比較例1〉 曲げ弾性率4GPaのポリエーテルエーテルケトン(三
井東圧社製)を、直径3mmφ、長さ60mmの棒状に
成形加工し、補綴材料3を作製した。次いで、実施例1
と同様の操作によりサンプル3a、3bを作製した。
<Comparative Example 1> Polyetheretherketone (manufactured by Mitsui Toatsu Co., Ltd.) having a bending modulus of elasticity of 4 GPa was molded into a rod shape with a diameter of 3 mmφ and a length of 60 mm to prepare a prosthetic material 3. Next, Example 1
Samples 3a and 3b were prepared in the same manner as above.

〈比較例4〉 補綴材料基材として、曲げ弾性率186GPaのステン
レス5US316Lを用いる以外は実施例1と同様にし
て、補綴材料4およびサンプル4a、4bを作製した。
<Comparative Example 4> Prosthetic material 4 and samples 4a and 4b were produced in the same manner as in Example 1 except that stainless steel 5US316L with a flexural modulus of 186 GPa was used as the prosthetic material base material.

〈比較例5〉 曲げ弾性率15GPaのポリエーテルエーテルケトン(
三井東圧社製)を、直径3mmφ、長さ60mmの棒状
に成形加工した。次いで、Ca/P原子量比が1.66
のハイドロキシアパタイト粉末(平均粒径15μm)を
白金るつぼ中にて1300℃に昇温して溶融し、50μ
の小孔を有する白金製口金より引き出して直径50μの
繊維状に成形し、これを織ることによりリン酸カルシウ
ムからなる織布を作製した。次に、ポリメチルメタアク
リレートに硬化用触媒を加え、混線後、成形加工品の表
面に塗布し、さらにこの表面を織布で覆い、ポリメチル
メタアクリレートを乾燥させ、補綴材料5を作製した。
<Comparative Example 5> Polyetheretherketone (with a bending modulus of 15 GPa)
(manufactured by Mitsui Toatsu Co., Ltd.) was molded into a rod shape with a diameter of 3 mmφ and a length of 60 mm. Then, the Ca/P atomic weight ratio is 1.66
Hydroxyapatite powder (average particle size 15 μm) was heated to 1300°C and melted in a platinum crucible.
A fibrous material having a diameter of 50 μm was formed by pulling it out through a platinum die having small holes, and the fiber was woven to produce a woven fabric made of calcium phosphate. Next, a curing catalyst was added to the polymethyl methacrylate, and after cross-wiring, it was applied to the surface of the molded product, and the surface was further covered with a woven fabric, and the polymethyl methacrylate was dried to produce a prosthetic material 5.

次いで、実施例1と同様の操作によりサンプル5a、5
bを作製した。
Next, samples 5a and 5 were prepared in the same manner as in Example 1.
b was produced.

サンプル1a〜5aおよび1b〜5bを研磨し、病理観
察を行った。
Samples 1a to 5a and 1b to 5b were polished and pathologically observed.

その結果を表1に示す。The results are shown in Table 1.

表1 (成葉に続く) 表より明らかなように、本発明に係る補綴材料1および
2では、補綴初期、補綴長期間後いずれの場合において
も骨組織と連続しており、また補綴長期間に新生骨の形
成が認められた。これに対し、無機化合物を被覆させな
い比較例1においては、骨組織との間にコラーゲン繊維
が成育し、このため、長期的には、新生骨の形成が阻害
されることが示された。また、基材としてステンレス5
US316Lを用いた比較例2においては、生体骨との
物性的な相違に起因すると思われる局所的な骨組織の破
壊が見られた。また、無機化合物をセメントをバインダ
ーとして用いて被覆した比較例8においては、セメント
の存在に起因すると思われる、巨大禽食細胞および骨組
織貧食細胞の発現が見られ、安全性に問題があることが
示唆された。
Table 1 (Following leaf maturation) As is clear from the table, prosthetic materials 1 and 2 according to the present invention are continuous with the bone tissue both at the initial stage of prosthesis and after a long period of prosthesis, and after a long period of prosthesis. Formation of new bone was observed. On the other hand, in Comparative Example 1 in which no inorganic compound was coated, collagen fibers grew between the bones and the bone tissue, and therefore, it was shown that the formation of new bone was inhibited in the long term. Also, stainless steel 5 is used as the base material.
In Comparative Example 2 using US316L, local destruction of bone tissue was observed, which was thought to be due to physical differences from living bone. Furthermore, in Comparative Example 8, in which an inorganic compound was coated using cement as a binder, the expression of giant avian phagocytes and bone tissue phagocytes was observed, which is thought to be caused by the presence of cement, and there is a safety problem. It has been suggested.

(発明の効果) 以上、詳述したように、本発明に係る硬組織補綴材料は
、弾性を有するプラスチック材料よりなる基材の表面に
、生体と親和性を有する無機化合物を、バインダーを介
在させることなく直接固着せしめたことを特徴とするの
で、生体に近似した弾性を有するとともに、十分な生体
骨との親和性を有するので、生体骨に強固に固着し、し
かも安全性に優れるという効果を奏する。
(Effects of the Invention) As described above in detail, the hard tissue prosthetic material according to the present invention includes an inorganic compound having affinity for living bodies and a binder interposed on the surface of the base material made of an elastic plastic material. It is characterized by being directly fixed to the living bone without any friction, so it has an elasticity similar to that of the living body, and has sufficient affinity with the living bone, so it firmly adheres to the living bone and has the effect of being excellent in safety. play.

Claims (5)

【特許請求の範囲】[Claims] (1)弾性を有するプラスチック材料よりなる基材の表
面に、生体と親和性を有する無機化合物を、バインダー
を介在させることなく直接固着せしめたことを特徴とす
る硬組織補綴材料。
(1) A hard tissue prosthesis material characterized in that an inorganic compound having an affinity for living organisms is directly adhered to the surface of a base material made of an elastic plastic material without intervening a binder.
(2)前記プラスチック材料の曲げ弾性率は、3〜10
0GPaである請求項1記載の硬組織補綴材料。
(2) The flexural modulus of the plastic material is 3 to 10.
The hard tissue prosthetic material according to claim 1, which has a pressure of 0 GPa.
(3)前記無機化合物は、リン酸カルシウム系セラミッ
クス、アルミナセラミックス、ジルコニアセラミックス
、およびこれらの化合物を含むガラスからなる群より選
ばれたものである請求項1または2記載の硬組織補綴材
料。
(3) The hard tissue prosthetic material according to claim 1 or 2, wherein the inorganic compound is selected from the group consisting of calcium phosphate ceramics, alumina ceramics, zirconia ceramics, and glasses containing these compounds.
(4)前記無機化合物の固着層の厚さが、20〜100
0μmである請求項1〜3のいずれかに記載の硬組織補
綴材料。
(4) The thickness of the fixed layer of the inorganic compound is 20 to 100
The hard tissue prosthetic material according to any one of claims 1 to 3, which has a diameter of 0 μm.
(5)弾性を有するプラスチック材料よりなる基材の表
面に、生体と親和性を有する無機化合物を、プラズマ溶
射あるいはスパッタリングにより固着させることを特徴
とする硬組織補綴材料の製造方法。
(5) A method for producing a hard tissue prosthetic material, which comprises adhering an inorganic compound having an affinity for living organisms to the surface of a base material made of an elastic plastic material by plasma spraying or sputtering.
JP2270420A 1990-10-11 1990-10-11 Hard tissue prosthetic material and manufacture thereof Pending JPH04146762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270420A JPH04146762A (en) 1990-10-11 1990-10-11 Hard tissue prosthetic material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270420A JPH04146762A (en) 1990-10-11 1990-10-11 Hard tissue prosthetic material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04146762A true JPH04146762A (en) 1992-05-20

Family

ID=17486025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270420A Pending JPH04146762A (en) 1990-10-11 1990-10-11 Hard tissue prosthetic material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04146762A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048291C (en) * 1997-12-12 2000-01-12 清华大学 Preparation of reinforced ion beam-deposited hydroxyl apatite coating for medical implant
JP2011511128A (en) * 2008-02-01 2011-04-07 シンセス ゲーエムベーハー Porous biocompatible polymer materials and methods
JP2011101806A (en) * 2005-01-07 2011-05-26 Inframat Corp Coated medical device
JP2013022234A (en) * 2011-07-21 2013-02-04 Ngk Spark Plug Co Ltd Biological implant and manufacturing method therefor
WO2022024652A1 (en) 2020-07-30 2022-02-03 富田製薬株式会社 Plasma spraying material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048291C (en) * 1997-12-12 2000-01-12 清华大学 Preparation of reinforced ion beam-deposited hydroxyl apatite coating for medical implant
JP2011101806A (en) * 2005-01-07 2011-05-26 Inframat Corp Coated medical device
JP2011511128A (en) * 2008-02-01 2011-04-07 シンセス ゲーエムベーハー Porous biocompatible polymer materials and methods
US9308297B2 (en) 2008-02-01 2016-04-12 DePuy Synthes Products, Inc. Porous biocompatible polymer material and methods
US10549014B2 (en) 2008-02-01 2020-02-04 DePuy Synthes Products, Inc. Porous biocompatible polymer material and methods
US11679181B2 (en) 2008-02-01 2023-06-20 DePuy Synthes Products, Inc. Porous biocompatible polymer material and methods
JP2013022234A (en) * 2011-07-21 2013-02-04 Ngk Spark Plug Co Ltd Biological implant and manufacturing method therefor
WO2022024652A1 (en) 2020-07-30 2022-02-03 富田製薬株式会社 Plasma spraying material

Similar Documents

Publication Publication Date Title
Zafar et al. Bioactive surface coatings for enhancing osseointegration of dental implants
Graziani et al. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review
Liu et al. Surface modification of titanium, titanium alloys, and related materials for biomedical applications
Xue et al. In vivo evaluation of plasma-sprayed wollastonite coating
Wise Encyclopedic handbook of biomaterials and bioengineering: v. 1-2. Applications
Hayakawa et al. Effect of surface roughness and calcium phosphate coating on the implant/bone response
Sun et al. Material fundamentals and clinical performance of plasma‐sprayed hydroxyapatite coatings: A review
US6534197B2 (en) Biomedical implant material and method of producing the same
Xue et al. In vivo evaluation of plasma-sprayed titanium coating after alkali modification
Jiang et al. Coating of hydroxyapatite on highly porous Al2O3 substrate for bone substitutes
JPH0575428B2 (en)
Shtansky et al. Modification of polytetrafluoroethylene implants by depositing TiCaPCON films with and without stem cells
CA2301064A1 (en) Implantable prosthetic devices coated with bioactive molecules
Müller‐Mai et al. Tissues at the surface of the new composite material titanium/glass‐ceramic for replacement of bone and teeth
Mano et al. Initial tissue response to a titanium implant coated with apatite at room temperature using a blast coating method
Takatsuka et al. A new bioactive glass–ceramic as a coating material on titanium alloy
Schmidmaier et al. A new electrochemically graded hydroxyapatite coating for osteosynthetic implants promotes implant osteointegration in a rat model
Ghadami et al. The effects of bone implants’ coating mechanical properties on osseointegration: in vivo, in vitro, and histological investigations
Peraire et al. Biological stability and osteoconductivity in rabbit tibia of pulsed laser deposited hydroxylapatite coatings
US5482731A (en) Method for bonding a calcium phosphate coating to stainless steels and cobalt base alloys for bioactive fixation of artificial implants
Manders et al. Bone response adjacent to calcium phosphate electrostatic spray deposition coated implants: an experimental study in goats
JPH04146762A (en) Hard tissue prosthetic material and manufacture thereof
Ghadami et al. The correlation between osseointegration and bonding strength at the bone-implant interface: In-vivo & ex-vivo investigations on hydroxyapatite and hydroxyapatite/titanium coatings
Oktar et al. Bond-coating in plasma-sprayed calcium-phosphate coatings
Oonishi Mechanical and chemical bonding of artificial joints