JPH04143566A - Controller for auger type ice making machine - Google Patents

Controller for auger type ice making machine

Info

Publication number
JPH04143566A
JPH04143566A JP26613090A JP26613090A JPH04143566A JP H04143566 A JPH04143566 A JP H04143566A JP 26613090 A JP26613090 A JP 26613090A JP 26613090 A JP26613090 A JP 26613090A JP H04143566 A JPH04143566 A JP H04143566A
Authority
JP
Japan
Prior art keywords
ice
making
making water
water
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26613090A
Other languages
Japanese (ja)
Other versions
JP2678521B2 (en
Inventor
Naoya Uchida
内田 直也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2266130A priority Critical patent/JP2678521B2/en
Publication of JPH04143566A publication Critical patent/JPH04143566A/en
Application granted granted Critical
Publication of JP2678521B2 publication Critical patent/JP2678521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To control cleaning of the inside of an ice making water tank and an ice making cylindrical body by a method wherein the control of water discharging, effected by a water discharging control means, and respective controls of a feed water control means and an ice making control means are effected sequentially, then, the control of ice making is effected when a deciding means has decided that the water discharging is finished. CONSTITUTION:Ice making water is supplied into an ice making cylindrical body 20 and an ice making water tank 60, then, the ice making water in the ice making cylindrical body 20 and the ice making water tank 60 is discharged through a water discharging valve DV and a water discharging pipe 20. Thereafter, ice making water is supplied again into the ice making cylindrical body 20 and the ice making water tank 60 to shift the operation of an ice making machine into ice making operation. As a result, even when foreign materials such as the condensed impurities of the ice making water, dust, refuse and the like are stagnated in the ice making cylindrical body 20 and the ice making water tank 60, these condensed impurities or the foreign materials are washed and floated in the ice making water tank 60 and the ice making cylindrical body 20 upon the first supply of the ice making water and they are discharged to the outside of the machine together with the ice making water upon discharging the same water.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はオーガ式製氷機に係り、特に当該製氷機に採用
するに適した制御DVellに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an auger ice maker, and particularly to a control DVell suitable for use in the ice maker.

(従来技術) 従来、この種のオーガ式製氷機においては、例えば、実
公昭63−10453号公報に示されているように、一
対の常開型フロートスイッチを製氷水タンク上に上下に
配設して、貯氷検出スイッチによる貯氷庫内の水不足の
検出時に、給水弁の開成により給水源から製氷水タンク
内に製氷水を給水し、この製氷水タンク内の製氷水の所
定量への増大に伴う両70−トスイノチの閉成後製氷運
転を開始して製氷水タンクからの製氷水を製氷筒体内に
て氷結させるとともにこの結氷をオーガにより製氷筒体
から導出し小水として順次貯氷庫内に貯氷し、製氷水タ
ンク内の製氷水の減少に伴う貯氷検出スイッチによる貯
氷庫内の貯氷量の充足検出時に製氷運転を停止するよう
にしたものがある。
(Prior Art) Conventionally, in this type of auger-type ice maker, a pair of normally open type float switches are arranged above and below an ice making water tank, as shown in Japanese Utility Model Publication No. 10453/1983, for example. Then, when the ice storage detection switch detects a lack of water in the ice storage, the water supply valve is opened to supply ice making water from the water supply source to the ice making water tank, and the ice making water in the ice making water tank is increased to a predetermined amount. After closing both 70-tosuinochi, the ice-making operation is started, and the ice-making water from the ice-making water tank is frozen in the ice-making cylinder, and this frozen ice is drawn out from the ice-making cylinder by an auger and sequentially poured into the ice storage as small water. There is a device that stores ice and stops the ice-making operation when an ice storage detection switch detects that the amount of ice stored in the ice storage is sufficient as the ice-making water in the ice-making water tank decreases.

(発明が解決しようとする課題) しかし、このような構成においては、製氷水タンク内に
流入する製氷水中に不純物が含有されているため、この
不純物が濃縮した状態で製氷筒内の結氷に含まれると、
水質の低下を招くという不具合が生じる。また、上述の
不純物が製氷筒内の軸受等の構成部品内に濃縮状態で侵
入すると、この構成部品に品質劣化等の悪影響を与える
という不具合が生じる。また、例えば、製氷水タンク内
の製氷水内にゴミ、ホコリ等の異物が侵入したりすると
、この異物が製氷筒内の結氷にも混入することとなり、
その結果、水質の低下を招くのは勿論のこと、不衛生に
なるという不具合が生じる。
(Problem to be Solved by the Invention) However, in such a configuration, since impurities are contained in the ice-making water that flows into the ice-making water tank, these impurities are concentrated in the frozen ice in the ice-making cylinder. When it happens,
A problem arises in that water quality deteriorates. Further, if the above-mentioned impurities enter components such as bearings in the ice-making cylinder in a concentrated state, problems arise in that they adversely affect the components, such as quality deterioration. Also, for example, if foreign matter such as dirt or dust gets into the ice-making water in the ice-making water tank, this foreign matter will also get mixed in with the frozen ice in the ice-making cylinder.
As a result, not only the quality of the water deteriorates, but also problems such as unsanitary conditions occur.

そこで、本発明は、上述のようなことに対処すべく、オ
ーガ式製氷機において、その製氷水タック及び製氷筒体
内の洗浄制御をも行うようにした制御装置を提供しよう
とするものである。
SUMMARY OF THE INVENTION In order to deal with the above-mentioned problems, the present invention provides a control device for an auger-type ice maker that also controls cleaning of the ice making water tack and the inside of the ice making cylinder.

(課題を解決するための手段) 上記課題の解決にあたり、第1の発明の構成上の特徴は
、第1A図にて実線により示すごとく、給水源から製氷
水を給水されて貯える製氷水タンクと、この製氷水タン
クからの製氷水を収容する製氷筒体と、前記給水源から
前記製氷水タンクへの給水を開成(又は閉成)により許
容(又は遮断)する給水弁手段1と、前記製氷筒体内の
収容製氷水を循環冷媒に応じ氷結させる冷凍サイクルと
、前記製氷筒体内にて回動可能に軸支されて回動に応じ
前記製氷筒体内の結氷を前取して外方へ導出するオーガ
と、このオーガを作動に応じて回動させる駆動手段】a
とを備えた製氷機において、前記製氷水タンク内の収容
製氷水が所定上限量に達したときこれを検出する製氷水
検出手段2と、給水操作手段3の操作に応答して給水弁
手段lを開成し製氷水検出手段2の検出に応答して給水
弁手段1を閉成するように制御する給水制御手段4と、
製氷水検出手段2の検出に伴い前記冷凍サイクル及び駆
動手段1aを作動するように制御する製氷制御手段4a
とを備え、また、前記製氷水タンク及び製氷筒体内の製
氷水の外部への排水を選択的開成により許容する排水弁
手段5と、始動時に排水手段5が排水済みか否かを判断
する判断手段6と、この判断手段6による未排水との判
断時に排水弁手段5を開成するように制御する排水制御
手段5aとを設け、この排水制御手段5aによる排水制
御後給水制御手段4及び製氷制御手段4aがその各制御
を順次行ない、また、判断手段6による排水済みとの判
断時には製氷制御手段4aがその制御を行うようにした
ことにある。
(Means for Solving the Problems) In solving the above problems, the first feature of the structure of the invention is that, as shown by the solid line in FIG. , an ice-making cylinder body that accommodates ice-making water from the ice-making water tank, a water supply valve means 1 that allows (or shuts off) water supply from the water supply source to the ice-making water tank by opening (or closing), and the ice-making water tank. A refrigeration cycle that freezes ice-making water stored in a cylinder according to a circulating refrigerant, and a refrigeration cycle that is rotatably supported in the ice-making cylinder and pre-collects frozen ice in the ice-making cylinder according to rotation and guides it to the outside. an auger and a drive means for rotating this auger according to the operation]a
an ice-making water detection means 2 for detecting when the ice-making water stored in the ice-making water tank reaches a predetermined upper limit; and a water supply valve means l in response to the operation of the water supply operation means 3. water supply control means 4 for controlling the water supply valve means 1 to open and close the water supply valve means 1 in response to the detection by the ice making water detection means 2;
ice-making control means 4a that controls the refrigeration cycle and drive means 1a to operate in response to detection by ice-making water detection means 2;
and a drain valve means 5 for allowing drainage of the ice-making water in the ice-making water tank and the ice-making cylinder to the outside by selective opening, and a judgment for determining whether or not the water has been drained from the drain means 5 at the time of startup. means 6, and a drainage control means 5a that controls the drainage valve means 5 to open when the determination means 6 determines that the water is not drained, and after the drainage control means 5a controls the water supply, the water supply control means 4 and ice making control are performed. The means 4a performs each control in sequence, and when the determining means 6 determines that the water has been drained, the ice making control means 4a performs the control.

(作用) このように第1の発明を構成したことにより、給水操作
手段3を操作すれば、給水制御手段4が給水弁手段lを
開成する。すると、前記給水源が製氷水を前記製氷水タ
ンク及び製氷筒体内に給水する。ついで、前記製氷水タ
ンク内の製氷水が前記所定上限量に達したとき、これを
、製氷水検出手段2が検出すると、給水制御手段4が給
水弁手段1を閉成する。また、製氷制御手段4aが製氷
水検出手段2の検出に伴い前記冷凍サイクル及び駆動手
段1aを作動させる。これにより、前記冷凍サイクルの
作動のもとに前記オーガが駆動手段laにより駆動され
て製氷を行う。
(Function) By configuring the first invention as described above, when the water supply operation means 3 is operated, the water supply control means 4 opens the water supply valve means 1. Then, the water supply source supplies ice-making water into the ice-making water tank and the ice-making cylinder. Next, when the ice making water in the ice making water tank reaches the predetermined upper limit amount and the ice making water detection means 2 detects this, the water supply control means 4 closes the water supply valve means 1. Further, the ice-making control means 4a operates the refrigeration cycle and the driving means 1a upon detection by the ice-making water detection means 2. As a result, the auger is driven by the driving means la under the operation of the refrigeration cycle to make ice.

上述のような作用にあたり、始動時に判断手段6が、排
水弁手段5が未排水であるとの判断をした場合には、排
水制御手段5aが排水弁手段5を開成させる。このため
、前記製氷筒体及び製氷水タンク内の製氷水が排水され
る。然る後、上述の給水弁手段lによる給水及びオーガ
による製氷がなされる。また、判断手段6が排水済みと
判断したときには、上述のオーガによる製氷がなされる
In the above-described operation, when the determining means 6 determines that the drain valve means 5 is not drained at the time of startup, the drain control means 5a opens the drain valve means 5. Therefore, the ice-making water in the ice-making cylinder and the ice-making water tank is drained. Thereafter, water is supplied by the water supply valve means 1 and ice is made by the auger. Furthermore, when the determining means 6 determines that the water has been drained, ice is made using the auger described above.

(効果) このように、前記冷凍サイクルの作動下における前記オ
ーガによる製氷に先立ち、前記製氷水タンク及び製氷筒
体への給水、排水及び給水を順次行うので、最初の給水
時に前記製氷水タンク及び製氷筒体の内部が洗浄される
とともに濃縮不純物や異物が製氷水中に浮遊し、これら
浮遊物が前記排水時に外部へ排出され、然る後の前ご己
再度の給水後に上述のオーガによる製氷がなされる。
(Effect) In this way, prior to ice making by the auger during the operation of the refrigeration cycle, water is sequentially supplied to, drained from, and supplied to the ice making water tank and the ice making cylinder, so that during the first water supply, the ice making water tank and the ice making cylinder are As the inside of the ice-making cylinder is cleaned, concentrated impurities and foreign substances are suspended in the ice-making water, and these suspended substances are discharged to the outside during the draining process. It will be done.

従って、このオーガによる製氷時には前記製氷水タンク
や製氷筒体内に濃縮不純物や異物が残存することが殆ど
ないので、前記オーガの軸受部等が濃縮不純物や異物の
侵入により悪影響を受けることがなく、また、前記オー
ガにより製氷される水中に濃縮不純物や異物が混入する
ことなく衛生的な氷が確保される。
Therefore, when ice is made by this auger, almost no concentrated impurities or foreign substances remain in the ice-making water tank or the ice-making cylinder, so that the bearings of the auger are not adversely affected by the intrusion of concentrated impurities or foreign substances. In addition, sanitary ice is ensured without condensed impurities or foreign matter being mixed into the water produced by the auger.

また、上記第1の発明において、第1A図にて二点鎖線
により示すごとく、排水弁手段5による排水が必要なと
き操作される排水操作手段3日を設けて、この排水操作
手段3aの操作に伴い排水制御手段58が排水弁手段5
aを開成すべく制御するようにした場合には、この制御
に基く前記製氷水タンク及び製氷筒体内からの排水後に
も、上述と同様の給水、排水及び給水がなされた後に、
前記オーガによる製氷作用が行なわれるので、上記第1
の発明による効果と同様の効果を排水操作手段3aの操
作によっても達成できる。従って、前記製氷水タンク及
び製氷筒体内の洗浄効果をより一層高め得る。
Further, in the first aspect of the invention, as shown by the two-dot chain line in FIG. 1A, a three-day period is provided for the drainage operation means to be operated when drainage by the drainage valve means 5 is required, and the operation of the drainage operation means 3a is provided. Accordingly, the drainage control means 58 is activated by the drainage valve means 5.
In the case where the control is performed to open the ice-making water tank and the ice-making cylinder based on this control, after the same water supply, drainage, and water supply as described above are performed,
Since the ice making action is performed by the auger, the first
Effects similar to those achieved by the invention can also be achieved by operating the drainage operating means 3a. Therefore, the cleaning effect inside the ice-making water tank and the ice-making cylinder can be further enhanced.

また、上記第1の発明において、判断手段6に代えて、
第1B図に示すごとく、排水弁手段5による排水が必要
なとき操作される排水操作手段3aを設けて、この排水
操作手段3aの操作に伴い排水制御手段5aが排水弁手
段5を開成すべく制御するようにした場合には、排水操
作手段3aの任意の操作時に第1の発明と同様の効果を
達成でき る。
Further, in the first invention, instead of the determining means 6,
As shown in FIG. 1B, a drain operation means 3a is provided which is operated when drainage by the drain valve means 5 is required, and the drain control means 5a is configured to open the drain valve means 5 when the drain operation means 3a is operated. When controlled, the same effect as the first invention can be achieved when the drainage operation means 3a is operated at any time.

(課題を解決するための手段) また、上記課題の解決にあたり、第2の発明は、第1C
図に示すごとく、給水源から製氷水を給水されて貯える
製氷水タンクと、この製氷水タンクからの製氷水を収容
する製氷筒体と、前記給水源から前記製氷水タンクへの
給水を開成(又は閉成)により許容(又は遮断)する給
水弁手段1と、前記製氷筒体内の収容製氷水を循環冷媒
に応じ氷結させる冷凍サイクルと、前記製氷筒体内にて
回動可能に軸支されて回動に応じ前記製氷筒体内の結氷
を前取して貯氷庫内へ導出するオーガと、このオーガを
作動に応じて回動させる駆動手段1aとを備えた製氷機
において、前記製氷水夕/り内の収容製氷水が所定上限
量(又は所定下限N)に達したときこれを検出し上限検
出状啄(又は下限検出状態)になる製氷水検出手段2と
、前記貯氷庫内の貯氷量が充足したときこれを検出する
貯氷検出生段28と、この貯氷検出手段2aの非検出状
態において給水弁手段1を製氷水検出手段2の下限検出
状態(又は上限検出状態)のもとに開成(又は閉成)す
るように制御する給水制御手段4と、製氷水検出手段2
の上限検出状態の成立に伴い前記冷凍サイクル及び駆動
手段18を作動するように制御し、また貯氷検出手段2
aの検出状態にて前記冷凍サイクル及び駆動手段1aを
停止するように制御する製氷制御手段4Bとを備え、ま
た、前記製氷水タンク及び製氷筒体内の製氷水の外部へ
の排水を選択的開成により許容する排水弁手段5と、製
氷水検出手段2がその上限検出状態になるまで前記製氷
水タンク内に製氷水が給水されたとき、この給水前に排
水弁手段5が排水したか否かを判断する判断手段6と、
この判断手段6による未排水との判断時に排水弁手段5
を開成するように制御する排水制御手段5Bとを設け、
この排水制御手段5aの制御後給水制御手段4が給水弁
手段1を開成するように制御し、また判断手段6による
排水済みとの判断時には製氷制御手段4aが前記冷凍サ
イクル及び駆動手段18を作動すべく制御するようにし
たことにある。
(Means for solving the problem) Furthermore, in solving the above problem, the second invention is based on the first C.
As shown in the figure, there is an ice-making water tank that receives and stores ice-making water from a water supply source, an ice-making cylinder that accommodates ice-making water from the ice-making water tank, and an open water supply from the water source to the ice-making water tank. a water supply valve means 1 that allows (or shuts off) the ice-making water contained in the ice-making cylinder according to the circulating refrigerant; In the ice making machine, the ice making machine includes an auger that pre-collects frozen ice in the ice making cylinder and leads it out into the ice storage according to the rotation, and a drive means 1a that rotates the auger according to the operation. an ice-making water detection means 2 that detects when the stored ice-making water in the ice storage reaches a predetermined upper limit amount (or a predetermined lower limit N) and enters an upper limit detection state (or a lower limit detection state); An ice storage detection step 28 detects when the ice storage detection means 2a is satisfied, and when the ice storage detection means 2a is in a non-detection state, the water supply valve means 1 is opened under the lower limit detection state (or upper limit detection state) of the ice making water detection means 2. (or close); and ice-making water detection means 2.
When the upper limit detection state is established, the refrigeration cycle and drive means 18 are controlled to operate, and the ice storage detection means 2
an ice-making control means 4B that controls the refrigeration cycle and the driving means 1a to be stopped in the detected state of a, and selectively opens drainage of the ice-making water in the ice-making water tank and the ice-making cylinder to the outside. When ice-making water is supplied into the ice-making water tank until the ice-making water detecting means 2 and the ice-making water detecting means 2 reach the upper limit detection state, whether or not the drain valve means 5 drains water before this water supply. Judgment means 6 for judging;
When the determination means 6 determines that the water is not drained, the drain valve means 5
and drainage control means 5B for controlling the water to be opened.
After controlling the drainage control means 5a, the water supply control means 4 controls the water supply valve means 1 to open, and when the judgment means 6 determines that the water has been drained, the ice making control means 4a operates the refrigeration cycle and the drive means 18. The reason is that we tried to control it as much as possible.

(作用) このように第2の発明を構成したことにより、貯氷検出
手段2aの非検出状態及び製氷水検出手段2の下限検出
状態にて給水制御手段4が給水弁手段】を開成すれば、
前記給水源が前記製氷水タンク及び製氷筒体内に製氷水
を給水する。ついで、製氷水検出手段2が上限検出状態
になると、給水制御手段4が給水弁手段lを開成すると
ともに、製氷制御手段4aが前記冷凍サイクル及び駆動
手段1aを作動させる。これにより、前記冷凍サイクル
の作動のもとに前記オーガが駆動手段1aにより駆動さ
れて製氷を行なう。
(Function) By configuring the second invention as described above, if the water supply control means 4 opens the water supply valve means] in the non-detection state of the ice storage detection means 2a and the lower limit detection state of the ice-making water detection means 2,
The water supply source supplies ice-making water into the ice-making water tank and the ice-making cylinder. Then, when the ice-making water detection means 2 reaches the upper limit detection state, the water supply control means 4 opens the water supply valve means 1, and the ice-making control means 4a operates the refrigeration cycle and the driving means 1a. As a result, the auger is driven by the driving means 1a under the operation of the refrigeration cycle to make ice.

然る後、製氷水検出手段28が下限検出状態になると、
給水制御手段4が上述と同様に給水弁手段1を介し前記
給水源から前記製氷水タンク及び製氷筒体内に給水する
。ついで、製氷水検出手段2aが上限検出状態になると
、上述と同様に給水弁手段1の閉成のもとに製氷作用が
行なわれる。
After that, when the ice-making water detection means 28 reaches the lower limit detection state,
The water supply control means 4 supplies water from the water supply source to the ice making water tank and the ice making cylinder through the water supply valve means 1 as described above. Then, when the ice-making water detecting means 2a reaches the upper limit detection state, the ice-making operation is performed with the water supply valve means 1 closed in the same manner as described above.

以下、同様の作用の繰返しのもとに、前記貯氷庫内の貯
氷量が充足した旨、貯氷検出手段2aが検出すると、製
氷制御手段4日が前記冷凍サイクル及び駆動手段1日を
停止させる。
Thereafter, by repeating the same operation, when the ice storage detection means 2a detects that the amount of ice stored in the ice storage is sufficient, the ice making control means 4th stops the refrigeration cycle and the driving means 1st.

上述のような作用において、製氷水検出手段2の検出時
に判断手段6が、排水弁手段5が未排水であるとの判断
をした場合には、排水制御手段5aが排水弁手段5を開
成させる。このため、前記製氷筒体及び製氷ホラ/り内
の製氷水が排水される。然る後、上述の給水弁手段1に
よる給水及びオーガによる製氷がなされる。また、判断
手段6が排水済みと判断したときには、上述のオーガに
よる製氷がなされる。
In the above-described operation, when the judgment means 6 determines that the drain valve means 5 is not drained when the ice-making water detection means 2 detects the water, the drain control means 5a opens the drain valve means 5. . Therefore, the ice-making water in the ice-making cylinder and ice-making conch is drained. Thereafter, water is supplied by the water supply valve means 1 and ice is made by the auger. Furthermore, when the determining means 6 determines that the water has been drained, ice is made using the auger described above.

(効果) このように、貯氷検出手段2aの非検出状態での前記冷
凍サイクルの作動下における前記オーガによる各製氷に
先立ち、前記製氷水タンク及び製氷筒体への給水、排水
及び給水を順次繰返し行うので、各最初の給水時に、繰
返し、前記製氷水タンク及び製氷筒体の内部が洗浄され
るとともに濃縮不純物や異物が製氷水中に浮遊し、これ
ら浮遊物が前記排水時に外部へ排出され、然る後の前記
再度の給水後における上述のオーガによる製氷がなされ
る。
(Effect) In this way, prior to each ice making operation by the auger under the operation of the refrigeration cycle in the non-detection state of the ice storage detection means 2a, water supply, drainage, and water supply to the ice making water tank and the ice making cylinder body are sequentially repeated. Therefore, during each first water supply, the inside of the ice-making water tank and the ice-making cylinder are repeatedly cleaned, and concentrated impurities and foreign substances are suspended in the ice-making water, and these suspended substances are discharged to the outside during the draining process. Ice is made by the auger described above after the water is supplied again.

従って、このオーガによる各製氷時には前記製氷水タン
クや製氷筒体内に濃縮不純物や異物が残存することが殆
どないので、前記オーガの軸受部等が濃縮不純物や異物
の侵入により悪影響を受けることがなく、また、前記オ
ーガにより製氷される水中に濃縮不純物や異物が混入す
ることなく衛生的な氷が前記貯氷庫内に確保される。
Therefore, during each ice making process using this auger, almost no concentrated impurities or foreign matter remain in the ice-making water tank or the ice-making cylinder, so that the bearings of the auger are not adversely affected by the intrusion of concentrated impurities or foreign matter. Furthermore, sanitary ice is ensured in the ice storage without condensed impurities or foreign matter being mixed into the water produced by the auger.

また、上記第2の発明において、第1D図にて実線によ
り示すごとく、判断手段6の判断に代えて、貯氷検出手
段2aの検出時に排水制御手段5aが排水弁手段5を開
成すべく制御するようにした場合には、前記貯氷庫内の
貯氷量が充足するごとに、上記第2の発明と同様の効果
が達成される。
Further, in the second aspect of the invention, as shown by the solid line in FIG. 1D, instead of the determination by the determination means 6, the drainage control means 5a controls the drainage valve means 5 to open when the ice storage detection means 2a detects the ice accumulation. In this case, the same effect as the second invention can be achieved every time the amount of ice stored in the ice storage is sufficient.

また、上記第2の発明において、第1E図にて実線によ
り示すごとく、判断手段6に代えて、排水弁手段5によ
る排水が必要なとき操作される排水操作手段3aを設け
、この排水操作手段3aの操作に伴い排水制御手段5a
が排水弁手段5を開成すべく制御するようにした場合に
は、排水操作手段3aの任意の操作時毎に、前記第2の
発明と同様の効果が達成される。
Furthermore, in the second aspect of the invention, as shown by the solid line in FIG. 1E, in place of the determining means 6, a drainage operation means 3a is provided which is operated when drainage by the drainage valve means 5 is required. 3a, the drainage control means 5a
When the drain valve means 5 is controlled to open, the same effects as in the second invention can be achieved every time the drain operation means 3a is operated.

また、上記第2の発明(第1C図にて実線参照)におい
て、第1C図又は第1D図にて二点鎖線により示すごと
く、排水弁手段5による排水が必要なとき操作される排
水操作手段3aを設けて、この排水操作手段3aの操作
に伴い排水制御手段5Bが排水弁手段5を開成すべく制
御するようにした場合には、排水操作手段3aの任意の
操作時毎にも上記第2の発明と同様の効果が達成される
Further, in the second invention (see the solid line in Fig. 1C), as shown by the two-dot chain line in Fig. 1C or Fig. 1D, a drainage operating means is operated when drainage by the drainage valve means 5 is required. 3a is provided, and when the drain control means 5B controls the drain valve means 5 to open in accordance with the operation of the drain operation means 3a, the above-mentioned operation is performed every time the drain operation means 3a is operated. Effects similar to those of invention No. 2 are achieved.

また、上記第2の発明において、第1c図、第1D図又
は第1E図にて破線により示すごとく、所定計時時間を
繰返し計時する計時手段3bを設けて、この計時手段3
bの計時終了毎に排水制御手段5aが排水弁手段5を開
成すべく制御するようにした場合には、計時手段3bの
計時終了毎に上記第2の発明と同様の効果が達成される
Further, in the second aspect of the invention, as shown by broken lines in FIG. 1c, FIG. 1D, or FIG.
When the drain control means 5a controls the drain valve means 5 to open every time the time measurement of b is completed, the same effect as the second invention can be achieved every time the time measurement means 3b ends.

(課題を解決するための手段) 上記課題の解決にあたり、第3の発明の構成上の特徴は
、第1F図にて実線により示すごとく、給水源から製氷
水を給水されて貯える製氷水タンクと、この製氷水タン
クからの製氷水を収容する製氷筒体と、前記給水源から
前記製氷水タンクへの給水を開成(又は閉成)により許
容(又は遮断)する給水弁手段lと、前記製氷筒体内の
収容製氷水を循環冷媒に応じ氷結させる冷凍サイクルと
、前記製氷筒体内にて回動可能に軸支されて回動に応じ
前記製氷筒体内の結氷を前取して貯氷庫内へ導出するオ
ーガと、このオーガを作動に応じて回動させる駆動手段
1aとを備えた製氷機において、前記製氷水タンク内の
収容製氷水が所定上限量(又は所定下限量)に達したと
きこれを検出し上限検出状態(又は下限検出状態)にな
る製氷水検出手段2と、前記貯氷庫内の貯氷量が充足し
たときこれを検出する貯氷検出手段2aと、この貯氷検
出手段2aの非検出状態にて給水弁手段1を製氷水検出
手段2の下限検出状態(又は上限検出状態)のらとに開
成(又は閉成)するように制御する給水制御手段1と、
製氷水検出手段2の上限検出状態の成立に伴い前記冷凍
サイクル及び駆動手段laを作動するように制御し、ま
た貯氷検出手段2aの検出状態にて前記冷凍サイクル及
び駆動手段laを停止するように制御する製氷制御手段
4aとを備え、また、前記製氷水タンク及び製氷筒体内
の製氷水の外部への排水を選択的開成により許容する排
水弁手段5と、製氷水検出手段2がその上限検出状態に
なるまで前記製氷水タンク内に製氷水が給水されたとき
、この給水前に排水弁手段5が排水したか否かを判断す
る判断手段6と、排水弁手段5による排水が必要なとき
操作される排水操作手段3aと、所定計時時間を繰返し
計時する計時手段3bと、判断手段6による未排水との
判断時、計時手段3bの各計時終了時或いは排水操作手
段38の操作時に排水弁手段5を開成するように制御す
る排水制御手段5aとを設け、この排水制御手段5aの
制御後給水制御手段4が給水左手0段1を開成するよう
に制御し、また判断手段6による排水済みとの判断時に
は製氷制御手段5aが前記冷凍サイクル及び駆動手段1
aを作動すべく制御するようにしたことにある。
(Means for Solving the Problems) In solving the above problems, the configurational feature of the third invention is as shown by the solid line in FIG. , an ice-making cylinder body that accommodates ice-making water from the ice-making water tank, a water supply valve means l that allows (or shuts off) water supply from the water supply source to the ice-making water tank by opening (or closing), and the ice-making water tank. A refrigeration cycle that freezes the ice-making water stored in the cylinder according to the circulating refrigerant, and a refrigeration cycle that is rotatably supported in the ice-making cylinder and pre-collects frozen ice in the ice-making cylinder according to the rotation and transfers it into the ice storage. In an ice making machine equipped with an auger for guiding out the auger and a driving means 1a for rotating the auger according to the operation, when the ice making water stored in the ice making water tank reaches a predetermined upper limit amount (or a predetermined lower limit amount). ice-making water detection means 2 that detects the amount of ice and enters the upper limit detection state (or lower limit detection state), ice storage detection means 2a that detects when the amount of ice stored in the ice storage is sufficient, and non-detection of the ice storage detection means 2a. water supply control means 1 for controlling the water supply valve means 1 to open (or close) to the lower limit detection state (or upper limit detection state) of the ice-making water detection means 2 in the above state;
The refrigeration cycle and the drive means la are controlled to operate when the upper limit detection state of the ice making water detection means 2 is established, and the refrigeration cycle and the drive means la are stopped when the ice storage detection means 2a is detected. ice-making control means 4a for controlling ice-making water; and drain valve means 5 for selectively opening to allow draining of the ice-making water in the ice-making water tank and the ice-making cylinder to the outside; When ice-making water is supplied into the ice-making water tank until the ice-making water tank is supplied with water, there is a determining means 6 for determining whether or not the drain valve means 5 has drained the water before the ice-making water is supplied, and when the drain valve means 5 needs to drain the water. The drain operation means 3a that is operated, the time measurement means 3b that repeatedly measures a predetermined time, and the drain valve when the judgment means 6 determines that the water is not drained, when each time measurement by the time measurement means 3b ends, or when the drainage operation means 38 is operated. After controlling the drainage control means 5a, the water supply control means 4 controls the water supply left stage 0 stage 1 to be opened, and the determination means 6 determines that the water has been drained. When it is determined that the ice-making control means 5a
The reason is that it is controlled to operate a.

(作用効果) このように第3の発明を構成したことにより、判断手段
6の未排水との判断時、計時手段3bの計時終了時又は
排水操作手段3日の操作時毎に前記第1又は第2の発明
と同様の作用効果が得られる。また、計時手段3b、排
水操作手段3a及び判断手段6の三つの手段で(・って
相乗的に上述の効果が達成されるので、前記製氷水タン
ク及び製氷筒体内の洗浄効果がより一層高められる。
(Operation and Effect) By configuring the third invention in this way, the first or The same effects as the second invention can be obtained. In addition, since the above-mentioned effects are achieved synergistically by the three means of the timer 3b, the drain operation means 3a, and the judgment means 6, the cleaning effect inside the ice-making water tank and the ice-making cylinder is further enhanced. It will be done.

また、この第3の発明において、第1F図にて点鎖線に
より示すごとく、貯氷検出手段2aの検出時に排水制御
手段5aが排水弁手段5を開成すべく制御するようにし
た場合には、貯氷検出手段2aの検出時にも前記第3の
発明と同様の作用効果が達成される。
In addition, in this third invention, as shown by the dotted chain line in FIG. The same effects as in the third aspect of the present invention can also be achieved during detection by the detection means 2a.

(実施例) 以下、本発明の一実施例を図面により説明すると、第2
図及び第3図は、オーガ式製氷機の一例を示しており、
この製氷機は、製氷機本体B(第2図参照)と、冷凍サ
イクルR(第3図1#照)によって構成されている。製
氷機本体Bは、モータMgにより駆動される減速機10
を有しており、この減速機】0は、そのケーシング11
内の減速歯車機構により、モータMgの回転速度を減速
してケーシング11の垂直円筒部11a内の出力軸12
に伝達する。製氷筒体20は、段付筒体21の7ランノ
部を垂直円筒部11aの上端に各ネジ22により締着し
て、当該垂直円筒部11a上に垂直にかつ同軸的に立設
してなるもので、この製氷筒体20の底部内には、排水
管20aが、その基端部にて開口し製氷筒体20及び断
熱筒体23の各周壁下部を通り外方へ延出している。こ
の排水管2Oa中には、常閉型電磁弁からなる排水弁D
Vが介装されており、この排水弁DVは、その選択的開
成により、製氷筒体20及び製氷水タンク60内に後述
のように流入する製氷水を排水管20aから外部へ排出
する。また、製氷筒体20の外周面には、エバポレータ
30が同軸的に巻装されており、このエバポレータ30
はその流入冷媒に応じ製氷筒体20内に流入する製氷水
を冷却してフレーク状に氷結させる。なお、第2図にて
符号22aは、段付筒体21の大径部内にて製氷筒体2
0の下端部を同軸的に固定するためのネジを示す。
(Example) Hereinafter, one example of the present invention will be described with reference to the drawings.
The figure and Fig. 3 show an example of an auger-type ice maker.
This ice maker is composed of an ice maker body B (see FIG. 2) and a refrigeration cycle R (see 1# in FIG. 3). The ice maker body B includes a reducer 10 driven by a motor Mg.
This reducer]0 has a casing 11
The rotational speed of the motor Mg is reduced by the reduction gear mechanism inside the output shaft 12 inside the vertical cylindrical part 11a of the casing 11.
to communicate. The ice-making cylinder 20 is constructed by fixing the seven run parts of the stepped cylinder 21 to the upper end of the vertical cylindrical part 11a with screws 22, and standing vertically and coaxially on the vertical cylindrical part 11a. In the bottom of the ice-making cylinder 20, a drain pipe 20a opens at its base end and extends outward through the lower portions of the peripheral walls of the ice-making cylinder 20 and the heat-insulating cylinder 23. In this drain pipe 2Oa, there is a drain valve D consisting of a normally closed solenoid valve.
When the drain valve DV is selectively opened, the ice-making water flowing into the ice-making cylinder 20 and the ice-making water tank 60 as described later is discharged to the outside from the drain pipe 20a. Further, an evaporator 30 is coaxially wound around the outer peripheral surface of the ice-making cylinder 20.
The ice-making water flowing into the ice-making cylinder 20 is cooled in response to the inflowing refrigerant and frozen into flakes. In addition, in FIG.
A screw for coaxially fixing the lower end of 0 is shown.

オーガ40は、製氷筒体20内にて同軸的に回転可能に
嵌装されており、このオーガ40の下端回動軸41は、
ケーシング11の垂直円筒部11a内にて出力軸12に
相対回転不能に軸支されている。しかして、オーガ40
は、その回転に応じ、蝉旋歯42により、製氷筒体20
内の結氷を順次開数して上方に向は案内する。
The auger 40 is fitted coaxially and rotatably within the ice-making cylinder 20, and the lower end rotation shaft 41 of the auger 40 is
The output shaft 12 is rotatably supported within the vertical cylindrical portion 11a of the casing 11 so as not to be relatively rotatable. However, Auger 40
According to the rotation, the ice-making cylinder 20 is rotated by the spiral teeth 42.
The ice inside is gradually opened and guided upward.

複数の直方体形状の圧縮部材50は、製氷筒体20の上
端部内周面と、オーガ40の上端回動軸43に回動自在
に嵌装したスリーブメタル51との間にて、円周方向に
等角度間隔にて配設されており、これら各圧縮部材50
は、各ネジ52の締着により、製氷筒体20の上端部に
固定されてスリーブメタル51を同軸的に軸支する。し
かして、各圧縮部材50は、オーガ40により上方へ案
内される水を棒状に圧縮し棒状の圧縮水として形成する
。また、カッター53は、オーガ40の上端回動軸43
の上端部に同軸的に嵌着されており、このカッター53
は、各圧縮部材50からの棒状圧縮水を順次折断して案
内筒54を通し貯氷庫(図示しない)内に案内する。
The plurality of rectangular parallelepiped compression members 50 are arranged in the circumferential direction between the inner peripheral surface of the upper end of the ice-making cylinder 20 and the sleeve metal 51 rotatably fitted to the upper end rotation shaft 43 of the auger 40. These compression members 50 are arranged at equal angular intervals.
is fixed to the upper end of the ice-making cylinder 20 by tightening each screw 52, and supports the sleeve metal 51 coaxially. Thus, each compression member 50 compresses the water guided upward by the auger 40 into a rod shape and forms it as rod-shaped compressed water. Further, the cutter 53 is connected to the upper end rotation shaft 43 of the auger 40.
The cutter 53 is coaxially fitted to the upper end of the cutter 53.
The rod-shaped compressed water from each compression member 50 is sequentially broken and guided into the ice storage (not shown) through the guide tube 54.

製氷水タンク60は、第2図に示すごとく、製氷筒体2
0の側方にて適宜な静止部材により支持されており、こ
の製氷水タンク60内には、給水源60aからの製氷水
が、給水管61中に介装した常閉型電磁弁からなる給水
弁W■の選択的開成下にて給水されるようになっている
。また、製氷水タンク60は、その収容製氷水を配管6
2を介し製氷筒体20内にその下端開口部24から流入
させるようになっている。製氷水タンク60内には、フ
ロートスイッチ機構70が、製氷水タンク60の土壁右
方部から垂下して配設されており、また、オーバーフロ
ー管80が、その上端部81にて、製氷水タンク60の
低壁左方部を介し垂直状に延出している。
As shown in FIG.
The ice-making water tank 60 is supplied with ice-making water from a water supply source 60a through a normally closed solenoid valve interposed in a water supply pipe 61. Water is supplied when valve W■ is selectively opened. In addition, the ice-making water tank 60 carries the stored ice-making water through a pipe 6.
2 into the ice-making cylinder 20 from its lower end opening 24. Inside the ice-making water tank 60, a float switch mechanism 70 is disposed to hang down from the right side of the earthen wall of the ice-making water tank 60, and an overflow pipe 80 is connected at its upper end 81 to the ice-making water tank 60. It extends vertically through the left side of the low wall of the tank 60.

フロートスイッチ機構70は、非磁性材料からなる中空
ロッド71を有しており、この中空ロッド71は、製氷
水タンク60の土壁右方部から垂下している。中空ロッ
ド71の外周面には、各−対の履板状ストッパ72.7
3及び74.75が、下方から上方にかけて適宜間隔に
て同軸的に嵌着されており、両ストyパフ2.73間に
ては、環状フロート76が中空口yドア1に同軸的にか
つ上下動自在に遊嵌され、一方、両ストッパ7475間
にては、環状フロート77が中空ロンドブスに同軸的に
かつ上下動自在に遊嵌されている。
The float switch mechanism 70 has a hollow rod 71 made of a non-magnetic material, and this hollow rod 71 hangs down from the right side of the earthen wall of the ice-making water tank 60. Each pair of shoe-shaped stoppers 72.7 is provided on the outer peripheral surface of the hollow rod 71.
3 and 74.75 are coaxially fitted at appropriate intervals from the bottom to the top, and between the two stroke puffs 2.73, an annular float 76 is coaxially fitted to the hollow door 1. On the other hand, between both stoppers 7475, an annular float 77 is coaxially fitted to the hollow rondbus and freely movable up and down.

但し、各フロー)76.77の中空部には環状マグネy
 ドア 6 a、  77 aがそれぞれ同軸的に嵌着
されている。また、中空ロッド71の中空部内には、各
常開型リードスイッチ7879が各ストッパ73.75
にそれぞれ対応して埋設されており、 ソードスイッチ
78はフロート76と共に常開型下限フロートスイッチ
FQを構成し、一方、リードスイッチ79は、フロート
77と共に常開璽上限フロートスイッチFuを構成する
However, each flow) 76.77 has an annular magnet y in the hollow part.
Doors 6a and 77a are coaxially fitted into each other. In addition, each normally open type reed switch 7879 is located inside the hollow portion of the hollow rod 71, and each stopper 73, 75
The sword switch 78 and the float 76 constitute a normally open lower limit float switch FQ, while the reed switch 79 and the float 77 constitute a normally open upper limit float switch Fu.

しかして、 リードスイッチ78は、フロート76のス
トッパ72への着座に基づき開成する。このことは、下
限フロートスイッチF2の開成を意味する。一方、製氷
水タンク60内の製氷水の水面レベルが下限レベルLQ
に達すると、リードスイッチ78は、下限レベルLPに
て浮遊するフロート76のマグネット76aにより閉成
される。
Thus, the reed switch 78 opens based on the seating of the float 76 on the stopper 72. This means that the lower limit float switch F2 is opened. On the other hand, the water surface level of the ice-making water in the ice-making water tank 60 is at the lower limit level LQ.
When the reed switch 78 reaches the lower limit level LP, the reed switch 78 is closed by the magnet 76a of the float 76 floating at the lower limit level LP.

このことは、下限フロートスイッチF2の閉成を意味す
る。また、リードスイッチ79は、フロート77のスト
ッパ74への着座に基づき開成する。
This means closing the lower limit float switch F2. Further, the reed switch 79 is opened based on the seating of the float 77 on the stopper 74 .

このことは、上限フロートスイッチFuの開成を意味す
る。一方、製氷水タンク60内の製氷水の水面レベルが
上限レベルLuに達すると、リードスイッチ79は、上
限レベルLuにて浮遊するフロート77のマグネット7
7aにより閉成される。このことは、製氷水タンク60
への給水完了に伴う上限フロートスイッチFuの閉成を
意味する。なお、オーバフロー管80は、製氷水タンク
50内の製氷水の水面レベルが上限レベルLaを越えた
とき、この超過製氷水をオーバーフロー管80を通し外
部へ排出する。
This means that the upper limit float switch Fu is opened. On the other hand, when the water surface level of the ice-making water in the ice-making water tank 60 reaches the upper limit level Lu, the reed switch 79 activates the magnet 7 of the float 77 floating at the upper limit level Lu.
7a. This means that the ice making water tank 60
This means the closing of the upper limit float switch Fu upon completion of water supply. Note that the overflow pipe 80 discharges the excess ice-making water to the outside through the overflow pipe 80 when the water level of the ice-making water in the ice-making water tank 50 exceeds the upper limit level La.

冷凍サイクルRは、第3図に示すごと(、コンプレッサ
90を有しており、コンプレッサ90は、そのコンプレ
ッサモータMe(第4図参照)により駆動されてエバポ
レータ30から配管P1を通し冷媒を吸入圧縮し高温高
圧の圧縮冷媒として配管P2を通しコンデンサ100に
流入させる。コンデンサ100は、空冷ファン100a
の空冷作用に応じ、流入圧縮冷媒を凝縮して配管P3を
通しレシーバ110に流入させる。空冷ファン100m
は、ファンモータMf(第4図参照)の作動により空冷
作用を果たす。レシーバ110は、その流入凝縮冷媒を
気液分離し、液相成分のみを循環冷媒として配管P4を
通し膨張弁120に流入させる。膨張弁120はその流
入冷媒を膨張させて配管P5を通しエバポレータ30に
流入させる。
The refrigeration cycle R has a compressor 90 as shown in FIG. 3, and the compressor 90 is driven by the compressor motor Me (see FIG. 4) to draw in and compress refrigerant from the evaporator 30 through the pipe P1. The compressed refrigerant at high temperature and high pressure is caused to flow into the condenser 100 through the pipe P2.
In response to the air cooling effect, the incoming compressed refrigerant is condensed and flows into the receiver 110 through the pipe P3. Air cooling fan 100m
performs an air cooling effect by operating a fan motor Mf (see FIG. 4). The receiver 110 separates the incoming condensed refrigerant into gas and liquid, and causes only the liquid phase component to flow into the expansion valve 120 through the pipe P4 as a circulating refrigerant. The expansion valve 120 expands the incoming refrigerant and causes it to flow into the evaporator 30 through the pipe P5.

次に、本発明の要部を構成する製氷機のための制御装置
の構成について説明すると、この制御装置は、第4図に
示すごとく、その両共通導線Ll。
Next, the configuration of the control device for the ice maker, which constitutes the essential part of the present invention, will be explained. As shown in FIG.

L2間にて、商用電源Psから電源スィッチS1を介し
交流電圧を印加されるようになっている。また、この制
御装置は、常開型貯氷検出スイッチS2及び常開型自己
復帰式排水スイッチS3を有しており、貯氷検出スイッ
チS2は、前記貯氷庫内に水が充満したときこれを検出
し閉成する。排水スイッチS3は、製氷筒体20及び製
氷水タンク60内の製氷水を排水するとき操作されて一
時的に閉成する。
Between L2, AC voltage is applied from the commercial power source Ps via the power switch S1. This control device also includes a normally open ice storage detection switch S2 and a normally open self-resetting drain switch S3, and the ice storage detection switch S2 detects when the ice storage is filled with water. Close. The drain switch S3 is operated and temporarily closed when draining the ice-making water in the ice-making cylinder 20 and the ice-making water tank 60.

また、この制御装置は、各リレーコイルRv、RRx、
Ry及びRzを有しており、リレーコイルRvは常開型
リレースイッチWと共にリレーを構成している。しかし
て、リレーコイルRvは、その励磁により、リレースイ
ッチWを閉成する。また、リレースイッチWはその一端
にて共通導線L1に接続されており、このリレースイッ
チWの他端はコンプレ、サモータMeを介して共通導線
L2に接続されている。このため、コンプレッサモータ
Meは、リレースイッチWの閉成により両共通導線Ll
、L2から交流電圧を受けて作動する。
Moreover, this control device includes each relay coil Rv, RRx,
The relay coil Rv constitutes a relay together with a normally open type relay switch W. Thus, the relay coil Rv closes the relay switch W by its excitation. Further, one end of the relay switch W is connected to a common conducting wire L1, and the other end of this relay switch W is connected to a common conducting wire L2 via a compressor and a thermotor Me. Therefore, the compressor motor Me is connected to both common conductors Ll by closing the relay switch W.
, L2 receives AC voltage and operates.

リレーコイルRxは両常開塁リレースイッチXlX2と
共にリレーを構成しており、このリレーフィルRxは、
その励磁により、両リレースイッチX1、x2を閉成す
る。また、リレースイッチXiは、その一端にて、共通
導線L】に接続されており、このリレースイッチx1の
他端は、モータMgを介し共通導線L2に接続されてい
る。このため、モータMgは、リレースイッチX1の閉
成下にて、両共通導線L 1.L 2から交流電圧を受
けて作動する。一方、リレースイッチX2は、その一端
にて、共通導線Llに接続されており、このリレースイ
ッチx2の他端は、ファンモータMfを介し共通導線L
2に接続されている。このため、ファンモータMfは、
リレースイッチX2の閉成下にて、両共通導線L 1.
 L 2から交流電圧を受けて作動する。
The relay coil Rx constitutes a relay together with both normally open base relay switches XlX2, and this relay fill Rx is
The excitation closes both relay switches X1 and x2. Further, the relay switch Xi is connected at one end to a common conducting wire L, and the other end of this relay switch x1 is connected to a common conducting wire L2 via a motor Mg. Therefore, when the relay switch X1 is closed, the motor Mg connects both common conductors L1. It operates by receiving AC voltage from L2. On the other hand, the relay switch X2 is connected at one end to the common conductor Ll, and the other end of the relay switch
Connected to 2. Therefore, the fan motor Mf is
With relay switch X2 closed, both common conductors L1.
It operates by receiving AC voltage from L2.

リレーコイルRFは、常開型リレースイッチYと共にリ
レーを構成しており、このリレーコイルRyは、その励
磁により、リレースイッチYを閉成する。また、リレー
スイッチYは、その一端にて、共通導線Llに接続され
ており、このリレースイッチYの他端は、給水弁WVを
介し共通導線L2に接続されている。このため、給水弁
W■は、 リレースイッチYの閉成下にて開成する。リ
レーコイルRzは、常開型リレースイッチ2と共にリレ
ーを構成しており、このリレーコイルRzは、その励磁
により、リレースイッチZを閉成する。また、リレーコ
イ、ツチ2は、その一端にて、共通導線L1に接続され
ており、このリレースイッチZの他端は、排水弁DVを
介し共通導線L2に接続されている。
The relay coil RF constitutes a relay together with the normally open type relay switch Y, and this relay coil Ry closes the relay switch Y by its excitation. Further, the relay switch Y is connected at one end to the common conductor Ll, and the other end of the relay switch Y is connected to the common conductor L2 via the water supply valve WV. Therefore, the water supply valve W■ opens when the relay switch Y is closed. The relay coil Rz constitutes a relay together with the normally open type relay switch 2, and this relay coil Rz closes the relay switch Z by its excitation. Further, the relay carp 2 is connected at one end to a common conducting wire L1, and the other end of this relay switch Z is connected to a common conducting wire L2 via a drain valve DV.

このため、排水弁DVは、リレースイッチZの閉成下に
て、両共通導線L 1. L 2から交流電圧を受けて
開成する。
Therefore, when the relay switch Z is closed, the drain valve DV connects both common conductors L1. It is opened by receiving AC voltage from L2.

トランス130は両共通導線L 1. L 2からの交
流電圧を低電圧に変圧する。定電圧回路140はトラン
ス130からの低電圧を整流し直流の定電圧を発生する
。マイクロコンピュータ150は、コンピュータプログ
ラムを、第5図に示すフローチャートに従い、下限フロ
ートスイッチF9.  上限フロートスイッチFu、 
 貯氷検出スイッチS2及び排水スイッチS3との協働
により実行し、この実行中において、各リレーコイルR
*、 RL Ry、 Rzにさそれぞれ接続した各駆動
回路160,170. 180.190の駆動制御に必
要な演算処理をする。
The transformer 130 has both common conductors L1. Transform the AC voltage from L2 to a lower voltage. The constant voltage circuit 140 rectifies the low voltage from the transformer 130 to generate a constant DC voltage. The microcomputer 150 executes a computer program according to the flowchart shown in FIG. 5 to set the lower limit float switch F9. Upper limit float switch Fu,
This is executed in cooperation with the ice accumulation detection switch S2 and the drain switch S3, and during this execution, each relay coil R
*, each drive circuit 160, 170 . connected to RL Ry, Rz, respectively. Performs calculation processing necessary for drive control of 180 and 190.

但し、上述のコンピュータプログラムはマイクロコンピ
ュータ150のROMに予メモリ記憶されている。なお
、マイクロコンピュータ150は定電圧回路140から
の定電圧を受けて作動する。
However, the above-mentioned computer program is pre-stored in the ROM of the microcomputer 150. Note that the microcomputer 150 operates by receiving a constant voltage from the constant voltage circuit 140.

以上のように構成した本実施例において、電源スィッチ
S1を投入すれば、マイクロコンピュータ150が、 
トランス130からの低電圧に応答して定電圧回路14
0から生じる定電圧を受けて作動し第5図のフローチャ
ートに従いステップ200にてコンピュータプログラム
の実行を開始し、ステップ210にて、初期化の処理を
し、フラグF=0とリセットし、かつその内蔵の主タイ
マをリセットスタートさせる。しかして、この主タイマ
は、そのリセットスタートにより、所定の計時時間Tm
の計時を開始する。但し、計時時間Tmは、製氷筒体2
0及び製氷水タンク60内の製氷水を定期的に排水する
ために12時間と設定されてい現段階において、下限フ
ロートスイッチF2が開成しておれば、マイクロコンピ
ュータ150が、ステップ220にて、 rNOJ と
判別し、ステップ220aにて、給水弁WVの開成に必
要な給水出力信号を発生する。すると、リレーコイルR
yがマイクロコンピュータ150からの給水出力信号に
応答して駆動回路180により励磁されてリレースイッ
チYを閉成し、これに応答して給水弁WVが両共通導線
Ll、L2からの交流電圧を受けて開成する。このため
、給水源60aが給水管61を通し製氷水タンク60内
に製氷水を給水し始める。
In this embodiment configured as above, when the power switch S1 is turned on, the microcomputer 150
In response to the low voltage from the transformer 130, the constant voltage circuit 14
It operates in response to a constant voltage generated from 0, starts execution of the computer program in step 200 according to the flowchart in FIG. 5, performs initialization processing in step 210, resets the flag F=0, and Reset and start the built-in main timer. As a result of the reset start, this main timer reaches the predetermined time Tm.
Start timing. However, the measured time Tm is
If the lower limit float switch F2 is open at this stage, the microcomputer 150 will, in step 220, rNOJ. Then, in step 220a, a water supply output signal necessary for opening the water supply valve WV is generated. Then, relay coil R
y is excited by the drive circuit 180 in response to the water supply output signal from the microcomputer 150 to close the relay switch Y, and in response, the water supply valve WV receives the AC voltage from both common conductors Ll and L2. and develop it. Therefore, the water supply source 60a starts supplying ice-making water into the ice-making water tank 60 through the water supply pipe 61.

しかして、製氷水タンク60内の製氷水の増大に応じ、
フロートスイッチ機構70のフロート76aが下限レベ
ルL2まで上昇すると、下限フロートスイッチF2が閉
成する。このため、マイクロコンヒビ二一夕150がス
テップ220にて「YESJと判別し、ステップ230
にて上限フロートスイッチFuの開成のもとに「NO」
と判別して、各ステップ2208〜230の循環演算を
繰返す。このため、給水弁W■を介する給水源60aか
ら製氷水タンク60への給水が継続される。
Accordingly, as the ice-making water in the ice-making water tank 60 increases,
When the float 76a of the float switch mechanism 70 rises to the lower limit level L2, the lower limit float switch F2 is closed. Therefore, the microcontroller 150 determines "YESJ" in step 220, and in step 230
"NO" under the opening of the upper limit float switch Fu.
Then, the cyclic operations of steps 2208 to 230 are repeated. Therefore, water continues to be supplied from the water supply source 60a to the ice-making water tank 60 via the water supply valve W2.

然る後、製氷水タンク60内の製氷水がさらに増大して
フロート77aを上限レベルLuまで上昇させると、上
限フロートスイッチFuが閉成する。
After that, when the ice-making water in the ice-making water tank 60 increases further and raises the float 77a to the upper limit level Lu, the upper limit float switch Fu closes.

このため、マイクロコンピュータ150がステップ23
0にて「YES」と判別し、ステ、ブ230aにおいて
給水出力信号を消滅させる。このため、駆動回路180
がリレーコイルRyを消磁させる。その結果、給水弁W
Vが、リレースイッチYの開成に伴い閉成し給水源60
aから製氷水タンク60への給水を停止する。このとき
、製氷筒体20内には製氷水が充満している。
Therefore, the microcomputer 150 performs step 23.
0 is determined as "YES", and the water supply output signal is made to disappear at step 230a. For this reason, the drive circuit 180
demagnetizes the relay coil Ry. As a result, the water supply valve W
V is closed as the relay switch Y is opened, and the water supply source 60 is closed.
The water supply from a to the ice making water tank 60 is stopped. At this time, the ice making cylinder 20 is filled with ice making water.

然るに、現段階では、コンプレッサモータMeの駆動に
必要な第2モータ出力信号が消滅しているため、マイク
ロコンピュータ150が、ステ、ブ240にてrNOJ
と判別し、ステップ250にて、ステ、ブ210におけ
るフラグF=−0に基きrYEsJと判別し、ステップ
250aにて、F=1とセットする。ついで、マイクロ
フンピ。
However, at this stage, since the second motor output signal necessary for driving the compressor motor Me has disappeared, the microcomputer 150 outputs rNOJ in the step 240.
In step 250, rYEsJ is determined based on flag F=-0 in step 210, and in step 250a, F=1 is set. Next, Microfunpi.

夕150が、ステップ260にて、排水弁DVの開成に
必要な排水出力信号を発生し、ステップ270にて、そ
の内蔵の補助タイマをリセットスタートさせる。このた
め、この補助タイマが所定の計時時間Taの計時を開始
する。但し、計時時間Taは、製氷筒体20及び製氷水
タンク60内の製氷水を排水するに必要な時間に相当し
、本実施例では5(分)と設定されている。
The device 150 generates a drain output signal necessary to open the drain valve DV in step 260, and reset-starts its built-in auxiliary timer in step 270. Therefore, this auxiliary timer starts measuring a predetermined time Ta. However, the measured time Ta corresponds to the time required to drain the ice-making water in the ice-making cylinder 20 and the ice-making water tank 60, and is set to 5 (minutes) in this embodiment.

上述のようにマイクロコンピュータ150から排水出力
信号が生じると、リレーフィルRzが駆動回路190に
より励磁されてリレースイッチ2を閉成し、これに応答
して排水弁DVが両共通導線L 1. L 2から交流
電圧を受けて開成する。このため、製氷筒体20及び製
氷水タンク60内の製氷水が排水管20a及び排水弁D
Vを通り外部に排水される。この排水は、スイッチ28
0にてrNOJとの判別の繰返し中継続される。しかし
て、前記補助タイマの計時終了に伴い計時時間Taが経
過すると、製氷筒体20及び製氷水タンク6o内の全製
氷水の排水完了との判断のもとに、マイクロコンピ二−
タ150が、ステップ280にてrYES」と判別し、
ステップ280aにて、排水出力信号を消滅させ、ステ
ップ280bにてrYESJと判別し、リレーフィルR
zが駆動回路190により消磁されてリレースイッチ2
を開成する。これにより、排水弁DVが閉成する。
As described above, when the drain output signal is generated from the microcomputer 150, the relay fill Rz is excited by the drive circuit 190 to close the relay switch 2, and in response, the drain valve DV connects both common conductors L1. It is opened by receiving AC voltage from L2. Therefore, the ice making water in the ice making cylinder body 20 and the ice making water tank 60 is drained from the drain pipe 20a and the drain valve D.
Water is drained outside through V. This drainage is done by switch 28
0 and continues while the determination with rNOJ is repeated. When the auxiliary timer finishes counting and the time Ta elapses, the microcomputer determines that all the ice-making water in the ice-making cylinder 20 and the ice-making water tank 6o has been drained.
The data controller 150 determines “rYES” in step 280,
At step 280a, the drainage output signal is made to disappear, and at step 280b, it is determined that rYESJ, and the relay fill R
z is demagnetized by the drive circuit 190 and the relay switch 2
to open. This closes the drain valve DV.

このようにして排水弁DVが閉成した後、上述と同様に
、各ステップ220,220aを循環する演算処理及び
各ステップ230. 220 m、  220を循環す
る演算処理が繰返されて、給水弁W■を介する給水源6
0aから製氷水タンク60内への給水が行なわれる。然
る後、上述と同様にして、上限フロートスイッチFuの
閉成に伴いステップ230における判別がrYESJに
なると、マイクロコンピュータ150が、ステップ23
0aにて、給水出力信号を消滅させ、給水弁Wvがその
閉成により製氷水タンク60への給水を停止する。
After the drain valve DV is closed in this way, the calculation process that cycles through each step 220, 220a and each step 230. 220 m, the calculation process of circulating 220 is repeated, and the water supply source 6 via the water supply valve W■
Water is supplied into the ice-making water tank 60 from 0a. Thereafter, in the same manner as described above, when the determination at step 230 becomes rYESJ due to the closing of the upper limit float switch Fu, the microcomputer 150 executes step 23.
At 0a, the water supply output signal disappears, and the water supply valve Wv closes to stop supplying water to the ice-making water tank 60.

然る後、ステップ250aにおけるF=1に基きステッ
プ250での判別が1NO」になると、マイクロコンピ
ュータ150が、コンビニ−タブログラムを製氷運転開
始ルーティン290に進める。この製氷運転開始ルーテ
ィン290においては、マイクロコンピュータ160が
、上述のようなステップ250における「NO」との判
別後、所定の遅延時間TI(例えば、1 (秒))の経
過時に、ファンモータMf及びモータMgの駆動に必要
な第1モータ出力信号を発生し、また、所定の遅延時間
T2(例えば、60(秒))の経過時に、第2モータ出
力信号を発生する。
Thereafter, when the determination in step 250 becomes 1NO based on F=1 in step 250a, the microcomputer 150 advances the convenience store program to the ice-making operation start routine 290. In this ice-making operation start routine 290, the microcomputer 160 controls the fan motor Mf and A first motor output signal necessary for driving the motor Mg is generated, and a second motor output signal is generated when a predetermined delay time T2 (for example, 60 (seconds)) has elapsed.

すると、リレーコイルRxが、遅延時間TIの経過時に
、マイクロコンピュータ150がらの第1モータ出力信
号に応答して駆動回路170により励磁されて両リレー
スイッチX 1. X 2を閉成し、ファンモータMf
及びモータMgが両共通導線LIL2からの交流電圧に
より駆動される。このため、空冷ファン100aがファ
ンモータMfにより駆動されて空冷作用を発揮するとと
もに、減速機1oがモータMgにより駆動されて減速作
動しオーガ4゜を回転させる。
Then, when the delay time TI elapses, the relay coil Rx is excited by the drive circuit 170 in response to the first motor output signal from the microcomputer 150, and both relay switches X1. Close X2 and fan motor Mf
and motor Mg are driven by alternating voltage from both common conductors LIL2. For this reason, the air cooling fan 100a is driven by the fan motor Mf to exert an air cooling effect, and the reducer 1o is driven by the motor Mg to perform deceleration operation and rotate the auger 4°.

また、リレーコイルR豐が、遅延時間T2の経過時に、
マイクロコンピュータ150からの第2モータ出力信号
に応答して駆動回路160により励磁されてリレースイ
ッチWを閉成し、コンプレッサモータMeが両共通導線
L 1. L 2からの交流電圧により駆動される。こ
のため、コンプレッサ9゜がコンプレッサモータMeに
より駆動されて圧縮作用を開始する。その結果、冷凍サ
イクルR内にて、冷媒が、空冷ファン100aの空冷作
用下にて、コンプレッサ90、コンデンサ100.  
レシーバ110、膨張弁120及びエバポレータ3oを
通り循環し始める。このことは、製氷筒体2o内の製氷
水に対するエバポレータ3oによる冷却、即ち、製氷機
による製氷運転の開始を意味する。
In addition, when the delay time T2 elapses, the relay coil R
In response to the second motor output signal from the microcomputer 150, the drive circuit 160 is excited to close the relay switch W, and the compressor motor Me connects both common conductors L1. Driven by AC voltage from L2. Therefore, the compressor 9° is driven by the compressor motor Me and starts a compression action. As a result, in the refrigeration cycle R, the refrigerant flows through the compressor 90, condenser 100, .
It begins to circulate through the receiver 110, the expansion valve 120, and the evaporator 3o. This means that the ice-making water in the ice-making cylinder 2o is cooled by the evaporator 3o, that is, the ice-making machine starts ice-making operation.

このような製氷運転の開始後者ステップ300゜310
.320でのrNOJとの判別及び各ステップ330,
240でのrYEsJとの判別を繰返している間に、製
氷筒体2o内の製氷水がフレーク状に氷結すると、この
結氷が、オーガ4oの回動に応じその螺旋歯42により
開数されて上方へ案内され、各圧縮部材50により棒状
水に圧縮され、かつカッター53により順次折断されて
案内筒54を通り前記貯氷庫内に収納される。一方、製
氷水タンク60内の製氷水が、配管62を通り製氷筒体
20内に流入してゆく。以下、このような製氷運転が継
続される。製氷水タンク60内の製氷水の減少に伴い上
限フロートスイッチFuが開成した後下限フロートスイ
ッチF2が開成すると、マイクロコンピュータ150が
ステップ330にてrNOJと判別し、コンピュータプ
ログラムをステップ220aに進める。
The latter step of starting ice making operation like this 300° 310
.. Discrimination with rNOJ at 320 and each step 330,
When the ice-making water in the ice-making cylinder 2o freezes into flakes while repeating the discrimination between rYEsJ and rYEsJ at step 240, the ice-making water is rotated upward by the spiral teeth 42 of the auger 4o as the auger 4o rotates. The ice is guided into the ice storage, compressed into rod-shaped water by each compression member 50, sequentially cut by a cutter 53, passed through a guide tube 54, and stored in the ice storage. On the other hand, the ice-making water in the ice-making water tank 60 flows into the ice-making cylinder 20 through the pipe 62. Thereafter, such ice making operation is continued. When the upper limit float switch Fu opens and the lower limit float switch F2 opens as the ice making water in the ice making water tank 60 decreases, the microcomputer 150 determines rNOJ in step 330 and advances the computer program to step 220a.

以上述べたように、上述のような製氷運転にあたっては
、製氷筒体20及び製氷水タンク6o内に製氷水を給水
した後、製氷筒体20及び製氷水タンク60内の製氷水
を、排水弁DV及び配水管20aを通して外部へ排出し
、然る後、製氷筒体20及び製氷水タンク60内に製氷
水を再度給水した上で製氷運転に移行するようにしたの
で、製氷筒体20及び製氷水タンク6o内に製氷水の濃
縮不純物やゴミ、ホコリ等の異物が滞留していても、こ
れら濃縮不純物や異物が、上述のような最初の製氷水の
給水時に製氷水タンク60及び製氷筒体20が洗浄され
て同製氷水内に浮遊するとともに同製氷水の排水時にこ
の製氷水と共に外部へ排出される。
As described above, in the ice-making operation as described above, after ice-making water is supplied into the ice-making cylinder 20 and the ice-making water tank 6o, the ice-making water in the ice-making cylinder 20 and the ice-making water tank 60 is drained through the drain valve. The ice-making water is discharged to the outside through the DV and the water pipe 20a, and then the ice-making water is resupplied into the ice-making cylinder 20 and the ice-making water tank 60 before shifting to ice-making operation. Even if concentrated impurities and foreign substances such as dirt and dust remain in the ice-making water in the water tank 6o, these concentrated impurities and foreign substances are removed from the ice-making water tank 60 and the ice-making cylinder during the first ice-making water supply as described above. 20 is washed and floats in the ice-making water, and is discharged to the outside together with the ice-making water when the ice-making water is drained.

従って、上述のように製氷筒体20及び製氷水タンク6
0内に再度給水したときには、製氷筒体20及び製氷水
タンク60内には濃縮不純物や異物は殆ど残存しない。
Therefore, as described above, the ice making cylinder body 20 and the ice making water tank 6
When water is supplied again into the ice-making cylinder 20 and the ice-making water tank 60, almost no concentrated impurities or foreign substances remain in the ice-making cylinder 20 and the ice-making water tank 60.

このため、製氷運転i5稈において、オーガ40の軸受
部等は、濃縮不純物や異物の侵入を受けることなく、円
滑に本来の機能を発揮し得る。また、製氷筒体20内の
結氷は、濃縮不純物や異物の混入を伴うことなく、衛生
的な高品質の水として前記貯氷庫内に収容される。
Therefore, during the ice-making operation i5, the bearing portion of the auger 40, etc. can smoothly perform its original function without being invaded by concentrated impurities or foreign matter. Furthermore, the frozen ice in the ice-making cylinder 20 is stored in the ice storage as sanitary, high-quality water without contamination with concentrated impurities or foreign substances.

また、フロートスイッチ機構70の各フロート76.7
7も、濃縮不純物や異物の侵入を伴うことな(、円滑作
動し得る。
In addition, each float 76.7 of the float switch mechanism 70
7 can also operate smoothly without the intrusion of concentrated impurities or foreign matter.

上述のようにコンピュータプログラムをステ。Run the computer program as described above.

プ220aに進めると、上述と同様に、各ステ。When proceeding to step 220a, each step is performed in the same manner as described above.

ブ220,220aの循環演算処理及び各ステップ23
0. 220 a、  220の循環演算処理が繰返さ
れて、給水弁Wvを介する給水源60aから製氷水タン
ク60内への給水が行なわれる。然る後、上述と同様に
して、上限フロートスイッチFυの閉成に伴いステップ
230における判別が「YESJになると、マイクロコ
ンピュータ150が、ステップ230aにて、給水出力
信号を消滅させ、給水弁w■がその閉成により製氷水タ
ンク60への給水を停止する。
Circular calculation processing of blocks 220 and 220a and each step 23
0. The cyclic calculation processes 220a and 220 are repeated to supply water from the water supply source 60a to the ice-making water tank 60 via the water supply valve Wv. Thereafter, in the same way as described above, when the determination in step 230 becomes YES as the upper limit float switch Fυ is closed, the microcomputer 150 eliminates the water supply output signal in step 230a, and the water supply valve w■ When the ice-making water tank 60 is closed, water supply to the ice-making water tank 60 is stopped.

然る後、ステップ290における第2モータ出力信号の
発生に基きステップ240での判別が「YE SJにな
ると、マイクロコンピュータ150が、上述と同様の製
氷機の製氷運転下にて、上述と同様の製氷水タンク6o
への給水を繰返す。
After that, when the determination in step 240 becomes "YES SJ" based on the generation of the second motor output signal in step 290, the microcomputer 150 performs the same operation as described above under the ice making operation of the ice maker similar to that described above. Ice making water tank 6o
Repeat water supply.

ついで、前記貯氷庫内の貯氷量の増大に伴い貯氷検出ス
イッチS2が閉成すると、マイクロコンビ1−夕150
がステップ3101:てrYESJと判別し、ステップ
340にて、F=Qとリセットし、製氷運転停止ルーテ
ィン350において、第1及び第2のモータ出力信号を
所定の第3及び第4の遅延時間T3.T4の経過時にそ
れぞれ消滅させる。すると、駆動回路170がマイクロ
コンピュータ150からの第1モータ出力信号の消滅に
よりリレーコイルRxを消滅させ、モータMg及びファ
ンモータMfが各リレースイッチX 1. X 2の開
成により停止する。このため、オーガ4o及び空冷ファ
ン1008が停止する。また、駆動回路160がマイク
ロコンピュータ150がらの第2モータ出力信号の消滅
によりリレーコイルRvを消磁させ、コンプレッサモー
タMeがリレースイッチWの開成により停止する。この
ため、コンプレッサ90が停止する。これにより、製氷
運転が停止する。
Next, when the ice storage detection switch S2 is closed due to an increase in the amount of ice stored in the ice storage, the microcombi 1-Y 150
is determined to be rYESJ in step 3101, and in step 340, F=Q is reset, and in the ice-making operation stop routine 350, the first and second motor output signals are set to predetermined third and fourth delay times T3. .. Each will be extinguished at the end of T4. Then, the drive circuit 170 eliminates the relay coil Rx by eliminating the first motor output signal from the microcomputer 150, and the motor Mg and fan motor Mf switch each relay switch X1. It stops when X2 is opened. Therefore, the auger 4o and the air cooling fan 1008 stop. Further, the drive circuit 160 demagnetizes the relay coil Rv by eliminating the second motor output signal from the microcomputer 150, and the compressor motor Me stops by opening the relay switch W. Therefore, the compressor 90 stops. This stops the ice making operation.

然る後、マイクロコンピュータ150が、各ステップ2
60〜280aにおける演算処理を行って、製氷筒体0
及び製氷水タンク6o内の全製氷水を排水弁DV及び排
水管20aを通し外部へ排水する。従って、上述のよう
にステップ310にてrYEsJとの判別後、前記貯氷
庫内の水の減少に伴う貯氷検出スイッチs2の開成に基
きステノブ280bにてrYESjとの判別がなされる
までに長時間が経過するようなことがあっても、製氷筒
体20及び製氷水タンク60内の製氷水の上述のような
排水によって、製氷筒体20及び製氷水タンク60内に
製氷水の不純物が濃縮して滞留するということがない。
After that, the microcomputer 150 performs each step 2.
60 to 280a, the ice making cylinder 0
All the ice-making water in the ice-making water tank 6o is drained to the outside through the drain valve DV and the drain pipe 20a. Therefore, as described above, after the determination is made that it is rYESJ at step 310, it takes a long time until the steno knob 280b is determined that it is rYESj based on the opening of the ice storage detection switch s2 as the water in the ice storage decreases. Even if some time passes, impurities in the ice-making water will be concentrated in the ice-making cylinder 20 and the ice-making water tank 60 due to the above-mentioned drainage of the ice-making water in the ice-making cylinder 20 and the ice-making water tank 60. There is no stagnation.

また、上述のような製氷運転の過程において、排水スイ
ッチS3を一時的に閉成すると、マイクロコンピュータ
150がステップ300にてrYES」と判別し、ステ
ップ310における「YESJとの判別時と同様に、コ
ンピュータプログラムをステップ340からステップ2
80aにかけて進め、製氷機の製氷運転を停止させると
ともに製氷筒体20及び製氷水タンク60内の製氷水を
排水弁DVを通し外部へ排水する。従って、その後のス
テップ280bにおける判別が1YES、1であれば、
上述と同様に、各ステップ220〜230aでの演算処
理に伴う製氷水タンク60及び製氷筒体20内への給水
、各ステップ250〜280aでの演算処理に伴う製氷
筒体20及び製氷ホラ/り60内の製氷水の排水、及び
各ステップ220〜230aでの再度の演算処理に伴う
製氷水タンク60及び製氷筒体20内への給水がなされ
た後に、製氷運転開始ルーティン290以後の演算処理
に伴う製氷運転がなされる。
In addition, in the process of ice-making operation as described above, when the drain switch S3 is temporarily closed, the microcomputer 150 determines "rYES" in step 300, and similarly to the determination as "YESJ" in step 310. The computer program from step 340 to step 2
80a, the ice-making operation of the ice-making machine is stopped, and the ice-making water in the ice-making cylinder 20 and the ice-making water tank 60 is drained to the outside through the drain valve DV. Therefore, if the determination in the subsequent step 280b is 1YES, 1,
Similarly to the above, water is supplied to the ice-making water tank 60 and the ice-making cylinder 20 in accordance with the calculation processing in each step 220 to 230a, and the ice-making cylinder 20 and the ice-making hollow are supplied in accordance with the calculation processing in each step 250 to 280a. After the ice-making water in the ice-making water tank 60 and the ice-making cylinder 20 are drained and water is supplied to the ice-making water tank 60 and the ice-making cylinder 20 in accordance with the calculation processing performed again in each step 220 to 230a, the calculation processing after the ice-making operation start routine 290 is performed. An accompanying ice-making operation is performed.

従って、製氷運転の過程において、製氷水の濃縮不純物
や異物が製氷筒体20や製氷水タンク60内に滞留した
と予測される場合には、排水スイッチS3を一時的に閉
成すれば、上述のような給水及び排水により製氷筒体2
0及び製氷タンク60内の濃縮不純物や異物を外部に排
出した後、再度の給水をした上で製氷運転がなされるこ
ととなる。
Therefore, in the process of ice-making operation, if it is predicted that concentrated impurities or foreign substances in the ice-making water have accumulated in the ice-making cylinder 20 or the ice-making water tank 60, if the drain switch S3 is temporarily closed, the above-mentioned The ice making cylinder body 2 is
After the concentrated impurities and foreign substances in the ice making tank 60 are discharged to the outside, water is supplied again and ice making operation is performed.

その結果、上述と同様に、オーガ40の軸受部の円滑な
作動及び衛生的な高品質の貯氷確保が実現される。また
、主タイマの計時終了に基きステ7ブ320にてrYE
sjとの判別がなされた場合にも、ステップ320al
こおける主タイマのリセ、トスタートがなされ後に、ス
テップ300におけるrYEsjとの判別後の演算処理
と同様の演算処理がなされて、上述と同様にオーガ4o
の軸受部の円滑な作動及び衛生的な高品質の貯氷確保が
実現される。また、上述したように、各ステップ250
,300,310,320でrYEsJとの判別をした
後に繰返し排水及び給水を行うので、製氷筒体20及び
製氷水タンク60内の濃縮不純物や異物の除去がより一
層適確になされ得る。
As a result, as described above, smooth operation of the bearing portion of the auger 40 and hygienic high-quality ice storage are achieved. Also, based on the end of the main timer, rYE is executed in step 7 block 320.
Even if it is determined that the
After the main timer is reset and started at step 300, the same arithmetic processing as that after the determination with rYEsj at step 300 is performed, and the auger 4o
Smooth operation of the bearing part and hygienic high-quality ice storage are achieved. Also, as described above, each step 250
, 300, 310, and 320, and then draining and watering are repeated, so that concentrated impurities and foreign substances in the ice-making cylinder 20 and the ice-making water tank 60 can be removed more accurately.

なお、本発明の実施にあたっては、ステップ340を省
略すれば、排水回数が一回になるため、製氷水の節約に
つながる。また、前記貯氷庫の容積が小さいときには、
ステップ310における「YESJとの判別時期の間隔
が比較的短くなるため、ステップ340を省略して実施
しても、製氷水の節約を確保しつつ前記実施例と実質的
に同様の効果が得られる。
In implementing the present invention, if step 340 is omitted, the water is drained only once, leading to savings in ice making water. Moreover, when the volume of the ice storage is small,
Since the interval between the determination timings of "YESJ" and "YESJ" in step 310 is relatively short, even if step 340 is omitted, substantially the same effect as in the above embodiment can be obtained while ensuring the saving of ice making water. .

【図面の簡単な説明】[Brief explanation of drawings]

第1A図〜第1F図は特許請求の範囲の記載に対する対
応図、第2図は製氷機の部分破断図、第3図は冷凍サイ
クルの回路図、第4図は製氷機の制御装置を示す回路図
、及び第5図は第4図のマイクロコンピュータの作用を
示すフローチャートである。 符  号  の  説  明 10・・・減速機、20・・・製氷筒体、40・・・オ
ーガ、60・・・製氷水タンク、608・・・給水源、
70・・・フロートスイッチ機構、150・・・マイク
ロコンピュータ、Mg・・・モータ、R・・・冷凍サイ
クル、Rv、 RX、 Ry、 Rz ・・・リレーフ
ィル、Sl・・・電源スィッチ、S2・・・貯氷検出ス
イッチ、S3・・・排水スイッチ、WV・・・給水弁、
DV・・・排水弁、W、  XI。 X2.YZ  ・ ・ ・ リ レースイ ノチ。 出願人  ホ/ザキ電機株式会社 代理人  弁理士 長谷照−(外1名)第1A図 第1B図 第1C図 第1D図 第1E図 毛 役 L      、−−J 第1F図 第 図
Figures 1A to 1F are diagrams corresponding to the claims, Figure 2 is a partially cutaway diagram of the ice maker, Figure 3 is a circuit diagram of the refrigeration cycle, and Figure 4 shows the control device of the ice maker. The circuit diagram and FIG. 5 are flowcharts showing the operation of the microcomputer of FIG. 4. Explanation of symbols 10...Reducer, 20...Ice making cylinder, 40...Auger, 60...Ice making water tank, 608...Water supply source,
70... Float switch mechanism, 150... Microcomputer, Mg... Motor, R... Refrigeration cycle, Rv, RX, Ry, Rz... Relay fill, Sl... Power switch, S2... ...Ice storage detection switch, S3...Drainage switch, WV...Water supply valve,
DV...Drain valve, W, XI. X2. YZ ・ ・ ・ Rerace I Nochi. Applicant Ho/Zaki Electric Co., Ltd. Agent Patent Attorney Teru Hase (1 other person) Figure 1A Figure 1B Figure 1C Figure 1D Figure 1E

Claims (1)

【特許請求の範囲】 (1)給水源から製氷水を給水されて貯える製氷水タン
クと、この製氷水タンクからの製氷水を収容する製氷筒
体と、前記給水源から前記製氷水タンクへの給水を開成
(又は閉成)により許容(又は遮断)する給水弁手段と
、前記製氷筒体内の収容製氷水を循環冷媒に応じ氷結さ
せる冷凍サイクルと、前記製氷筒体内にて回動可能に軸
支されて回動に応じ前記製氷筒体内の結氷を削取して外
方へ導出するオーガと、このオーガを作動に応じて回動
させる駆動手段とを備えた製氷機において、前記製氷水
タンク内の収容製氷水が所定上限量に達したときこれを
検出する製氷水検出手段と、給水操作手段の操作に応答
して前記給水弁手段を開成し前記製氷水検出手段の検出
に応答して前記給水弁手段を閉成するように制御する給
水制御手段と、前記製氷水検出手段の検出に伴い前記冷
凍サイクル及び前記駆動手段を作動するように制御する
製氷制御手段とを備え、また、前記製氷水タンク及び製
氷筒体内の製氷水の外部への排水を選択的開成により許
容する排水弁手段と、始動時に前記排水手段が排水済み
か否かを判断する判断手段と、この判断手段による未排
水との判断時に前記排水弁手段を開成するように制御す
る排水制御手段とを設け、この排水制御手段による排水
制御後前記給水制御手段及び製氷制御手段がその各制御
を順次行ない、また、前記判断手段による排水済みとの
判断時には前記製氷制御手段がその制御を行うようにし
たことを特徴とするオーガ式製氷機のための制御装置。 (2)前記排水弁手段による排水が必要なとき操作され
る排水操作手段を設けて、この排水操作手段の操作に伴
い前記排水制御手段が前記排水弁手段を開成すべく制御
するようにしたことを特徴とする特許請求の範囲第1項
に記載のオーガ式製氷機のための制御装置。(3)給水
源から製氷水を給水されて貯える製氷水タンクと、この
製氷水タンクからの製氷水を収容する製氷筒体と、前記
給水源から前記製氷水タンクへの給水を開成(又は閉成
)により許容(又は遮断)する給水弁手段と、前記製氷
筒体内の収容製氷水を循環冷媒に応じ氷結させる冷凍サ
イクルと、前記製氷筒体内にて回動可能に軸支されて回
動に応じ前記製氷筒体内の結氷を削取して外方へ導出す
るオーガと、このオーガを作動に応じて回動させる駆動
手段とを備えた製氷機において、前記製氷水タンク内の
収容製氷水が所定上限量に達したときこれを検出する製
氷水検出手段と、給水操作手段の操作に応答して前記給
水弁手段を開成し前記製氷水検出手段の検出に応答して
前記給水弁手段を閉成するように制御する給水制御手段
と、前記製氷水検出手段の検出に伴い前記冷凍サイクル
及び前記駆動手段を作動するように制御する製氷制御手
段とを備え、また、前記製氷水タンク及び製氷筒体内の
製氷水の外部への排水を選択的開成により許容する排水
弁手段と、前記排水弁手段による排水が必要なとき操作
される排水操作手段とを設けて、この排水操作手段の操
作に伴い前記排水制御手段が前記排水弁手段を開成すべ
く制御するようにしたことを特徴とするオーガ式製氷機
のための制御装置。 (4)給水源から製氷水を給水されて貯える製氷水タン
クと、この製氷水タンクからの製氷水を収容する製氷筒
体と、前記給水源から前記製氷水タンクへの給水を開成
(又は閉成)により許容(又は遮断)する給水弁手段と
、前記製氷筒体内の収容製氷水を循環冷媒に応じ氷結さ
せる冷凍サイクルと、前記製氷筒体内にて回動可能に軸
支されて回動に応じ前記製氷筒体内の結氷を削取して貯
氷庫内へ導出するオーガと、このオーガを作動に応じて
回動させる駆動手段とを備えた製氷機において、前記製
氷水タンク内の収容製氷水が所定上限量(又は所定下限
量)に達したときこれを検出し上限検出状態(又は下限
検出状態)になる製氷水検出手段と、前記貯氷庫内の貯
氷量が充足したときこれを検出する貯氷検出手段と、こ
の貯氷検出手段の非検出状態にて前記給水弁手段を前記
製氷水検出手段の下限検出状態(又は上限検出状態)の
もとに開成(又は閉成)するように制御する給水制御手
段と、前記製氷水検出手段の上限検出状態の成立に伴い
前記冷凍サイクル及び前記駆動手段を作動するように制
御し、また前記貯氷検出手段の検出状態にて前記冷凍サ
イクル及び前記駆動手段を停止するように制御する製氷
制御手段とを備え、また、前記製氷水タンク及び製氷筒
体内の製氷水の外部への排水を選択的開成により許容す
る排水弁手段と、前記製氷水検出手段がその上限検出状
態になるまで前記製氷水タンク内に製氷水が給水された
とき、この給水前に前記排水弁手段が排水したか否かを
判断する判断手段と、この判断手段による未排水との判
断時に前記排水弁手段を開成するように制御する排水制
御手段とを設け、この排水制御手段の制御後前記給水制
御手段が前記給水弁手段を開成するように制御し、また
前記判断手段による排水済みとの判断時には前記製氷制
御手段が前記冷凍サイクル及び駆動手段を作動すべく制
御するようにしたことを特徴とするオーガ式製氷機のた
めの制御装置。 (5)給水源から製氷水を給水されて貯える製氷水タン
クと、この製氷水タンクからの製氷水を収容する製氷筒
体と、前記給水源から前記製氷水タンクへの給水を開成
(又は閉成)により許容(又は遮断)する給水弁手段と
、前記製氷筒体内の収容製氷水を循環冷媒に応じ氷結さ
せる冷凍サイクルと、前記製氷筒体内にて回動可能に軸
支されて回動に応じ前記製氷筒体内の結氷を削取して貯
氷庫内へ導出するオーガと、このオーガを作動に応じて
回動させる駆動手段とを備えた製氷機において、前記製
氷水タンク内の収容製氷水が所定上限量(又は所定下限
量)に達したときこれを検出し上限検出状態(又は下限
検出状態)になる製氷水検出手段と、前記貯氷庫内の貯
氷量が充足したときこれを検出する貯氷検出手段と、こ
の貯氷検出手段の非検出状態にて前記給水弁手段を前記
製氷水検出手段の下限検出状態(又は上限検出状態)の
もとに開成(又は閉成)するように制御する給水制御手
段と、前記製氷水検出手段の上限検出状態の成立に伴い
前記冷凍サイクル及び前記駆動手段を作動するように制
御し、また前記貯氷検出手段の検出状態にて前記冷凍サ
イクル及び前記駆動手段を停止するように制御する製氷
制御手段とを備え、また、前記製氷水タンク及び製氷筒
体内の製氷水の外部への排水を選択的開成により許容す
る排水弁手段と、前記貯氷検出手段の検出時に前記排水
弁手段を開成すべく制御する排水制御手段とを設けるよ
うにしたことを特徴とするオーガ式製氷機のための制御
装置。 (6)給水源から製氷水を給水されて貯える製氷水タン
クと、この製氷水タンクからの製氷水を収容する製氷筒
体と、前記給水源から前記製氷水タンクへの給水を開成
(又は閉成)により許容(又は遮断)する給水弁手段と
、前記製氷筒体内の収容製氷水を循環冷媒に応じ氷結さ
せる冷凍サイクルと、前記製氷筒体内にて回動可能に軸
支されて回動に応じ前記製氷筒体内の結氷を削取して貯
氷庫内へ導出するオーガと、このオーガを作動に応じて
回動させる駆動手段とを備えた製氷機において、前記製
氷水タンク内の収容製氷水が所定上限量(又は所定下限
量)に達したときこれを検出し上限検出状態(又は下限
検出状態)になる製氷水検出手段と、前記貯氷庫内の貯
氷量が充足したときこれを検出する貯氷検出手段と、こ
の貯氷検出手段の非検出状態にて前記給水弁手段を前記
製氷水検出手段の下限検出状態(又は上限検出状態)に
て開成(又は閉成)するように制御する給水制御手段と
、前記製氷水検出手段の上限検出状態の成立に伴い前記
冷凍サイクル及び前記駆動手段を作動するように制御し
、また前記貯氷検出手段の検出状態にて前記冷凍サイク
ル及び前記駆動手段を停止するように制御する製氷制御
手段とを備え、また、前記製氷水タンク及び製氷筒体内
の製氷水の外部への排水を選択的開成により許容する排
水弁手段と、この排水弁手段による排水が必要なとき操
作される排水操作手段を設けて、この排水操作手段の操
作に伴い前記排水制御手段が前記排水弁手段を開成すべ
く制御するようにしたことを特徴とするオーガ式製氷機
のための制御装置。 (7)前記排水弁手段による排水が必要なとき操作され
る排水操作手段を設けて、この排水操作手段の操作に伴
い前記排水制御手段が前記排水弁手段を開成すべく制御
するようにしたことを特徴とする特許請求の範囲第4項
又は第5項に記載のオーガ式製氷機のための制御装置。 (8)所定計時時間を繰返し計時する計時手段を設けて
、この計時手段の計時終了毎に前記排水制御手段が前記
排水弁手段を開成すべく制御するようにしたことを特徴
とする特許請求の範囲第4項、第5項又は第6項に記載
の−オーガ式製氷機のための制御装置。 (9)給水源から製氷水を給水されて貯える製氷水タン
クと、この製氷水タンクからの製氷水を収容する製氷筒
体と、前記給水源から前記製氷水タンクへの給水を開成
(又は閉成)により許容(又は遮断)する給水弁手段と
、前記製氷筒体内の収容製氷水を循環冷媒に応じ氷結さ
せる冷凍サイクルと、前記製氷筒体内にて回動可能に軸
支されて回動に応じ前記製氷筒体内の結氷を削取して貯
氷庫内へ導出するオーガと、このオーガを作動に応じて
回動させる駆動手段とを備えた製氷機において、前記製
氷水タンク内の収容製氷水が所定上限量(又は所定下限
量)に達したときこれを検出し上限検出状態(又は下限
検出状態)になる製氷水検出手段と、前記貯氷庫内の貯
氷量が充足したときこれを検出する貯氷検出手段と、こ
の貯氷検出手段の非検出状態にて前記給水弁手段を前記
製氷水検出手段の下限検出状態(又は上限検出状態)に
て開成(又は閉成)するように制御する給水制御手段と
、前記製氷水検出手段の上限検出状態の成立に伴い前記
冷凍サイクル及び前記駆動手段を作動するように制御し
、また前記貯氷検出手段の検出状態にて前記冷凍サイク
ル及び前記駆動手段を停止するように制御する製氷制御
手段とを備え、また、前記製氷水タンク及び製氷筒体内
の製氷水の外部への排水を選択的開成により許容する排
水弁手段と、前記製氷水検出手段がその上限検出状態に
なるまで前記製氷水タンク内に製氷水が給水されたとき
、この給水前に前記排水弁手段が排水したか否かを判断
する判断手段と、所定計時時間を繰返し計時する計時手
段と、前記排水弁手段による排水が必要なとき操作され
る排水操作手段と、前記判断手段による未排水との判断
時、前記計時手段の各計時終了時或いは前記排水操作手
段の操作時に前記排水弁手段を開成するように制御する
排水制御手段とを設け、この排水制御手段の制御後前記
給水制御手段が前記給水弁手段を開成するように制御し
、また前記判断手段による排水済みとの判断時には前記
製氷制御手段が前記冷凍サイクル及び駆動手段を作動す
べく制御するようにしたことを特徴とするオーガ式製氷
機のための制御装置。 (10)前記貯氷検出手段の検出時に前記排水制御手段
が前記排水弁手段を開成すべく制御するようにしたこと
を特徴とする特許請求の範囲第9項に記載のオーガ式製
氷機のための制御装置。
[Scope of Claims] (1) An ice-making water tank that receives and stores ice-making water from a water supply source, an ice-making cylinder body that accommodates the ice-making water from the ice-making water tank, and an ice-making water tank that stores ice-making water supplied from the water supply source to the ice-making water tank. a water supply valve means that allows (or shuts off) the water supply by opening (or closing) the water supply; a refrigeration cycle that freezes the ice-making water contained in the ice-making cylinder according to the circulating refrigerant; and a shaft that is rotatable within the ice-making cylinder. In the ice making machine, the ice making machine includes an auger that is supported and rotates to scrape off frozen ice inside the ice making cylinder and guides the ice to the outside, and a drive means that rotates the auger in response to the operation, wherein the ice making water tank ice-making water detection means for detecting when ice-making water stored in the ice-making water reaches a predetermined upper limit amount; a water supply control means for controlling the water supply valve means to close; and an ice-making control means for controlling the refrigeration cycle and the drive means to operate in response to detection by the ice-making water detection means; a drain valve means that allows draining of the ice making water in the ice making water tank and the ice making cylinder to the outside by selective opening; a determining means that determines whether or not the draining means has been drained at the time of startup; and a drainage control means for controlling the drainage valve means to open when it is determined that drainage is occurring, and after the drainage control means controls the drainage, the water supply control means and the ice making control means sequentially perform the respective controls, and A control device for an auger-type ice maker, characterized in that the ice making control means performs the control when the judgment means determines that the water has been drained. (2) A drainage operation means is provided which is operated when drainage by the drainage valve means is required, and the drainage control means is controlled to open the drainage valve means in accordance with the operation of the drainage operation means. A control device for an auger-type ice maker according to claim 1, characterized in that: (3) An ice-making water tank that receives and stores ice-making water from a water supply source, an ice-making cylinder that accommodates the ice-making water from the ice-making water tank, and an ice-making water tank that opens (or closes) the water supply from the water source to the ice-making water tank. a refrigeration cycle that freezes the ice-making water stored in the ice-making cylinder according to the circulating refrigerant; In an ice-making machine, the ice-making water stored in the ice-making water tank is an ice-making water detection means for detecting when a predetermined upper limit amount has been reached; and an ice-making water detection means that opens the water supply valve means in response to operation of the water supply operation means and closes the water supply valve means in response to detection by the ice-making water detection means. and an ice-making control means that controls the refrigeration cycle and the drive means to operate in accordance with the detection by the ice-making water detection means, and the ice-making water tank and the ice-making cylinder. A drain valve means for allowing drainage of ice-making water in the body to the outside by selective opening, and a drain operation means operated when drainage by the drain valve means is required, and when the drainage operation means is operated. A control device for an auger ice maker, characterized in that the drainage control means controls the drainage valve means to open it. (4) An ice-making water tank that receives and stores ice-making water from a water supply source, an ice-making cylinder that accommodates the ice-making water from the ice-making water tank, and an ice-making water tank that opens (or closes) the water supply from the water supply source to the ice-making water tank. a refrigeration cycle that freezes the ice-making water stored in the ice-making cylinder according to the circulating refrigerant; In the ice making machine, the ice making machine is equipped with an auger that scrapes off frozen ice in the ice making cylinder and guides it into the ice storage, and a drive means that rotates the auger in accordance with the operation of the ice making water stored in the ice making water tank. an ice-making water detection means that detects when the amount of ice reaches a predetermined upper limit amount (or a predetermined lower limit amount) and enters an upper limit detection state (or lower limit detection state); ice storage detection means, and the water supply valve means is controlled to open (or close) under the lower limit detection state (or upper limit detection state) of the ice making water detection means when the ice storage detection means is in a non-detection state. A water supply control means controls the refrigeration cycle and the drive means to operate when the upper limit detection state of the ice making water detection means is established, and operates the refrigeration cycle and the drive means when the ice storage detection means detects the upper limit. an ice-making control means for controlling the ice-making water to stop, and a drain valve means for selectively opening to allow drainage of the ice-making water in the ice-making water tank and the ice-making cylinder to the outside; and the ice-making water detecting means. When ice-making water is supplied into the ice-making water tank until the upper limit detection state is reached, a determining means determines whether or not the drain valve means has drained the water before the ice-making water is supplied, and the determining means determines whether or not the water has been drained. a drainage control means for controlling the drainage valve means to be opened at the time of determination; and after controlling the drainage control means, the water supply control means controls the water supply valve means to open the water supply valve means; A control device for an auger type ice maker, characterized in that the ice making control means controls the refrigeration cycle and the drive means to operate when it is determined that the ice making machine has finished. (5) An ice-making water tank that receives and stores ice-making water from a water supply source, an ice-making cylinder that accommodates the ice-making water from the ice-making water tank, and an ice-making water tank that opens (or closes) the water supply from the water supply source to the ice-making water tank. a refrigeration cycle that freezes the ice-making water stored in the ice-making cylinder according to the circulating refrigerant; In the ice making machine, the ice making machine is equipped with an auger that scrapes off frozen ice in the ice making cylinder and guides it into the ice storage, and a drive means that rotates the auger in accordance with the operation of the ice making water stored in the ice making water tank. an ice-making water detection means that detects when the amount of ice reaches a predetermined upper limit amount (or a predetermined lower limit amount) and enters an upper limit detection state (or lower limit detection state); ice storage detection means, and the water supply valve means is controlled to open (or close) under the lower limit detection state (or upper limit detection state) of the ice making water detection means when the ice storage detection means is in a non-detection state. A water supply control means controls the refrigeration cycle and the drive means to operate when the upper limit detection state of the ice making water detection means is established, and operates the refrigeration cycle and the drive means when the ice storage detection means detects the upper limit. an ice-making control means for controlling the ice-making water tank and the ice-making cylinder to stop, and a drain valve means for selectively opening and allowing drainage of the ice-making water in the ice-making water tank and the ice-making cylinder to the outside; and a detection means for detecting the ice storage detection means. A control device for an auger-type ice maker, characterized in that a drainage control means is provided for controlling the drainage valve means to open the drainage valve means at certain times. (6) An ice-making water tank that receives and stores ice-making water from a water supply source, an ice-making cylinder that accommodates the ice-making water from the ice-making water tank, and an ice-making water tank that opens (or closes) the water supply from the water supply source to the ice-making water tank. a refrigeration cycle that freezes the ice-making water stored in the ice-making cylinder according to the circulating refrigerant; In the ice making machine, the ice making machine is equipped with an auger that scrapes off frozen ice in the ice making cylinder and guides it into the ice storage, and a drive means that rotates the auger in accordance with the operation of the ice making water stored in the ice making water tank. an ice-making water detection means that detects when the amount of ice reaches a predetermined upper limit amount (or a predetermined lower limit amount) and enters an upper limit detection state (or lower limit detection state); Ice storage detection means, and water supply control that controls the water supply valve means to open (or close) when the ice making water detection means is in a lower limit detection state (or upper limit detection state) when the ice storage detection means is in a non-detection state. and controlling the refrigeration cycle and the drive means to operate when the ice making water detection means reaches an upper limit detection state, and stops the refrigeration cycle and the drive means when the ice storage detection means detects the upper limit. and a drain valve means for selectively opening and allowing the ice making water in the ice making water tank and the ice making cylinder to drain to the outside, and drainage by the drain valve means is required. An auger-type ice maker characterized in that a drainage operation means is provided which is operated when the drainage operation means is operated, and when the drainage operation means is operated, the drainage control means controls the drainage valve means to open. Control device. (7) A drainage operation means is provided which is operated when drainage by the drainage valve means is required, and the drainage control means is controlled to open the drainage valve means in accordance with the operation of the drainage operation means. A control device for an auger-type ice maker according to claim 4 or 5, characterized in that: (8) A timing device for repeatedly counting a predetermined time period is provided, and the drain control device is controlled to open the drain valve device each time the timing device finishes measuring a predetermined time. Control device for an auger ice maker according to scope 4, 5 or 6. (9) An ice-making water tank that receives and stores ice-making water from a water supply source, an ice-making cylinder that accommodates the ice-making water from the ice-making water tank, and an ice-making water tank that opens (or closes) the water supply from the water supply source to the ice-making water tank. a refrigeration cycle that freezes the ice-making water stored in the ice-making cylinder according to the circulating refrigerant; In the ice making machine, the ice making machine is equipped with an auger that scrapes off frozen ice in the ice making cylinder and guides it into the ice storage, and a drive means that rotates the auger in accordance with the operation of the ice making water stored in the ice making water tank. an ice-making water detection means that detects when the amount of ice reaches a predetermined upper limit amount (or a predetermined lower limit amount) and enters an upper limit detection state (or lower limit detection state); Ice storage detection means, and water supply control that controls the water supply valve means to open (or close) when the ice making water detection means is in a lower limit detection state (or upper limit detection state) when the ice storage detection means is in a non-detection state. and controlling the refrigeration cycle and the drive means to operate when the ice making water detection means reaches an upper limit detection state, and stops the refrigeration cycle and the drive means when the ice storage detection means detects the upper limit. ice-making control means for controlling the ice-making water to the outside, and drain valve means for selectively opening to allow drainage of the ice-making water in the ice-making water tank and the ice-making cylinder to the outside; When ice making water is supplied into the ice making water tank until a detection state is reached, determining means determines whether or not the drain valve means has drained water before the ice making water is supplied, and a time measuring means repeatedly measures a predetermined time period. , a drainage operation means that is operated when drainage by the drainage valve means is required, and the drainage valve means that is operated when the judgment means determines that the water is not drained, when each time measurement of the timing means ends, or when the drainage operation means is operated. and a drainage control means for controlling the water supply valve to open, and after controlling the drainage control means, the water supply control means controls the water supply valve means to open the water supply valve, and when the judgment means determines that the water has been drained, the water supply valve means opens the water supply valve. 1. A control device for an auger-type ice maker, characterized in that an ice-making control means controls the refrigeration cycle and drive means to operate. (10) The auger type ice maker according to claim 9, wherein the drainage control means controls to open the drainage valve means when the ice storage detection means detects the ice storage. Control device.
JP2266130A 1990-10-02 1990-10-02 Drainage control device for auger type ice maker Expired - Lifetime JP2678521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2266130A JP2678521B2 (en) 1990-10-02 1990-10-02 Drainage control device for auger type ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2266130A JP2678521B2 (en) 1990-10-02 1990-10-02 Drainage control device for auger type ice maker

Publications (2)

Publication Number Publication Date
JPH04143566A true JPH04143566A (en) 1992-05-18
JP2678521B2 JP2678521B2 (en) 1997-11-17

Family

ID=17426749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2266130A Expired - Lifetime JP2678521B2 (en) 1990-10-02 1990-10-02 Drainage control device for auger type ice maker

Country Status (1)

Country Link
JP (1) JP2678521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021441A (en) * 2001-07-09 2003-01-24 Sanyo Electric Co Ltd Auger type ice making machine and cleaning method thereof
WO2009001588A1 (en) * 2007-06-22 2008-12-31 Hoshizaki Denki Kabushiki Kaisha Method of operating ice making machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51162783U (en) * 1975-06-16 1976-12-24
JPS547450U (en) * 1977-06-20 1979-01-18
JPS59125372A (en) * 1983-01-07 1984-07-19 三洋電機株式会社 Auger type ice machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51162783U (en) * 1975-06-16 1976-12-24
JPS547450U (en) * 1977-06-20 1979-01-18
JPS59125372A (en) * 1983-01-07 1984-07-19 三洋電機株式会社 Auger type ice machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021441A (en) * 2001-07-09 2003-01-24 Sanyo Electric Co Ltd Auger type ice making machine and cleaning method thereof
WO2009001588A1 (en) * 2007-06-22 2008-12-31 Hoshizaki Denki Kabushiki Kaisha Method of operating ice making machine
JP2009002607A (en) * 2007-06-22 2009-01-08 Hoshizaki Electric Co Ltd Operating method of ice making machine
US8844312B2 (en) 2007-06-22 2014-09-30 Hoshizaki Denki Kabushiki Kaisha Method of operating ice making machine

Also Published As

Publication number Publication date
JP2678521B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
AU747874B2 (en) Method for controlling the purified water passage of a refrigerator with a water purifying filter
US4644757A (en) Auger type ice-making apparatus
JPH04143566A (en) Controller for auger type ice making machine
JPS6132305Y2 (en)
JPS6159756B2 (en)
JP6014351B2 (en) Auger type ice making machine and control method thereof
JP2766411B2 (en) Automatic ice making equipment
US8336326B2 (en) Dispenser
JP2002048443A (en) Washing mechanism for auger type ice making machine
JP2001153510A (en) Automatic ice machine
JP3653342B2 (en) Auger ice machine
JPH09122525A (en) Crusher
JP4194153B2 (en) Auger ice machine
JP2716734B2 (en) Flush toilet
JP4141399B2 (en) Auger ice machine
JP2003021441A (en) Auger type ice making machine and cleaning method thereof
JP2012091795A (en) Dispenser
JPS6128998Y2 (en)
JP2004225366A (en) Water closet
JPH07260307A (en) Controller for automatic icemaker
JP2005114224A (en) Ice making machine
KR0125751B1 (en) Testing method for icing of icing machine
JP2004324897A (en) Ice making machine
JP2883188B2 (en) Auger ice machine
KR100490202B1 (en) water level setting method of washing machine