JPH04143557A - Absorption type refrigerating plant and controlling method thereof - Google Patents

Absorption type refrigerating plant and controlling method thereof

Info

Publication number
JPH04143557A
JPH04143557A JP26859090A JP26859090A JPH04143557A JP H04143557 A JPH04143557 A JP H04143557A JP 26859090 A JP26859090 A JP 26859090A JP 26859090 A JP26859090 A JP 26859090A JP H04143557 A JPH04143557 A JP H04143557A
Authority
JP
Japan
Prior art keywords
medium
cooled
evaporator
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26859090A
Other languages
Japanese (ja)
Inventor
Tsuneo Uekusa
常雄 植草
Masaki Nakao
正喜 中尾
Masamori Terada
寺田 正守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26859090A priority Critical patent/JPH04143557A/en
Publication of JPH04143557A publication Critical patent/JPH04143557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To enhance temperature of an evaporator, to enhance utility efficiency of a supply heat, and to maintain a high efficiency even if the temperature of the supply heat is lowered by outputting cold from an evaporator by using low boiling point medium. CONSTITUTION:Liquidlike low boiling point medium absorbs heat in a room to become gaseous in an indoor heat exchanger 15, moves to an evaporator 5 to be cooled to become two states of gas and liquid or liquid, is separated to gas and liquid by a gas/liquid separator. The liquid is sent to the exchanger 15 by a circulation pump 20 to be circulated. Since the low boiling point medium is used as the medium to be cooled to heat exchange with latent heat when the liquid is changed to gas different from the case of using water as the medium to be cooled, the circulating flow rate of the medium to be cooled is reduced to reduce power of the pump, and the temperature of the evaporator 5 is raised to enhance the efficiency of an absorption type refrigerator.

Description

【発明の詳細な説明】 「産業上の利用分野1 本発明は、吸収式冷凍装置とその制御方法に関するしの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 1 The present invention relates to an absorption refrigeration system and a control method thereof.

[従来の技術] 従来の吸収式冷凍装置は、LiBr (臭化リチウム)
溶液の濃縮と希釈の吸収式冷凍サイクルを利用し冷房等
を行う被冷却媒体を冷却するものであり、その種類とし
てLiBr溶液の濃縮を行う再生器を二重に備える二重
効用吸収式冷凍装置と、再生器か−っである単効用吸収
式冷凍装置かあり、前者はレベルの高い高温熱源を駆動
源とし、後者は比較的レベルの低い高温熱源を駆動源と
している。
[Conventional technology] Conventional absorption refrigeration equipment uses LiBr (lithium bromide).
A dual-effect absorption refrigeration system that uses an absorption refrigeration cycle for concentrating and diluting a solution to cool a medium that performs cooling, etc., and is equipped with dual regenerators for concentrating LiBr solutions. There is also a single-effect absorption refrigeration system that uses a regenerator.The former uses a high-temperature heat source with a high level as its driving source, and the latter uses a relatively low-level high-temperature heat source as its driving source.

第8図に、吸収式冷凍装置の従来例の構成を示す。この
従来例は単効用吸収式冷凍装置の構成を示しており、1
は吸収式冷凍装置本体、2は再生器、3は凝縮器、4は
吸収器、5は蒸発器、6は高温水循環回路、7は被冷却
媒体循環回路、8は吸収器および凝縮器の冷却回路(冷
却媒体循環回路)、9は溶液ポンプ、lOは冷媒ポンプ
、11は溶液熱交換器、13は冷却媒体循環用ポンプ、
15は室内熱交換器、17は高温水循環用ポンプ、20
は被冷却媒体循環用ポンプ、21は冷却塔、28は熱発
生源を示している。
FIG. 8 shows the configuration of a conventional absorption refrigerating device. This conventional example shows the configuration of a single-effect absorption refrigeration system.
is the absorption refrigerating system main body, 2 is the regenerator, 3 is the condenser, 4 is the absorber, 5 is the evaporator, 6 is the high temperature water circulation circuit, 7 is the cooled medium circulation circuit, 8 is the cooling of the absorber and condenser circuit (coolant circulation circuit), 9 is a solution pump, 1O is a refrigerant pump, 11 is a solution heat exchanger, 13 is a coolant circulation pump,
15 is an indoor heat exchanger, 17 is a high temperature water circulation pump, 20
21 is a cooling tower, and 28 is a heat generation source.

吸収式冷凍装置本体lの内部は、通常の大気圧よりも低
い状態に保たれており、主として、凝縮器3と再生器2
とからなる高圧側冷凍器A(70mmHg程度)と、蒸
発器5と吸収器4とからなる低圧側冷凍器B (7mm
Hg程度)と、溶液熱交換器11とから構成されている
。また、高圧側冷凍器A及び低圧側冷凍器Bは各々気槽
と液槽とからなり、更に液槽は高圧側冷凍器Aにおいて
は凝縮器側液槽3Aと再生器側液槽2Aとに、低圧側冷
凍器Bにおいては蒸発器側液槽5Bと吸収器側液槽4B
とに分割されている。凝縮器側液槽3Aと蒸発器側液槽
5Bには冷媒(水)が封入されており、凝縮器側液4’
v3Aの冷媒(水)の温度は例えば45°C程度、蒸発
器側液槽5Bの冷媒(水)の温度は例えば5°C程度に
保たれている。また、再生器側液槽2Aと吸収器側液槽
4BとにはLiBr水溶液が封入されており、再生器側
液槽2AのLiBr水溶液の温度は例えば90℃程度、
吸収器側液槽4BのLiBr水溶液の温度は例えば40
°C程度に保たれており、再生器側液槽2AのLiBr
水溶液の方が吸収器側液槽4BのLiBr水溶液よりも
常に溶液濃度か濃い状態に保持されている。ここて、各
種の液温は上記温度に限定されているものではないこと
は言うまでもない。
The inside of the absorption refrigerating system main body l is kept at a state lower than normal atmospheric pressure, and mainly the condenser 3 and regenerator 2
A high-pressure refrigerator A (approximately 70 mmHg) consisting of , and a low-pressure refrigerator B (7 mm
Hg) and a solution heat exchanger 11. Furthermore, the high pressure side refrigerator A and the low pressure side refrigerator B each consist of an air tank and a liquid tank, and in the high pressure side refrigerator A, the liquid tank is divided into a condenser side liquid tank 3A and a regenerator side liquid tank 2A. , in the low pressure side refrigerator B, the evaporator side liquid tank 5B and the absorber side liquid tank 4B.
It is divided into. Refrigerant (water) is sealed in the condenser side liquid tank 3A and the evaporator side liquid tank 5B, and the condenser side liquid 4'
The temperature of the refrigerant (water) in v3A is maintained at, for example, about 45°C, and the temperature of the refrigerant (water) in the evaporator side liquid tank 5B is maintained at, for example, about 5°C. Furthermore, a LiBr aqueous solution is sealed in the regenerator side liquid tank 2A and the absorber side liquid tank 4B, and the temperature of the LiBr aqueous solution in the regenerator side liquid tank 2A is, for example, about 90°C.
The temperature of the LiBr aqueous solution in the absorber side liquid tank 4B is, for example, 40
The LiBr in the regenerator side liquid tank 2A is maintained at around °C.
The aqueous solution is always maintained at a higher concentration than the LiBr aqueous solution in the absorber side liquid tank 4B. It goes without saying that the various liquid temperatures are not limited to the above temperatures.

次に、冷却媒体、被冷却媒体、冷媒(水)及びLiBr
水溶液の循環回路について述へる。
Next, the cooling medium, the medium to be cooled, the refrigerant (water) and LiBr
Let us now discuss the aqueous solution circulation circuit.

まず、冷却媒体は冷却塔21から凝縮器及び吸収器冷却
回路8を経て冷却媒体循環用ポンプ13により吸収器4
に送り込まれ、凝縮器3を通って冷却塔21に循環され
る。
First, the cooling medium is passed from the cooling tower 21 through the condenser and absorber cooling circuit 8 to the absorber 4 by the cooling medium circulation pump 13.
and is circulated to the cooling tower 21 through the condenser 3.

また、被冷却媒体は、被冷却媒体循環ポンプ20により
被冷却媒体循環回路7を通って室内熱交換器15と蒸発
器5の間を循環する。ここで冷却媒体及び被冷却媒体と
しては、通常水が使用されている。
Further, the medium to be cooled is circulated between the indoor heat exchanger 15 and the evaporator 5 through the medium to be cooled circulation circuit 7 by the medium to be cooled circulation pump 20 . Here, water is usually used as the cooling medium and the medium to be cooled.

蒸発器5には凝縮器側液槽3Aから送り出された冷媒(
水)と、蒸発器側液槽5Bから冷媒ポンプ10により送
り出された冷媒(水)が上部から滴下されて蒸発するた
め、室内を冷房し温められた被冷却媒体は冷却されて室
内熱交換器15に戻り再ひ室内を冷却し、このサイクル
が繰り返される。上述したように、凝縮器側液i3Aの
冷媒(水)の温度は蒸発器側液槽5Bの冷媒(水)の温
度よりも高いが、圧力の低下により蒸発器側液槽5Bの
水の温度程度まで低下する。これら冷媒(水)は蒸発器
5て被冷却媒体より熱を与えられてその一部が蒸発し、
残りの冷媒(水)は蒸発器側液槽5Bに溜まる。
The evaporator 5 receives refrigerant (
water) and the refrigerant (water) sent out by the refrigerant pump 10 from the evaporator side liquid tank 5B are dripped from the top and evaporated, so the medium to be cooled that cools the room and is warmed is cooled and transferred to the indoor heat exchanger. The process returns to step 15 to cool the room again, and this cycle is repeated. As mentioned above, the temperature of the refrigerant (water) in the condenser side liquid i3A is higher than the temperature of the refrigerant (water) in the evaporator side liquid tank 5B, but due to the decrease in pressure, the temperature of the water in the evaporator side liquid tank 5B increases. decrease to a certain extent. These refrigerants (water) are given heat by the medium to be cooled in the evaporator 5, and a part of it evaporates.
The remaining refrigerant (water) accumulates in the evaporator side liquid tank 5B.

蒸発器5て蒸発した冷媒(水蒸気)は吸収器4側に移動
し、吸収器4の上部から再生器側液槽2Aより送出され
溶液熱交換器11で冷やされて滴下されたL i B 
r 濃溶液に吸収される。このL1BrfJ溶液への冷
媒(水蒸気)の吸収は発熱反応となり、この熱は吸収器
4を通る冷却回路8の冷却媒体によって除去される。こ
の際、LiBr@溶液は冷媒(水蒸気)を吸収してLi
Br希溶液となり吸収器側液+!4Bに溜まる。吸収器
側液槽4Bから溶液ポンプ9により送出された低温のL
iBr希溶液は溶液熱交換器11にて再生器側液槽2A
からの高温のL + B r >a溶液と熱交換して温
められ、高圧側冷凍器への上部から再生器側液槽2Aに
滴下される。また、再生器側液槽2AのLi B r 
a溶液の温度は、高温水循環回路6を高温水循環ポンプ
17により循環する高温水(燃料電池等の熱発生源19
により常に温められている)により熱を与えられ、高温
に保持されている。
The refrigerant (water vapor) evaporated in the evaporator 5 moves to the absorber 4 side, is sent out from the upper part of the absorber 4 from the regenerator side liquid tank 2A, is cooled in the solution heat exchanger 11, and is dripped into Li B.
r Absorbed in concentrated solutions. This absorption of refrigerant (water vapor) into the L1BrfJ solution becomes an exothermic reaction, and this heat is removed by the cooling medium of the cooling circuit 8 passing through the absorber 4. At this time, the LiBr@ solution absorbs the refrigerant (water vapor) and
It becomes a dilute Br solution and the absorber side liquid is +! It accumulates in 4B. Low-temperature L delivered from the absorber side liquid tank 4B by the solution pump 9
The iBr dilute solution is transferred to the regenerator side liquid tank 2A in the solution heat exchanger 11.
It is heated by heat exchange with the high-temperature L + B r >a solution, and is dripped into the regenerator side liquid tank 2A from the upper part of the high pressure side refrigerator. In addition, Li B r in the regenerator side liquid tank 2A
The temperature of the a solution is determined by high temperature water (heat generation source 19 such as a fuel cell) that is circulated through high temperature water circulation circuit 6 by high temperature water circulation pump 17.
(always heated by) and maintained at a high temperature.

再生器側液槽2Aの高温のLiBra溶液から蒸発した
冷媒(水蒸気)は、凝縮器3側に移動し、冷却回路8に
より凝縮器3を循環する冷却媒体に熱を与え、自らは凝
縮して凝縮器側液槽3Aに溜まる。吸収器4および凝縮
器3で温められた冷却媒体は、冷却塔21にて冷やされ
、吸収器および凝縮器の冷却回路8を通り冷却媒体循環
用ポンプ13により吸収器4および凝縮器3に循環され
る。
The refrigerant (steam) evaporated from the high-temperature LiBra solution in the regenerator side liquid tank 2A moves to the condenser 3 side, gives heat to the cooling medium circulating in the condenser 3 through the cooling circuit 8, and is condensed by itself. It accumulates in the condenser side liquid tank 3A. The cooling medium heated in the absorber 4 and condenser 3 is cooled in a cooling tower 21, passes through an absorber and condenser cooling circuit 8, and is circulated to the absorber 4 and condenser 3 by a cooling medium circulation pump 13. be done.

以上のようにして吸収式冷凍装置か構成され、蒸発器5
には常に低温に保たれた冷媒(水)が上部から滴下され
て蒸発するため、蒸発器5を循環する被冷却媒体を冷却
することができ、それに伴い室内熱交換器15により室
内を連続冷房運転することが可能となっている。
The absorption refrigerating system is constructed as described above, and the evaporator 5
Since the refrigerant (water) that is always kept at a low temperature is dripped from the top and evaporated, the medium to be cooled circulating through the evaporator 5 can be cooled, and the room can be continuously cooled by the indoor heat exchanger 15. It is possible to drive.

第9図に、吸収式冷凍装置のもう一つの従来例の構成を
示す。この従来例は、第8図の従来例を改良したもので
あって、本出願人が、先に出願したものである。この実
施例では、冷却媒体にフロン等の低沸点媒体を封入して
使用し、第8図の冷却塔21に代えてメンテナンスの容
易な室外熱交換器12および気液分離器14を配置して
、メンテナンスコストの低減を図るとともに、冷却媒体
の循環量を少なくて済むようにし、冷却媒体循環用ポン
プ13の動力低減によりランニングコストの低減を図っ
ている。
FIG. 9 shows the configuration of another conventional example of an absorption refrigerating apparatus. This conventional example is an improvement on the conventional example shown in FIG. 8, and was previously filed by the present applicant. In this embodiment, a low boiling point medium such as fluorocarbon is used as the cooling medium, and an outdoor heat exchanger 12 and a gas-liquid separator 14, which are easy to maintain, are installed in place of the cooling tower 21 shown in FIG. In addition to reducing maintenance costs, the amount of circulating coolant is reduced, and the power of the coolant circulation pump 13 is reduced, thereby reducing running costs.

[発明か解決しようとする課題] しかしなから、上記従来の技術における吸収式冷凍装置
では、冷房を行う室内熱交換器15と蒸発器5の間に循
環させる被冷却媒体として水(冷水)を用い、蒸発器5
および室内熱交換器15における熱交換は、その水の温
度変化すなわち顕熱によってなされているため、被冷却
媒体循環用ポンプ20のポンプ動力が大きくなるととも
に蒸発器5ての蒸発温度を低く保たなければならないと
いう問題点かある。
[Problems to be solved by the invention] However, in the absorption refrigerating apparatus in the above-mentioned conventional technology, water (chilled water) is circulated between the indoor heat exchanger 15 that performs cooling and the evaporator 5 as a medium to be cooled. evaporator 5
Since the heat exchange in the indoor heat exchanger 15 is performed by temperature change of the water, that is, sensible heat, the pump power of the cooled medium circulation pump 20 increases and the evaporation temperature of the evaporator 5 is kept low. The problem is that it has to be done.

また、再生器2へ供給される温水または蒸気の湿度ある
いは圧力か吸収式冷凍装置本体1を運転するのに必要な
定格値より少しても低下すると、冷却能力か極端に低下
してしまう問題点、および吸収式冷凍装置故障時には冷
房運転は行えなくなる問題点あった。
Another problem is that if the humidity or pressure of hot water or steam supplied to the regenerator 2 drops even slightly from the rated value required to operate the absorption refrigeration system body 1, the cooling capacity will drop drastically. , and there was a problem that cooling operation could not be performed when the absorption refrigeration system malfunctioned.

本発明は、」−記問題点を解決するために提案するもの
で、lli給熱の利用効率を高め、供給熱のt品度が低
くなっても高い効率を維持てきるようにするとともに、
冷房等を行う被冷却媒体の循環用のポンプ動力費を削減
可能にする吸収式冷凍装置とその制御方法を提供するこ
とを目的とする。
The present invention is proposed in order to solve the problems mentioned above, and improves the utilization efficiency of LLI heat supply, maintains high efficiency even when the quality of supplied heat becomes low, and
It is an object of the present invention to provide an absorption refrigerating device and a control method thereof that can reduce the power cost of a pump for circulating a medium to be cooled for cooling.

[課題を解決するだめの手段] 上記の目的を達成するための本発明の吸収式冷凍装置の
構成は、 熱源より熱を与えられ希溶液から冷媒を蒸発させて濃溶
液とする再生器と、冷却媒体により冷却されて前記蒸発
された冷媒を凝縮する凝縮器と、被冷却媒体より熱を得
て前記凝縮器から流入する冷媒を蒸発させて該被冷却媒
体に冷熱を与える蒸発器と、前記再生器から流入するl
非溶液に前記蒸発器で蒸発した冷媒を吸収させて熱を発
する吸収器と、を有する吸収式冷凍装置において、前記
被冷却媒体として低沸点媒体を封入して用い、前記被冷
却媒体か前記苺発器から得た冷熱で冷房等を行う熱交換
器と、前記熱交換器と前記蒸発器間を循環する前記被冷
却媒体に循環力を与える循環ポンプと、を備えることを
特徴とする。
[Means for Solving the Problems] The structure of the absorption refrigeration system of the present invention for achieving the above object includes: a regenerator that receives heat from a heat source and evaporates a refrigerant from a dilute solution into a concentrated solution; a condenser that is cooled by a cooling medium and condenses the evaporated refrigerant; an evaporator that obtains heat from the medium to be cooled and evaporates the refrigerant flowing from the condenser to provide cold heat to the medium to be cooled; l flowing from the regenerator
In an absorption refrigerating apparatus, the absorption refrigerating device includes an absorber that generates heat by absorbing the refrigerant evaporated in the evaporator into a non-solution, and a low boiling point medium is sealed and used as the medium to be cooled, and the medium to be cooled is It is characterized by comprising a heat exchanger that performs cooling or the like using cold heat obtained from a generator, and a circulation pump that applies a circulation force to the medium to be cooled that circulates between the heat exchanger and the evaporator.

また、同じく上記の目的を達成するための本発明の吸収
式冷凍装置の制御方法の構成は、再生器へ供給される熱
源の1品度あるいは圧力を計測する第1の温度センサあ
るいは圧力センサと、凝縮器および吸収器の冷却を行う
冷却媒体の温度を51測する第2の温度センサと、蒸発
器より1尋られる冷熱の湿度を副側する第3の温度セン
サと、を設け、前記再生器へ供給される熱源の温度ある
いは圧力が定格の温度あるいは圧力に達していない場合
、蒸気圧縮冷凍サイクルで熱交換器と蒸発器との間に圧
力差を設けて、該蒸発器への被冷却媒体温度を下げるよ
うに圧縮機回転数および膨張弁開度を制御して、前記再
生器へ供給される熱源の温度あるいは圧力にに見合った
被冷却媒体温度で運転する過程と、または、上記過程に
加えて、外気温度の低下とともに、前記熱交換器と前記
蒸発器との圧力差が小さくなるように前記圧縮機回転数
および前記膨張弁開度を制御する過程と、を有すること
を’K 6Jとする。
Furthermore, the structure of the control method for an absorption refrigerating apparatus according to the present invention to achieve the above-mentioned object also includes a first temperature sensor or pressure sensor that measures the quality or pressure of the heat source supplied to the regenerator. , a second temperature sensor that measures the temperature of the cooling medium that cools the condenser and the absorber, and a third temperature sensor that measures the humidity of the cold heat from the evaporator, and If the temperature or pressure of the heat source supplied to the evaporator does not reach the rated temperature or pressure, a pressure difference is created between the heat exchanger and the evaporator in the vapor compression refrigeration cycle, and the cooled material is supplied to the evaporator. A process of controlling the compressor rotation speed and expansion valve opening degree so as to lower the medium temperature, and operating at a temperature of the medium to be cooled commensurate with the temperature or pressure of the heat source supplied to the regenerator, or the above process. In addition, the method further comprises a step of controlling the compressor rotation speed and the expansion valve opening degree so that the pressure difference between the heat exchanger and the evaporator becomes smaller as the outside air temperature decreases. It will be 6J.

[作用] 本発明は、蒸発器からの冷熱を低沸点媒体を用いて取り
出すことで蒸発器の温度を高くできるようにして吸収式
冷凍装置の効率を高め、あるいは、再生器へ供給する熱
源の温度を低くてきるようにする。また、低沸点媒体の
使用により潜熱で熱交換マきるようにして被冷却媒体の
循環量を減少させ、循環用のポンプ動力費を削減する。
[Function] The present invention makes it possible to increase the temperature of the evaporator by extracting cold heat from the evaporator using a low boiling point medium, thereby increasing the efficiency of the absorption refrigerating device, or increasing the efficiency of the heat source supplied to the regenerator. Allow the temperature to drop. In addition, by using a low boiling point medium, heat exchange is performed using latent heat, thereby reducing the amount of circulation of the medium to be cooled and reducing the power cost of the pump for circulation.

[実施例] 以下、本発明の実施例を図面に基づいて詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の第1の実施例を示す構成図である。本
実施例は、被冷却媒体循環用ポンプで被冷却媒体を循環
させて蒸発器の冷熱の搬送を行う方式を温水利用の第8
図の従来例の単効用吸収式冷凍装置に適用した例を示す
。本実施例の構成において、1は吸収式冷凍装置本体、
2は再生器、3は凝縮器、4は吸収器、5は蒸発器、6
は高温水循環回路、7は被冷却媒体循環回路、8は凝縮
器および吸収器の冷却回路(冷却媒体循環回路)、9は
溶液ポンプ、10は冷媒ポンプ、11は溶液熱交換器、
13は冷却媒体循環用ポンプ、15は室内熱交換器、1
6は気液分離器、17は高温水循環用ポンプ、19は熱
発生源、20は被冷却媒体循環用ポンプを示す。再生器
2と凝縮器3の構造および吸収器4と蒸発器5の構造は
、従来例と同様である。
FIG. 1 is a block diagram showing a first embodiment of the present invention. In this embodiment, the method of circulating the cooled medium with a cooled medium circulation pump to convey the cold heat of the evaporator is the eighth method of using hot water.
An example of application to the conventional single-effect absorption refrigerating apparatus shown in the figure is shown. In the configuration of this embodiment, 1 is an absorption refrigerating device main body;
2 is a regenerator, 3 is a condenser, 4 is an absorber, 5 is an evaporator, 6
is a high temperature water circulation circuit, 7 is a cooled medium circulation circuit, 8 is a cooling circuit for a condenser and an absorber (coolant circulation circuit), 9 is a solution pump, 10 is a refrigerant pump, 11 is a solution heat exchanger,
13 is a cooling medium circulation pump, 15 is an indoor heat exchanger, 1
6 is a gas-liquid separator, 17 is a high temperature water circulation pump, 19 is a heat generation source, and 20 is a cooled medium circulation pump. The structures of the regenerator 2 and condenser 3 and the structures of the absorber 4 and evaporator 5 are the same as those of the conventional example.

本実施例は、第8図の従来例に対し、被冷却媒体循環回
路7の冷却媒体として例えばフロン等のような低沸点媒
体を用いることを特徴とする。このため、本実施例の被
冷却媒体循環回路系は、蒸発器5を通る被冷却媒体出口
に気液分離器16を設け、この気液分離器16の出口か
ら被冷却媒体循環用ポンプ20へ、さらにそれから室内
熱交換器150入口へ、その出口から上記の蒸発器5の
被冷却媒体人口8へと、それぞれ配管で結んで、これら
の循環回路系に低沸点媒体を封入して構成する。例えば
、低沸点媒体かフロンであれば適宜な圧力をかけて封入
する。これにより、1気圧で40.8℃であるフロンの
沸点が、本実施例に適した8、度の低沸点に上昇する。
This embodiment is different from the conventional example shown in FIG. 8 in that a low boiling point medium such as fluorocarbon is used as the cooling medium in the cooling medium circulation circuit 7. For this reason, the cooled medium circulation circuit system of this embodiment is provided with a gas-liquid separator 16 at the cooled medium outlet passing through the evaporator 5, and from the outlet of the gas-liquid separator 16 to the cooled medium circulation pump 20. , and further connected by piping to the inlet of the indoor heat exchanger 150 and the outlet thereof to the cooled medium population 8 of the evaporator 5, respectively, and a low boiling point medium is sealed in these circulation circuit systems. For example, if it is a low-boiling point medium or fluorocarbon, it is sealed by applying an appropriate pressure. As a result, the boiling point of fluorocarbon, which is 40.8° C. at 1 atm, rises to a low boiling point of 8° C., which is suitable for this example.

本実施例におけるLiBr溶液、冷媒、冷却媒体の循環
回路系は、第8図の従来例と同様である。
The circulation circuit system for the LiBr solution, refrigerant, and cooling medium in this embodiment is the same as that in the conventional example shown in FIG.

以上のように構成した第1の実施例の動作および作用を
述へる。
The operation and effect of the first embodiment configured as above will be described.

第1図において、被冷却媒体の循環回路7に着目して述
べると、まず、室内熱交換器15において液状の低沸点
媒体は室内の熱を吸収して気体状となり、蒸発器5に移
動して冷やされ気液二相状または液状となり、気液分離
器14にて気体と液体とに分離され、液体は循環用ポン
プ20にて室内熱交換器15に送られ循環される。この
ように被冷却媒体として低沸点媒体を用いることにより
、水を被冷却媒体として用いた場合と異なって、液体か
ら気体に変化するときの潜熱で熱交換できるため、被冷
却媒体の循環流量を少なくしてポンプ動力が削減される
と共に、蒸発器5の温度を高くすることにより吸収式冷
凍装置の効率を高めることができる。
In FIG. 1, focusing on the circulation circuit 7 for the medium to be cooled, first, in the indoor heat exchanger 15, the liquid low boiling point medium absorbs indoor heat, becomes gaseous, and moves to the evaporator 5. It is cooled and becomes a gas-liquid two-phase state or a liquid state, and is separated into gas and liquid by a gas-liquid separator 14. The liquid is sent to an indoor heat exchanger 15 by a circulation pump 20 and circulated. By using a low boiling point medium as the medium to be cooled in this way, unlike when water is used as the medium to be cooled, heat can be exchanged using the latent heat when changing from liquid to gas, so the circulation flow rate of the medium to be cooled can be reduced. By reducing the pump power, the efficiency of the absorption refrigerating system can be increased by increasing the temperature of the evaporator 5.

次に、本発明の第2の実施例の構成を第2図に示す。本
実施例は、低沸点媒体の被冷却媒体を自然循環させて蒸
発器の冷熱の搬送を行う方式を第9図に示した従来例の
単効用吸収式冷凍装置に適用した例を示している。本実
施例の構成において、1は吸収式冷凍装置本体、2は再
生器、3は凝縮器、4は吸収器、5は蒸発器、6は高温
水循環回路、7は被冷却媒体循環回路、8は凝縮器およ
び吸収器の冷却回路、9は溶液ポンプ、10は冷媒ポン
プ、11は溶液熱交換器、12は室外熱交換器、13は
冷却媒体循環用ポンプ、14は気液分離器、15は室内
熱交換器、17は高温水循環用ポンプ、19は熱発生源
を示す。
Next, FIG. 2 shows the configuration of a second embodiment of the present invention. This embodiment shows an example in which a method of naturally circulating a medium to be cooled, which is a low boiling point medium, to transfer cold energy from an evaporator is applied to the conventional single-effect absorption refrigerating apparatus shown in FIG. 9. . In the configuration of this embodiment, 1 is an absorption refrigerating apparatus main body, 2 is a regenerator, 3 is a condenser, 4 is an absorber, 5 is an evaporator, 6 is a high temperature water circulation circuit, 7 is a cooled medium circulation circuit, 8 1 is a cooling circuit for a condenser and an absorber, 9 is a solution pump, 10 is a refrigerant pump, 11 is a solution heat exchanger, 12 is an outdoor heat exchanger, 13 is a cooling medium circulation pump, 14 is a gas-liquid separator, 15 17 is an indoor heat exchanger, 17 is a high-temperature water circulation pump, and 19 is a heat generation source.

本実施例でも、被冷却媒体として低沸点媒体を使用する
。この被冷却媒体の循環回路7に着目して述べると、前
述の第1の実施例に対し、本実施例は、室内熱交換器5
を吸収式冷凍装置本体lの蒸発器5よりも下方に位置さ
せると共に、被冷却媒体循環用ポンプ20を除去したも
のである。
In this embodiment as well, a low boiling point medium is used as the medium to be cooled. Focusing on the circulation circuit 7 for the medium to be cooled, in contrast to the first embodiment described above, this embodiment has an indoor heat exchanger 5.
is located below the evaporator 5 of the absorption refrigerating apparatus main body l, and the pump 20 for circulating the medium to be cooled is removed.

本実施例における吸収式冷凍装置本体1の動作および機
能は、第9図の従来例と同様であり、被冷却媒体の循環
回路7の動作および作用は次の通りである。まず、室内
熱交換器15において、液状の低沸点媒体は室内の熱を
吸収して気体状となり、蒸発器5にて冷やされ気液二相
状または液状となる。この場合、室内熱交換器15を蒸
発器5よりも下方に位置させであるため、液は下方にた
まり、第1図の循環用ポンプ20がなくても自然循環に
より被冷却媒体は回路内を循環することができる。した
がって、循環力を与えるためのポンプ動力は全く不要と
なり、ランニングコストの低減を図ることができる。
The operation and function of the absorption refrigerating apparatus main body 1 in this embodiment are similar to those of the conventional example shown in FIG. 9, and the operation and function of the circulation circuit 7 for the medium to be cooled are as follows. First, in the indoor heat exchanger 15, the liquid low boiling point medium absorbs indoor heat and becomes gaseous, and is cooled in the evaporator 5 to become gas-liquid two-phase or liquid. In this case, since the indoor heat exchanger 15 is located below the evaporator 5, the liquid accumulates below, and the medium to be cooled flows through the circuit through natural circulation even without the circulation pump 20 shown in FIG. Can be circulated. Therefore, pump power for providing circulation force is completely unnecessary, and running costs can be reduced.

なお、このような室内熱交換器15を蒸発器5よりも下
方に位置させる構成は、第8図の従来例にも適用するこ
とができ、同様の作用効果を発揮することはいうまでも
ない。
It should be noted that such a configuration in which the indoor heat exchanger 15 is located below the evaporator 5 can also be applied to the conventional example shown in FIG. 8, and it goes without saying that similar effects can be achieved. .

次に、本発明の第3の実施例の構成を第3図に示す。本
実施例は、低沸点媒体を被冷却媒体とし、蒸気圧縮式冷
凍サイクルで蒸発器5から冷熱を取り出す方式を第9図
の従来例の温水利用単効用吸収式冷凍装置に適用した例
を示している。本実施例の構成において、1は吸収式冷
凍装置本体、2は再生器、3は凝縮器、4は吸収器、5
は蒸発器、6は高温水循環回路、7は被冷却媒体循環回
路、8は凝縮器および吸収器の冷却回路、9は溶液ポン
プ、10は冷媒ポンプ、11は溶液熱交換器、12は室
外熱交換器、13は冷却媒体循環用ポンプ、14は気液
分離器、15は室内熱交換器、17は高温水循環用ポン
プ、19は熱発生源、22は膨張弁、23は圧縮機、2
4,25.26は温度センサ、27は記憶装置、28は
演算および制御装置である。
Next, FIG. 3 shows the configuration of a third embodiment of the present invention. This embodiment shows an example in which a method in which a low-boiling point medium is used as the medium to be cooled and cold heat is extracted from the evaporator 5 in a vapor compression refrigeration cycle is applied to the conventional single-effect absorption refrigeration system using hot water shown in FIG. ing. In the configuration of this embodiment, 1 is an absorption refrigerating apparatus main body, 2 is a regenerator, 3 is a condenser, 4 is an absorber, and 5 is a regenerator.
is an evaporator, 6 is a high-temperature water circulation circuit, 7 is a cooled medium circulation circuit, 8 is a cooling circuit for a condenser and absorber, 9 is a solution pump, 10 is a refrigerant pump, 11 is a solution heat exchanger, 12 is an outdoor heat 13 is a cooling medium circulation pump, 14 is a gas-liquid separator, 15 is an indoor heat exchanger, 17 is a high-temperature water circulation pump, 19 is a heat generation source, 22 is an expansion valve, 23 is a compressor, 2
4, 25, and 26 are temperature sensors, 27 is a storage device, and 28 is a calculation and control device.

本実施例は、第1の実施例に対し、気液分離器16と被
冷却媒体循環用ポンプ13を除去し、蒸発器5の被冷却
媒体入口側の回路に新たに圧縮機23を設け、ここで蒸
気圧縮を行って被冷却媒体を蒸発器5に送り込むととも
に、蒸発器5の被冷却媒体の出口側の回路に膨張弁23
を設けて、蒸発器5の冷熱で液状となった被冷却媒体を
膨張弁23を通して低圧にした後、室内熱交換器15へ
循環させる構成とする。吸収式冷凍装置本体1は第9図
と同様に構成されており、本実施例では、その吸収式冷
凍装置1を構成している再生器2の高温水の入口側には
その高温水温度T1を測定するための温度センサ24を
、同じく凝縮器3.吸収器4の冷却媒体の入口側にはそ
の冷却媒体温度T2を測定するための温度センサ25を
、同じく蒸発器5の被冷却媒体の出口側にはその被冷却
媒体温度T3を測定するための温度センサ26を設けて
、それらの測定値を演算および制御装置28に入力する
。演算および制御装置は、これらの測定値と、予め記憶
装置27に記憶させた被冷却媒体の設定温度とを比較す
ることにより、圧縮R23の回転数および膨張弁22の
開度を制御して被冷却媒体の温度を制御する機能を有す
る。
This embodiment differs from the first embodiment in that the gas-liquid separator 16 and the cooling medium circulation pump 13 are removed, and a compressor 23 is newly installed in the circuit on the cooling medium inlet side of the evaporator 5. Here, vapor compression is performed and the medium to be cooled is sent to the evaporator 5, and an expansion valve 23 is connected to the circuit on the outlet side of the medium to be cooled from the evaporator 5.
is provided so that the medium to be cooled, which has become liquid due to the cold heat of the evaporator 5, is brought to a low pressure through the expansion valve 23 and then circulated to the indoor heat exchanger 15. The absorption refrigerating apparatus main body 1 is constructed in the same manner as shown in FIG. A temperature sensor 24 for measuring temperature is also connected to the condenser 3. A temperature sensor 25 is installed on the inlet side of the cooling medium of the absorber 4 for measuring the temperature T2 of the cooling medium, and a temperature sensor 25 is installed on the outlet side of the medium to be cooled of the evaporator 5 for measuring the temperature T3 of the medium to be cooled. Temperature sensors 26 are provided and their measurements are input to a calculation and control device 28 . The calculation and control device controls the rotation speed of the compression R23 and the opening degree of the expansion valve 22 by comparing these measured values with the set temperature of the medium to be cooled stored in the storage device 27 in advance. It has the function of controlling the temperature of the cooling medium.

以上のような蒸気圧縮式冷凍サイクル方式では、被冷却
媒体(フロン等)が室外熱交換器12で冷却されて液化
し、液体となった被冷却媒体が膨張弁22を経て低圧の
液として室内熱交換器15に送られ、被冷却媒体は、室
内空気と熱交換して気体となる。そのガス状の被冷却媒
体は、圧縮機23により圧縮されて蒸発器5に供給され
、以下同様のサイクルを繰り返す。ただし、ここで本蒸
気圧縮式冷凍サイクルでは、従来の空調装置に利用され
ている冷凍サイクルと異なり、圧縮機23でのJ[比は
低圧縮比で、膨張弁22ての圧力降下も凝縮器3および
蒸発器5の温度と室内熱交換器6の冷却媒体温度に応じ
てできるだけ小さい値とする、 夏期運転において、低温排熱を利用して再生器2へ人力
して冷房運転を行う場合、すなわち、高温水循環回路6
を循J9する高温水を温度T1を低くした場合、従来例
の構成では、被冷却媒体循環回路を循環する被冷却媒体
の温度T3は高くしなければならず、室内の冷却効率が
落ちることになる。したがって、従来例の構成では低温
排熱を利用することができなかった。
In the vapor compression refrigeration cycle system as described above, the medium to be cooled (such as fluorocarbons) is cooled and liquefied in the outdoor heat exchanger 12, and the liquid medium passes through the expansion valve 22 and returns indoors as a low-pressure liquid. The medium to be cooled is sent to the heat exchanger 15, where it exchanges heat with indoor air and becomes a gas. The gaseous medium to be cooled is compressed by the compressor 23 and supplied to the evaporator 5, and the same cycle is repeated thereafter. However, in this vapor compression refrigeration cycle, unlike the refrigeration cycle used in conventional air conditioners, the J [ratio in the compressor 23 is low, and the pressure drop at the expansion valve 22 is also lower than that at the condenser. 3, the temperature of the evaporator 5, and the coolant temperature of the indoor heat exchanger 6. In summer operation, when performing air conditioning operation manually to the regenerator 2 using low-temperature waste heat, In other words, the high temperature water circulation circuit 6
When the temperature T1 of the high-temperature water circulating in the cooling medium circulation circuit is lowered, in the conventional configuration, the temperature T3 of the cooled medium circulating in the cooled medium circulation circuit must be increased, which reduces the indoor cooling efficiency. Become. Therefore, with the configuration of the conventional example, low-temperature waste heat could not be utilized.

このような低温排熱を利用した冷房運転を可能とするた
め、本実施例では高温水循環回路6に設けた温度センサ
24により高温水の温度T1を、被冷却媒体循環回路7
に設けた温度センサ26により被冷却媒体の温度T3を
演算および制御28により検知し、予め記憶装置27に
記憶させた被冷却媒体の設置温度と比較することにより
、被冷却媒体循環回路7に設けた圧縮機23の回転数お
よび膨張弁22の開度を制御して被冷却媒体である低沸
点媒体の温度を制御する。
In order to enable cooling operation using such low-temperature waste heat, in this embodiment, the temperature T1 of the high-temperature water is detected by the temperature sensor 24 provided in the high-temperature water circulation circuit 6, and
The temperature T3 of the cooled medium is detected by the calculation and control 28 using the temperature sensor 26 installed in the The rotation speed of the compressor 23 and the opening degree of the expansion valve 22 are controlled to control the temperature of the low boiling point medium which is the medium to be cooled.

すなわち、上記のようにT1が低く73が高い場合には
、演算および制御装置28からの指令に基づいて圧縮機
23の回転数を上昇させ、膨張弁22の開度を絞ること
により、蒸発器5内の低沸点媒体の圧力を高し、室内熱
交換器15の圧力を低くする。したがって、低温排熱利
用において、再生器2の温度が低く、蒸発器5の温度が
高い場合でも、室内熱交換器15の温度を低く抑えるこ
とができ、低温排熱を利用した適切な冷房運転をするこ
とが可能となる。この時、圧縮機前後での圧縮比は1.
0〜2.0程度である。
That is, when T1 is low and 73 is high as described above, the rotation speed of the compressor 23 is increased based on the command from the calculation and control device 28, and the opening degree of the expansion valve 22 is reduced, thereby increasing the evaporator. The pressure of the low boiling point medium in the indoor heat exchanger 15 is increased, and the pressure of the indoor heat exchanger 15 is decreased. Therefore, when using low-temperature waste heat, even if the temperature of the regenerator 2 is low and the temperature of the evaporator 5 is high, the temperature of the indoor heat exchanger 15 can be kept low, and appropriate cooling operation using low-temperature waste heat can be achieved. It becomes possible to do this. At this time, the compression ratio before and after the compressor is 1.
It is about 0 to 2.0.

また、冬場になりT2の温度が下がってきた場合には被
冷却媒体の温度が下がり蒸発器5内の圧力と室内熱交換
器15内の一圧力との間の圧力差を小さくできるかまた
は圧力差を設ける必要がなくなるため、凝縮器および吸
収器の冷却回路8に設けた温度センサ25により冷却媒
体の温度T2を演算および制御装置28により検知し、
演算および制御装置28からの指令で圧縮機23の回転
数下降させ、および膨張弁22の開度を開いて上記圧力
差を小さくするか、あるいはそれらの作動を停止させて
圧力差をなくす。
In addition, when the temperature of T2 decreases in winter, the temperature of the medium to be cooled decreases and the pressure difference between the pressure in the evaporator 5 and one pressure in the indoor heat exchanger 15 can be reduced or the pressure Since there is no need to provide a difference, the temperature T2 of the cooling medium is detected by the temperature sensor 25 provided in the cooling circuit 8 of the condenser and absorber by the calculation and control device 28,
The rotational speed of the compressor 23 is lowered and the expansion valve 22 is opened in response to a command from the arithmetic and control device 28 to reduce the above-mentioned pressure difference, or their operation is stopped to eliminate the pressure difference.

第4図は被冷却媒体の温度T3を横軸に、冷却媒体の温
度T2を縦軸にとり、高温水の温度TIをパラメータと
してこれらの関係を示したものである。例えば、T1を
85℃と設定した場合、T2が31”CではT3は約9
℃となる。低温排熱利用運転の場合、すなわちT1か低
い場合には、T2の温度か外気温度により定まり自由に
設定することができないため、必然的にT3の温度を上
げた運転となる。
FIG. 4 shows the relationship between the temperature T3 of the cooled medium on the horizontal axis, the temperature T2 of the cooling medium on the vertical axis, and the temperature TI of the high temperature water as a parameter. For example, if T1 is set to 85℃, and T2 is 31”C, T3 is approximately 9
℃. In the case of low-temperature exhaust heat utilization operation, that is, when T1 is low, the temperature of T3 is determined by the temperature of T2 or the outside air temperature and cannot be set freely, so the operation is inevitably performed with the temperature of T3 raised.

また、第5図はTlを85°C,T2を31℃、T3を
9℃とした場合の冷却能力を1とし、これと比較した冷
却能力を縦軸に、冷却媒体の温度T2を横軸にとり、高
温水の温度TIをパラメータとしてこれらの関係を示し
たものである。T2を一定とした場合、低温排熱利用運
転のように7.1が下がると冷却能力が下がることが理
解できる。
In addition, in Figure 5, the cooling capacity is 1 when Tl is 85°C, T2 is 31°C, and T3 is 9°C, and the vertical axis is the cooling capacity compared to this, and the horizontal axis is the temperature T2 of the cooling medium. These relationships are shown using the temperature TI of high temperature water as a parameter. It can be understood that when T2 is constant, cooling capacity decreases when 7.1 decreases as in low-temperature exhaust heat utilization operation.

第6図及び第7図は吸収式冷凍装置本体1が故障した時
の対策を講じた第4および第5の実施例である。
FIGS. 6 and 7 show fourth and fifth embodiments in which measures are taken when the absorption refrigerating apparatus main body 1 breaks down.

第6図の第4の実施例の構成において、1は吸収式冷凍
装置本体、2は再生器、3は凝縮器、4は吸収器、5は
蒸発器、6は高温水循環回路、7は被冷却媒体循環回路
、8は凝縮器および吸収器の冷却回路、9は溶液ポンプ
、10は冷媒ポンプ、11は溶液熱交換器、12.30
は室外熱交換器、13は冷却媒体循環用ポンプ、15は
室内熱交換器、17は高温水循環用ポンプ、19は熱発
生源、22は膨張弁、23は圧縮機、29は吸収式冷凍
装置本体の動作判別センサ、31は流量調節三方弁、3
2は判定および制御装置を示す。
In the configuration of the fourth embodiment shown in FIG. 6, 1 is an absorption refrigerating apparatus main body, 2 is a regenerator, 3 is a condenser, 4 is an absorber, 5 is an evaporator, 6 is a high-temperature water circulation circuit, and 7 is a Coolant circulation circuit, 8 is a condenser and absorber cooling circuit, 9 is a solution pump, 10 is a refrigerant pump, 11 is a solution heat exchanger, 12.30
13 is an outdoor heat exchanger, 13 is a cooling medium circulation pump, 15 is an indoor heat exchanger, 17 is a high temperature water circulation pump, 19 is a heat generation source, 22 is an expansion valve, 23 is a compressor, 29 is an absorption refrigeration device Operation discrimination sensor of the main body, 31 is a flow rate adjustment three-way valve, 3
2 indicates a judgment and control device.

上記において、吸収式冷凍装置本体1は第9図の従来例
とほぼ同様に構成されており、被冷却媒体の循環回路系
は、第3図に示したように膨張弁22と圧縮機23を設
けて蒸気圧縮式冷凍サイクル方式で冷熱を搬送する構成
とする。ここで本実施例では、蒸発器5の被冷却媒体の
入口側回路に流ta節三方弁31を設け、蒸発器5をバ
イパスする回路を形成して室外熱交換器30を接続する
とともに、吸収式冷凍装置本体1が動作しているかどう
かを判別するための動作判別センサ29を設け、その検
出信号を判定および制御装置32に入力し、その入力さ
れた検出信号に基づいて判定および制御装置32が流量
調節三方弁31に制御信号を送出する構成とする。
In the above, the absorption refrigerating apparatus main body 1 is configured almost the same as the conventional example shown in FIG. 9, and the circulation circuit system for the medium to be cooled includes an expansion valve 22 and a compressor 23 as shown in FIG. The structure is such that cold energy is transported using a vapor compression refrigeration cycle system. In this embodiment, a three-way valve 31 is provided on the inlet side circuit of the cooled medium of the evaporator 5 to form a circuit that bypasses the evaporator 5 and connects the outdoor heat exchanger 30. An operation determination sensor 29 is provided to determine whether or not the refrigeration system main body 1 is operating, and its detection signal is input to the determination and control device 32. Based on the input detection signal, the determination and control device 32 is configured to send a control signal to the flow rate regulating three-way valve 31.

以上のように構成された第4の実施例の動作および作用
を述べる。
The operation and effect of the fourth embodiment configured as above will be described.

まず、判定および制御装置32は、吸収式冷凍装置本体
lが正常に稼働しているか否かを動作判別センサ29よ
り情報を得て監視する。ここで、吸収式冷凍装置本体l
が正常に稼働している場合は、流11M節三方弁31を
切り換えて蒸発器5を通る経路で被冷却媒体が流れるよ
うにする。このときの動作は、第3図の第3の実施例で
説明した例と同様である。次に、吸収式冷凍装置本体1
が故障し停止した場合には、その情報を動作判別センサ
29により検知し、それに基づいた判定および制御装置
32からの制御信号で流量調節三方弁31を切り換えて
、室内熱交換器15と室外熱交換器30とを結ぶ回路を
形成し、被冷却媒体の回路を吸収式冷凍装置本体1から
切り離して、室外熱交換器30が蒸発器5の代わりにな
るように蒸気圧縮式冷凍サイクルを運転する。室内熱交
換器15より受は取った熱は、室外熱交換器30で外気
に捨てられる。ただし、吸収式冷凍装置本体1が正常の
場合と比較して、圧縮機23の圧縮比は2〜4.0程度
となり、この場合、圧縮動力は同能力のパッケージ空調
機の圧縮機と同程度となる。
First, the determination and control device 32 obtains information from the operation determination sensor 29 and monitors whether the absorption refrigerating device main body l is operating normally. Here, absorption refrigeration equipment main body l
is operating normally, the flow 11M three-way valve 31 is switched so that the medium to be cooled flows through the evaporator 5. The operation at this time is similar to the example described in the third embodiment shown in FIG. Next, the absorption refrigerating device main body 1
If the system malfunctions and stops, the operation determination sensor 29 detects this information, and based on the determination and control signal from the control device 32, the flow rate adjustment three-way valve 31 is switched to switch between the indoor heat exchanger 15 and the outdoor heat exchanger. A circuit connecting with the exchanger 30 is formed, the circuit for the medium to be cooled is separated from the absorption refrigeration system main body 1, and the vapor compression refrigeration cycle is operated so that the outdoor heat exchanger 30 takes the place of the evaporator 5. . The heat received from the indoor heat exchanger 15 is discarded to the outside air by the outdoor heat exchanger 30. However, compared to when the absorption refrigerating system body 1 is normal, the compression ratio of the compressor 23 is about 2 to 4.0, and in this case, the compression power is about the same as the compressor of a package air conditioner with the same capacity. becomes.

このような構成とすることにより、吸収式冷凍装置本体
1が故障した本来の機能をはださなくなっても室外熱交
換器で被冷却媒体の冷熱を熱交換することにより室内を
適切に冷房することができる。
With this configuration, even if the absorption refrigerating device main body 1 fails and cannot perform its original function, the room can be appropriately cooled by exchanging cold heat of the medium to be cooled with the outdoor heat exchanger. be able to.

次に、第7図の第5の実施例の構成において、1は吸収
式冷凍装置本体、2は再生器、3は凝縮器、4は吸収器
、5は蒸発器、6は高温水循環回路、7は被冷却媒体循
環回路、8は凝縮器および吸収器の冷却回路、9は溶液
ポンプ、10は冷媒ポンプ、11は溶液熱交換器、12
は室外熱交換器、13は冷却媒体循環用ポンプ、15は
室内熱交換器、17は高温水循環用ポンプ、19は熱発
生源、22は膨張弁、23は圧縮機、29は吸収式冷凍
装置本体の動作判別センサ、31.34は流量調節三方
弁、32は判定および制御装置、33は冷却回路熱交換
器を示す。
Next, in the configuration of the fifth embodiment shown in FIG. 7, 1 is an absorption refrigerating apparatus main body, 2 is a regenerator, 3 is a condenser, 4 is an absorber, 5 is an evaporator, 6 is a high-temperature water circulation circuit, 7 is a cooling medium circulation circuit, 8 is a condenser and absorber cooling circuit, 9 is a solution pump, 10 is a refrigerant pump, 11 is a solution heat exchanger, 12
13 is an outdoor heat exchanger, 13 is a cooling medium circulation pump, 15 is an indoor heat exchanger, 17 is a high temperature water circulation pump, 19 is a heat generation source, 22 is an expansion valve, 23 is a compressor, 29 is an absorption refrigeration device 31 and 34 are flow control three-way valves; 32 is a determination and control device; and 33 is a cooling circuit heat exchanger.

本実施例は、第4の実施例と同様に、吸収式冷凍装置本
体1は第9図の従来例とほぼ同様に構成されており、被
冷却媒体の循環回路系は、第3図に示したように膨張弁
22と圧縮器23を設けて蒸気圧縮式冷凍サイクル方式
で冷熱を搬送する構成とする。ここで本実施例では、蒸
発器5の被冷却媒体の入口側回路に流量調節三方弁31
を設けて蒸発器5をバイパスする回路を形成するととも
に、冷却回路8における凝縮器3および吸収器4に冷却
媒体を分岐する手前の回路にも流量調節三方弁34を設
け、区側のように迂回路を通して凝縮器3および吸収器
4に分岐する構成として、上記のバイパス回路と迂回路
とを熱交換可能に冷却回路熱交換器33に接続する。ま
た、吸収式冷凍装置本体1が動作しているかどうかを判
別するための動作判別センサ29を設け、その検出信号
を判定および制御装置32に入力し、その入力された検
出信号に基づいて判定および制御装置32が流量調節三
方弁31.34に制御信号を送出する構成とする。
In this embodiment, like the fourth embodiment, the absorption refrigerating apparatus main body 1 is constructed almost the same as the conventional example shown in FIG. 9, and the circulation circuit system for the medium to be cooled is shown in FIG. As described above, an expansion valve 22 and a compressor 23 are provided to transport cold heat using a vapor compression refrigeration cycle system. Here, in this embodiment, a flow rate regulating three-way valve 31 is provided in the inlet side circuit of the medium to be cooled of the evaporator 5.
A flow control three-way valve 34 is also provided in the circuit before branching the cooling medium to the condenser 3 and absorber 4 in the cooling circuit 8 to form a circuit that bypasses the evaporator 5. The bypass circuit and the detour are connected to the cooling circuit heat exchanger 33 so as to be able to exchange heat, so that the bypass circuit and the detour are branched into the condenser 3 and the absorber 4 through the detour. Further, an operation determination sensor 29 is provided to determine whether or not the absorption refrigerating apparatus main body 1 is operating, and its detection signal is input to the determination and control device 32, and the determination and control device 32 is configured to perform determination and control based on the input detection signal. The control device 32 is configured to send a control signal to the three-way flow rate regulating valves 31 and 34.

このように構成することにより、第4の実施例と同様の
制御を行って、吸収式冷凍装置本体1が故障し停止した
場合には、その情報を動作判別センサ29で検知し、そ
れに基づいた判定および制御装置32からの制御信号に
より流量調節三方弁31及び34を切り換えて冷却媒体
および被冷却媒体の流れを冷却回路熱交換器33を経由
するようにする。従って、冷却回路熱交換器33が凝縮
器5の代わりとなって冷熱を熱交換するように蒸気圧縮
式冷凍サイクルか構成され、室内熱交換器15からの熱
が冷却回路熱交換器33、吸収式冷凍装置の冷却回路8
、室外熱交換器12を介して大気に放出されて、吸収式
冷凍装置故障時にも、適切な冷房をすることができる。
With this configuration, when the absorption refrigerating apparatus main body 1 fails and stops under the same control as in the fourth embodiment, the operation determination sensor 29 detects the information, and the operation is performed based on the information. A control signal from the determination and control device 32 switches the flow rate regulating three-way valves 31 and 34 to cause the flow of the cooling medium and the medium to be cooled to pass through the cooling circuit heat exchanger 33. Therefore, a vapor compression refrigeration cycle is configured such that the cooling circuit heat exchanger 33 replaces the condenser 5 and exchanges cold heat, and the heat from the indoor heat exchanger 15 is absorbed by the cooling circuit heat exchanger 33. Cooling circuit 8 of type refrigeration system
, and is released into the atmosphere via the outdoor heat exchanger 12, so that appropriate cooling can be performed even when the absorption refrigerating system malfunctions.

たたし、この場合の圧縮機23前後の圧縮比も第3の実
施例とは異なり、2.0〜4.0程度となる。
However, the compression ratio before and after the compressor 23 in this case is also different from the third embodiment, and is about 2.0 to 4.0.

なお、第7図の第5の実施例では、冷却回路熱交換器3
3における冷却回路8側の出口を室外熱交換器12の入
口側回路に接続して、凝縮器3および吸収器4を通さず
に冷却回路熱交換器33にバイパスする回路を形成して
も良い。また、本発明は温水利用単効用吸収式冷凍装置
以外にも、例えば二重効用吸収式冷凍装置あるいは熱源
として蒸気利用のものや直炊きのちの等種々の構成の吸
収式冷凍装置に適用可能である。このように、本発明は
、その主旨に沿って種々に応用され、種々の実施態様を
取り得るものである。
In addition, in the fifth embodiment shown in FIG. 7, the cooling circuit heat exchanger 3
3 may be connected to the inlet side circuit of the outdoor heat exchanger 12 to form a circuit that bypasses the cooling circuit heat exchanger 33 without passing through the condenser 3 and absorber 4. . In addition to single-effect absorption refrigeration systems that use hot water, the present invention is also applicable to absorption refrigeration systems with various configurations, such as dual-effect absorption refrigeration systems, those that use steam as a heat source, and those that use direct cooking. be. As described above, the present invention can be applied in various ways and can take various embodiments in accordance with the gist thereof.

[発明の効果] 以上の説明で明らかなように、本発明の吸収式冷凍装置
とその制御方法によれば、被冷却媒体に低沸点媒体を用
いることで潜熱で熱交換し冷熱を搬送できるため、被冷
却媒体の循環流量を少なくすることができ、ポンプ動力
を削減することができるとともに、潜熱で熱交換できる
ため吸収式冷凍機の蒸発器温度を高くすることができ、
吸収式冷凍機の効率を高めることができる。
[Effects of the Invention] As is clear from the above explanation, according to the absorption refrigerating device and its control method of the present invention, by using a low boiling point medium as the medium to be cooled, it is possible to exchange heat with latent heat and transport cold heat. , the circulation flow rate of the medium to be cooled can be reduced, the pump power can be reduced, and the evaporator temperature of the absorption chiller can be increased because heat can be exchanged with latent heat.
The efficiency of absorption chillers can be increased.

また、本発明の請求項2の発明によれば、吸収式冷凍機
より室内熱交換器を低い位置に設置することにより自然
循環で蒸発器からの冷熱の搬送が行える場合には、従来
装置と比較して循環ポンプ運転費器だけランニングコス
トを下げることができる。
Furthermore, according to the invention of claim 2 of the present invention, if the indoor heat exchanger is installed at a lower position than the absorption refrigerating machine and the cold heat from the evaporator can be transported by natural circulation, it is different from the conventional device. In comparison, the running cost of the circulation pump can be reduced.

また、本発明の請求項3,4の発明によれば、蒸気圧縮
式冷凍サイクルを組み合せることにより、従来の吸収式
冷凍装置と比較して蒸発器から取り出す冷熱温度を高く
して運転することができ、再生型温度を下げ、従来、冷
房には使われていなかった低温排熱を利用した運転を行
うことができる。
Further, according to the invention of claims 3 and 4 of the present invention, by combining a vapor compression type refrigeration cycle, it is possible to operate the cold heat extracted from the evaporator at a higher temperature than in a conventional absorption type refrigeration system. This enables operation by lowering the regenerative temperature and utilizing low-temperature waste heat, which was not previously used for air conditioning.

さらに、本発明の請求項5,6,7.8の発明によれば
、吸収式冷凍装置からの冷熱の取り出し蒸気圧縮式冷凍
サイクルで行い、吸収式冷凍装置か故障した場合には、
室外熱交換器または吸収式冷凍装置本体の冷却回路熱交
換器と熱交換することで室内の冷房を吸収式冷凍装置の
稼働状況に関係なく行うことができ、冷房設備の信幀性
を向上させることができる。
Furthermore, according to the inventions of claims 5, 6, and 7.8 of the present invention, cold heat is extracted from the absorption refrigerating device using a vapor compression refrigerating cycle, and when the absorption refrigerating device breaks down,
By exchanging heat with the outdoor heat exchanger or the cooling circuit heat exchanger of the absorption refrigeration system, indoor cooling can be performed regardless of the operating status of the absorption refrigeration system, improving the reliability of the cooling equipment. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示し循環ポンプを使用
して蒸発器からの冷熱の搬送を行う方式を単効用吸収式
冷凍装置に適用した実施例の構成図、第2図は本発明の
第2の実施例を示し自然循環方式で蒸発器からの冷熱の
搬送を行う方式を単効用吸収式冷凍装置に適用した実施
例の構成図、第3図は本発明の第3の実施例を示し蒸気
圧縮式冷凍サイクルにより冷熱の搬送を行う方式を単効
用吸収式冷凍装置に適用した実施例の構成図、第4図、
第5図は上記第3の実施例の動作を説明するための特性
図、第6図は本発明の第4の実施例を示し蒸気圧縮式冷
凍サイクルにより冷熱の搬送を行いしかも室外熱交換器
を具備した方式を単効用吸収式冷凍装置に適用した実施
例の構成図、第7図は本発明の第5の実施例を示し蒸気
圧縮式冷凍サイクルにより冷熱の搬送を行いしかも冷却
回路熱交換器を具備した方式を単効用吸収式冷凍装置に
適用した実施例の構成図、第8図、第9図は従来例の単
効用吸収式冷凍装置の構成図である。 1・・・吸収式冷凍装置本体、2・・・再生器、3・・
・凝縮器、4・・・吸収器、5・・・蒸発器、6・・・
高温水循環回路、7・・・被冷却媒体循環回路、8・・
・凝縮器および吸収器の冷却回路、9・・・溶液ポンプ
、10・・・冷媒ポンプ、11・・・溶液熱交換器、1
2.30・・・室外熱交換器、13・・・冷却媒体循環
用ポンプ、14゜16・・・気液分離器、15・・・室
内熱交換器、17・・・高温水循環用ポンプ、19・・
・熱発生源、20・・・被冷却媒体循環用ポンプ、21
・・・冷却塔、22・・・膨張弁、23・・・圧縮機、
24,25.26・・・温度センサ、27・・・記憶装
置、28・・・演算および制御装置、29・・・吸収式
冷凍装置本体の動作判別センサ、31.34・・・流量
調節三方弁、32・・・判定および制御装置、33・・
・冷却回路熱交換器。 高逼木、のム膚T3 [@C) 第4図 1&逼水の;LX T3[”C) ;雫叉P謀体の■T2(”C) 第5図
Fig. 1 shows a first embodiment of the present invention, and Fig. 2 is a block diagram of an embodiment in which a method of transporting cold energy from an evaporator using a circulation pump is applied to a single-effect absorption refrigerating device. The second embodiment of the present invention is shown in FIG. Fig. 4 is a configuration diagram of an example in which a method of transferring cold heat using a vapor compression refrigeration cycle is applied to a single-effect absorption refrigerating apparatus, showing an example;
Fig. 5 is a characteristic diagram for explaining the operation of the third embodiment, and Fig. 6 shows a fourth embodiment of the present invention. FIG. 7 shows a fifth embodiment of the present invention, in which cold heat is transported by a vapor compression refrigeration cycle, and the cooling circuit heat exchanger is used. FIGS. 8 and 9 are block diagrams of a conventional example of a single-effect absorption refrigerating apparatus in which a system equipped with a refrigerating device is applied to a single-effect absorption refrigerating apparatus. 1... Absorption refrigeration equipment body, 2... Regenerator, 3...
・Condenser, 4... Absorber, 5... Evaporator, 6...
High temperature water circulation circuit, 7...Cooled medium circulation circuit, 8...
- Cooling circuit for condenser and absorber, 9... Solution pump, 10... Refrigerant pump, 11... Solution heat exchanger, 1
2.30... Outdoor heat exchanger, 13... Coolant circulation pump, 14°16... Gas-liquid separator, 15... Indoor heat exchanger, 17... High temperature water circulation pump, 19...
・Heat generation source, 20...Pump for circulating the medium to be cooled, 21
... cooling tower, 22 ... expansion valve, 23 ... compressor,
24, 25.26...Temperature sensor, 27...Storage device, 28...Calculation and control device, 29...Operation discrimination sensor for absorption refrigerating device main body, 31.34...Flow rate adjustment three-way Valve, 32... Judgment and control device, 33...
・Cooling circuit heat exchanger. Takatsuki, Nomuhada T3 [@C) Fig. 4 1&Ryusui; LX T3 [''C); Shizukusha P plot ■T2 (''C) Fig. 5

Claims (8)

【特許請求の範囲】[Claims] (1)熱源より熱を与えられ希溶液から冷媒を蒸発させ
て濃溶液とする再生器と、冷却媒体により冷却されて前
記蒸発された冷媒を凝縮する凝縮器と、被冷却媒体より
熱を得て前記凝縮器から流入する冷媒を蒸発させて該被
冷却媒体に冷熱を与える蒸発器と、前記再生器から流入
する濃溶液に前記蒸発器で蒸発した冷媒を吸収させて熱
を発する吸収器と、を有する吸収式冷凍装置において、
前記被冷却媒体として低沸点媒体を封入して用い、 前記被冷却媒体が前記蒸発器から得た冷熱で冷房等を行
う熱交換器と、 前記熱交換器と前記蒸発器間を循環する前記被冷却媒体
に循環力を与える循環ポンプと、を備えることを特徴と
する吸収式冷凍装置。
(1) A regenerator that evaporates refrigerant from a dilute solution to a concentrated solution by receiving heat from a heat source, a condenser that is cooled by a cooling medium and condenses the evaporated refrigerant, and a regenerator that obtains heat from the medium to be cooled. an evaporator that evaporates the refrigerant flowing in from the condenser to provide cold heat to the medium to be cooled; and an absorber that generates heat by absorbing the refrigerant evaporated in the evaporator into a concentrated solution flowing from the regenerator. In an absorption refrigerating device having
a heat exchanger that uses a low boiling point medium sealed as the medium to be cooled, and the medium to be cooled performs cooling or the like with the cold heat obtained from the evaporator; An absorption refrigerating device characterized by comprising: a circulation pump that provides circulation force to a cooling medium.
(2)請求項1記載の吸収式冷凍装置において、循環ポ
ンプを省き、熱交換器を蒸発器より低い位置に設置して
その落差により被冷却媒体を自然循環させることを特徴
とする吸収式冷凍装置。
(2) In the absorption refrigeration apparatus according to claim 1, the circulation pump is omitted, the heat exchanger is installed at a lower position than the evaporator, and the medium to be cooled is naturally circulated by the head thereof. Device.
(3)熱源より熱を与えられ希溶液から冷媒を蒸発させ
て濃溶液とする再生器と、冷却媒体により冷却されて前
記蒸発された冷媒を凝縮する凝縮器と、被冷却媒体より
熱を得て前記凝縮器から流入する冷媒を蒸発させて該被
冷却媒体に冷熱を与える蒸発器と、前記再生器から流入
する濃溶液に前記蒸発器で蒸発した冷媒を吸収させて熱
を発する吸収器と、を有する吸収式冷凍装置において、
前記被冷却媒体として低沸点媒体を封入して用い、 前記被冷却媒体が前記蒸発器から得た冷熱で冷房等を行
う熱交換器と、 前記熱交換器と前記蒸発器間を循環する前記被冷却媒体
に循環力を与える循環ポンプと、前記蒸発器と前記熱交
換器の間に介設されて蒸気圧縮式冷凍サイクルを形成す
る膨張弁および圧縮機と、 を具備することを特徴とする吸収式冷凍装置。
(3) A regenerator that evaporates refrigerant from a dilute solution to a concentrated solution by receiving heat from a heat source, a condenser that is cooled by a cooling medium and condenses the evaporated refrigerant, and a condenser that obtains heat from the medium to be cooled. an evaporator that evaporates the refrigerant flowing in from the condenser to provide cold heat to the medium to be cooled; and an absorber that generates heat by absorbing the refrigerant evaporated in the evaporator into a concentrated solution flowing from the regenerator. In an absorption refrigerating device having
a heat exchanger that uses a low boiling point medium sealed as the medium to be cooled, and the medium to be cooled performs cooling or the like with the cold heat obtained from the evaporator; An absorption system characterized by comprising: a circulation pump that applies a circulation force to a cooling medium; and an expansion valve and a compressor that are interposed between the evaporator and the heat exchanger to form a vapor compression refrigeration cycle. type refrigeration equipment.
(4)請求項3記載の吸収式冷凍装置の制御方法であっ
て、 再生器へ供給される熱源の温度あるいは圧力を計測する
第1の温度センサあるいは圧力センサと、凝縮器および
吸収器の冷却を行う冷却媒体の温度を計測する第2の温
度センサと、蒸発器より得られる冷熱の温度を計測する
第3の温度センサと、を設け、 前記再生器へ供給される熱源の温度あるいは圧力が定格
の温度あるいは圧力に達していない場合、蒸気圧縮冷凍
サイクルで熱交換器と蒸発器との間に圧力差を設けて、
該蒸発器への被冷却媒体温度を下げるように圧縮機回転
数および膨張弁開度を制御して、前記再生器へ供給され
る熱源の温度あるいは圧力にに見合った被冷却媒体温度
で運転する過程と、 または、上記過程に加えて、外気温度の低下とともに、
前記熱交換器と前記蒸発器との圧力差が小さくなるよう
に前記圧縮機回転数および前記膨張弁開度を制御する過
程と、 を有することを特徴とする吸収式冷凍装置の制御方法。
(4) The method for controlling an absorption refrigerating apparatus according to claim 3, comprising: a first temperature sensor or pressure sensor that measures the temperature or pressure of the heat source supplied to the regenerator; and cooling of the condenser and absorber. A second temperature sensor that measures the temperature of the cooling medium that performs If the rated temperature or pressure has not been reached, a pressure difference is created between the heat exchanger and the evaporator in the vapor compression refrigeration cycle.
The compressor rotation speed and expansion valve opening degree are controlled to lower the temperature of the cooled medium to the evaporator, and the operation is performed at a cooled medium temperature commensurate with the temperature or pressure of the heat source supplied to the regenerator. process, or in addition to the above process, as the outside temperature decreases,
A method for controlling an absorption refrigerating apparatus, comprising: controlling the rotation speed of the compressor and the opening degree of the expansion valve so that a pressure difference between the heat exchanger and the evaporator is reduced.
(5)請求項3記載の吸収式冷凍装置において、被冷却
媒体の熱を直接外気で冷却するための室外熱交換器と、 前記蒸発器と前記室外熱交換器との流路の切り替えを行
う流量調節三方弁と、 吸収式冷凍装置の運転または故障または停止を検出する
手段と、 前記検出する手段からの信号で前記流量調節弁の切り替
えを制御する手段と、 を具備することを特徴とする吸収式冷凍装置。
(5) In the absorption refrigerating apparatus according to claim 3, an outdoor heat exchanger for cooling the heat of the medium to be cooled directly with outside air, and a flow path switching between the evaporator and the outdoor heat exchanger. It is characterized by comprising: a three-way flow control valve; a means for detecting operation, failure, or stoppage of the absorption refrigerating device; and means for controlling switching of the flow control valve using a signal from the detecting means. Absorption refrigeration equipment.
(6)請求項5記載の吸収式冷凍装置の制御方法であっ
て、 吸収式冷凍装置が「運転」の場合には、冷房等を行う熱
交換器と蒸発器との間で蒸気圧縮式冷凍サイクルを形成
し、 吸収式冷凍装置が「停止」または「故障」の場合には前
記冷房等を行う熱交換器と室外熱交換器との間で蒸気圧
縮式冷凍サイクルを形成するように制御を行うことを特
徴とする吸収式冷凍装置の制御方法。
(6) The method for controlling an absorption refrigerating apparatus according to claim 5, wherein when the absorption refrigerating apparatus is in "operation", vapor compression refrigerating is performed between the heat exchanger that performs cooling, etc. and the evaporator. control to form a vapor compression refrigeration cycle between the heat exchanger that performs cooling, etc. and the outdoor heat exchanger when the absorption refrigeration system is "stopped" or "failure". A method for controlling an absorption refrigerating device, characterized in that:
(7)請求項3記載の吸収式冷凍装置において、凝縮器
および吸収器を循環する冷却媒体と蒸発器・熱交換器間
を循環する被冷却媒体との熱交換を行うための冷却回路
熱交換器と、 前記蒸発器と前記冷却回路熱交換器との流路の切り替え
を行う流量調節三方弁と、 吸収式冷凍装置の運転または停止または故障を検出する
手段と、 前記検出する手段からの信号を受けて前記流量調節三方
弁の切り換えを制御する手段と、を具備することを特徴
とする吸収式冷凍装置。
(7) In the absorption refrigerating apparatus according to claim 3, a cooling circuit heat exchanger for performing heat exchange between the cooling medium circulating in the condenser and absorber and the medium to be cooled circulating between the evaporator and heat exchanger. a flow rate regulating three-way valve for switching the flow path between the evaporator and the cooling circuit heat exchanger; means for detecting operation, stoppage, or failure of the absorption refrigerating apparatus; and a signal from the detecting means. an absorption refrigerating apparatus, comprising: means for controlling switching of the three-way flow rate regulating valve in response to the received flow rate adjustment three-way valve.
(8)請求項7記載の吸収式冷凍装置の制御方法であっ
て、 吸収式冷凍装置が「運転」の場合には冷房等を行う熱交
換器と蒸発器との間で蒸気圧縮式冷凍サイクルを形成し
、該吸収式冷凍装置が「停止」または「故障」の場合に
は、前記熱交換器と冷却回路熱交換器との間で蒸気圧縮
式冷凍サイクルを形成するように制御を行うことを特徴
とする吸収式冷凍装置の制御方法。
(8) The method for controlling an absorption refrigerating apparatus according to claim 7, wherein when the absorption refrigerating apparatus is in "operation", a vapor compression refrigerating cycle is performed between the heat exchanger that performs cooling, etc. and the evaporator. and when the absorption refrigeration device is "stopped" or "faulty", control is performed to form a vapor compression refrigeration cycle between the heat exchanger and the cooling circuit heat exchanger. A method for controlling an absorption refrigerating device characterized by:
JP26859090A 1990-10-05 1990-10-05 Absorption type refrigerating plant and controlling method thereof Pending JPH04143557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26859090A JPH04143557A (en) 1990-10-05 1990-10-05 Absorption type refrigerating plant and controlling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26859090A JPH04143557A (en) 1990-10-05 1990-10-05 Absorption type refrigerating plant and controlling method thereof

Publications (1)

Publication Number Publication Date
JPH04143557A true JPH04143557A (en) 1992-05-18

Family

ID=17460647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26859090A Pending JPH04143557A (en) 1990-10-05 1990-10-05 Absorption type refrigerating plant and controlling method thereof

Country Status (1)

Country Link
JP (1) JPH04143557A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247968A (en) * 1988-03-28 1989-10-03 Yazaki Corp Apparatus for cooling and heating
JPH024178A (en) * 1988-02-03 1990-01-09 Takenaka Komuten Co Ltd Cooling system of absorption type refrigerating machine and air-conditioning system utilizing absorption type refrigerating machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024178A (en) * 1988-02-03 1990-01-09 Takenaka Komuten Co Ltd Cooling system of absorption type refrigerating machine and air-conditioning system utilizing absorption type refrigerating machine
JPH01247968A (en) * 1988-03-28 1989-10-03 Yazaki Corp Apparatus for cooling and heating

Similar Documents

Publication Publication Date Title
US7293425B2 (en) Thermo siphon chiller refrigerator for use in cold district
JP2960218B2 (en) Control method of absorption air conditioner
JP3434281B2 (en) Absorption refrigerator
JPH10185342A (en) Heat pump type air conditioner
KR102226194B1 (en) Hybrid free-cooling thermosiphon multi-chiller type constant temperature and dehumidification air conditioning system
JP2985513B2 (en) Absorption cooling and heating system and its control method
JPH04143557A (en) Absorption type refrigerating plant and controlling method thereof
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP2003004330A (en) Exhaust heat recovery air conditioner
JP3871206B2 (en) Refrigeration system combining absorption and compression
JP4100462B2 (en) Heat utilization system
JP3492913B2 (en) Oil recovery device
JPH04143556A (en) Yearly cooling absorption type refrigerator and controlling method thereof
JP3281275B2 (en) Absorption air conditioner
JP2004028375A (en) Refrigerating equipment combined with absorption type and compression type and operating method thereof
JP3434282B2 (en) Absorption refrigerator
JPH04151468A (en) Adsorption type freezer corresponding to cryogenic cooling medium and its controlling
JP4105463B2 (en) Air conditioning system
JPH0446342B2 (en)
JPH0351644A (en) Multiroom cooling heating device
JPH04143555A (en) Absorption type refrigerating plant and controlling method thereof
JPH01247968A (en) Apparatus for cooling and heating
JPH01291062A (en) Air heating source type heat pump device