JPH0414271A - Gas laser oscillating equipment - Google Patents

Gas laser oscillating equipment

Info

Publication number
JPH0414271A
JPH0414271A JP11829990A JP11829990A JPH0414271A JP H0414271 A JPH0414271 A JP H0414271A JP 11829990 A JP11829990 A JP 11829990A JP 11829990 A JP11829990 A JP 11829990A JP H0414271 A JPH0414271 A JP H0414271A
Authority
JP
Japan
Prior art keywords
discharge
length
voltage
discharge tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11829990A
Other languages
Japanese (ja)
Inventor
Shigeki Yamane
茂樹 山根
Shuzo Yoshizumi
吉住 修三
Akio Tanaka
田中 昭男
Tsutomu Sugiyama
勤 杉山
Hitoshi Motomiya
均 本宮
Hidehiko Karasaki
秀彦 唐崎
Masashi Onishi
正史 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11829990A priority Critical patent/JPH0414271A/en
Publication of JPH0414271A publication Critical patent/JPH0414271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To stably make laser output, improve workability, and obtain a gas laser oscillating equipment without using a high resistor, by installing a discharge part and a non-discharge part in a discharge tube, and specifying the length of the discharge part. CONSTITUTION:A discharge part 5 and a non-discharge part 15 are installed in a discharge tube. The length (l) of the discharge part is set to be 50-75% of the length of the discharge tube, and a high resistor 14 is eliminated. Since the output voltage of a DC high voltage power supply is the sum of the discharge maintaining voltage of the length of the non-discharge part and the discharge maintaining voltage of the discharge tube, abnormal discharge is not generated when the length of the discharge part/the length of the discharge tube is smaller than or equal to 75%. When the DC high voltage power supplies mutually interfere with each other, and discharge transfers to the non-discharge part, the length of the non-discharge part is larger than or equal to 50% of the discharge between normal electrodes, and the discharge maintaining voltage also is higher than or equal to the normal discharge maintaining voltage, so that the discharge maintaining voltage becomes about 70% of the normal discharge maintaining voltage. Hence the output voltage of the DC high voltage power supply becomes 120% of the normal voltage, the discharge again returns to the normal discharge tube.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、直流高電圧放電によりレーザビームを発生す
るガスレーザ発振装置に関し、特にレーザ出力を安定に
取り出し、かつ良好な加工性を有するガスレーザ発振装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas laser oscillation device that generates a laser beam by direct current high voltage discharge, and more particularly to a gas laser oscillation device that stably extracts laser output and has good workability. .

従来の仮術 従来のガスレーザ発振装置は、第6図に示すような構成
であった。この図において、1はガラスなどの誘電体よ
りなる放電管であり、2,3は放電管1の片端と放電管
内に設けられた金属電極である。4は金属電極2,3に
接続された直流高電圧電源であり、たとえば30KVの
電圧を画電極2.3間に印加している。6は電極2,3
間にはさまれた放電管1内の放電部である。6は全反射
鏡、7は部分反射鏡であり、この全反射鏡61部分反射
鏡7は放電部6の両端に固定配置され、光共振器を形成
している。8は部分反射鏡7より出力されるレーザビー
ムである。矢印9はレーザガスの流れる方向を示してお
り、軸流型レーザ装置の中を循環している。10は送風
管であり、11゜12は放電部6にて放電および送風機
により温度上昇したレーザガスの温度を下げるための熱
交換器、13はレーザガスを循環させるための送風機で
ある。そして金属電極2は高抵抗体14を介して接地さ
れている。
Conventional Provisional Techniques A conventional gas laser oscillation device had a configuration as shown in FIG. In this figure, 1 is a discharge tube made of a dielectric material such as glass, and 2 and 3 are metal electrodes provided at one end of the discharge tube 1 and inside the discharge tube. 4 is a DC high voltage power supply connected to the metal electrodes 2 and 3, and applies a voltage of, for example, 30 KV between the picture electrodes 2 and 3. 6 is electrode 2, 3
This is the discharge section within the discharge tube 1 sandwiched between the two. 6 is a total reflection mirror, and 7 is a partial reflection mirror. The total reflection mirror 61 and the partial reflection mirror 7 are fixedly arranged at both ends of the discharge section 6 to form an optical resonator. 8 is a laser beam output from the partial reflecting mirror 7. Arrow 9 indicates the flow direction of the laser gas, which circulates within the axial flow laser device. Reference numeral 10 is a blower pipe, 11° and 12 are heat exchangers for lowering the temperature of the laser gas which has been raised in temperature by discharge and blower in the discharge section 6, and 13 is a blower for circulating the laser gas. The metal electrode 2 is grounded via a high resistance element 14.

なお、送風機13により放電部5にて約100、、7s
ec程度のガス流を得る必要がある。
In addition, the blower 13 causes the discharge part 5 to run for about 100, 7 seconds.
It is necessary to obtain a gas flow of about EC.

以上が従来の軸流型レーザ装置の構成であり。The above is the configuration of the conventional axial flow type laser device.

次にその動作について説明する。Next, its operation will be explained.

まず一対の金属電極2,3に直流高電圧電源4から直流
高電圧たとえばaoxvを印加し、放電部6にグロー状
の放電を発生させる。放電部6を通過するレーザカスは
、この放電エネルギーを得て励起され、その励起された
レーザガスは全反射鏡eおよび部分反射鏡7により形成
された光共振器で共振状態となり、部分反射鏡7からレ
ーザビーム8が出力される。このレーザビーム8がレー
ザ加工などの用途に用いられる。
First, a DC high voltage, for example, aoxv, is applied from the DC high voltage power supply 4 to the pair of metal electrodes 2 and 3 to generate a glow-like discharge in the discharge section 6. The laser gas passing through the discharge section 6 is excited by obtaining this discharge energy, and the excited laser gas enters a resonance state in the optical resonator formed by the total reflection mirror e and the partial reflection mirror 7, and is emitted from the partial reflection mirror 7. A laser beam 8 is output. This laser beam 8 is used for purposes such as laser processing.

第7図a、bはそれぞれ放電管部の詳細図および等価回
路図である。
FIGS. 7a and 7b are a detailed view and an equivalent circuit diagram of the discharge tube section, respectively.

発明が解決しようとする課題 しかしながら上記の構成では、 (1)注入電力が犬きくなると、上流の放電部の電離気
体が放電管外に流れ出し異常放電を起こしやすくなる。
Problems to be Solved by the Invention However, with the above configuration, (1) When the injected power becomes too strong, the ionized gas in the upstream discharge section flows out of the discharge tube and tends to cause abnormal discharge.

(2)  レーザガス流の分配を均一に行うことは困難
であり、そのため電極間の放電維持電圧が異なっている
(2) It is difficult to uniformly distribute the laser gas flow, and therefore the discharge sustaining voltage between the electrodes is different.

この(1) 、 (2)の問題から直流電圧電源が相互
に関係し、放電管外に電流が流れ、特定の放電部に放電
電流が集中し、レーザ出力が急に低下するという課題が
あった。
Due to problems (1) and (2), the DC voltage power supplies are interconnected, current flows outside the discharge tube, the discharge current is concentrated in a specific discharge part, and the laser output suddenly decreases. Ta.

また直流高電圧電源はフローティングになっており、電
圧、電流の検出が困難であり、制御性が悪いこと、高抵
抗体を用いて十分な絶縁距離をとる必要があるなどの課
題もあった。
Additionally, DC high-voltage power supplies are floating, making it difficult to detect voltage and current, resulting in poor controllability and the need to use a high-resistance material to provide sufficient insulation distance.

本発明は、このような従来の課題を解決するもので、レ
ーザ出力を安定よく取り出し、良好な加工性を有し、か
つ高抵抗を用いないガスレーザ発振装置の提供を目的と
する。
The present invention solves these conventional problems, and aims to provide a gas laser oscillation device that stably extracts laser output, has good workability, and does not use high resistance.

課題を解決するための手段 本発明は、上記課題を解決するために、放電管内に放電
部と不放電部を設け、放電部の長さを放電管の長さの6
0%〜76%としたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a discharge part and a non-discharge part in the discharge tube, and makes the length of the discharge part 6 times longer than the length of the discharge tube.
It is set at 0% to 76%.

作用 本発明は上記した構成によって放電管自体に高抵抗部を
つくり、放電管部の長さ/放電管の長さの比率を調整で
きるので、直流高電圧電源の相互の干渉がなくなる。
Operation According to the present invention, a high-resistance portion is created in the discharge tube itself with the above-described configuration, and the ratio of the length of the discharge tube portion to the length of the discharge tube can be adjusted, thereby eliminating mutual interference between the DC high voltage power supplies.

実施例 以下1本発明の実施例を添付図面にもとづいて説明する
Embodiments Below, one embodiment of the present invention will be described based on the accompanying drawings.

第1図(!L) 、 (b)はそれぞれ本発明の一実施
例の放電管部の詳細図および等価回路図である。第7図
の従来例と異なる点は、放電管内に放電部5と不放電部
16を設け、放電部の長さlを放電管の長さLの6Q〜
76%とし、高抵抗体14をなくした点である。第2図
に放電部の長さ一維持電圧の関係図を、第3図(&) 
、 (b)にそれぞれ電力注入時の不放電部への異常放
電時の状態図および等価回路図を、第4図に放電部の長
さ/放電管の長さ一異常放電発生頻度の関係図を示す。
FIGS. 1(!L) and 1(b) are a detailed diagram and an equivalent circuit diagram of a discharge tube section according to an embodiment of the present invention, respectively. The difference from the conventional example shown in FIG. 7 is that a discharge part 5 and a non-discharge part 16 are provided in the discharge tube, and the length l of the discharge part is set to 6Q~6Q of the length L of the discharge tube.
76%, and the high resistance element 14 is eliminated. Figure 2 shows the relationship between the length of the discharge section and the sustaining voltage, and Figure 3 (&)
, (b) shows the state diagram and equivalent circuit diagram when abnormal discharge occurs to the non-discharging part during power injection, and Fig. 4 shows the relationship between the length of the discharge part/the length of the discharge tube and the frequency of occurrence of abnormal discharge. shows.

第1図(!L)のような構成の放電管に電力を注入する
とき、注入電力が大きくなると、電離気体が不放電部に
流れ込み、不放電部のインピーダンスは低下する。レー
ザガス流の分配を均一に行うことは困難であり、そのた
め電極間の放電維持電圧は異なっている。しかし、電極
間の放電の維持電圧は第2図に示す通り電圧の変動はあ
るが、距離に対して直線的に変化することが判った。そ
こで不放電部が放電するという異常放電が発生しても直
流高電圧電源の出力電圧は、不放電部の長さの放電維持
電圧と対応する放電管の放電維持電圧を加えた電圧とな
ることから、放電部の長さ/放電管の長さと異常放電の
発生頻度を測定したところ、第4図に示す通り放電部の
長さ/放電管の長さが76%以下であれば、異常放電は
発生しないことが判った。
When power is injected into a discharge tube configured as shown in FIG. 1 (!L), as the injected power increases, ionized gas flows into the non-discharge area and the impedance of the non-discharge area decreases. It is difficult to achieve uniform distribution of the laser gas flow, so the sustaining voltages between the electrodes are different. However, it was found that the sustaining voltage of the discharge between the electrodes varied linearly with the distance, although there were voltage fluctuations as shown in FIG. Therefore, even if an abnormal discharge occurs in which the non-discharging part discharges, the output voltage of the DC high voltage power supply will be the sum of the discharge sustaining voltage of the length of the non-discharging part and the discharge sustaining voltage of the corresponding discharge tube. When we measured the frequency of occurrence of abnormal discharge based on the length of the discharge part/length of the discharge tube, as shown in Figure 4, if the length of the discharge part/the length of the discharge tube was 76% or less, abnormal discharge occurred. It was found that this did not occur.

これは、第4図に示すように放電部の長さ/放電管の長
さを76%以下とすれば、直流高電圧電源が相互に干渉
し、不放電部に放電が移ったとしても、不放電部の長さ
は正規の電極間の放電の長さの60%以上であり、放電
維持電圧も正常の放電維持電圧の60係以上となり、対
応する放電管の放電維持電圧は正常な放電維持電圧の7
0%程度となる。そのため直流高電圧電源の出力電圧は
正常の電圧の120%となり、再び正規の放電管に放電
が戻ると考えられる。
This means that if the length of the discharge section/length of the discharge tube is 76% or less as shown in Figure 4, even if the DC high voltage power supplies interfere with each other and the discharge moves to the non-discharge section, The length of the non-discharge part is 60% or more of the length of the normal discharge between the electrodes, the discharge sustaining voltage is also 60 times or more of the normal discharge sustaining voltage, and the discharge sustaining voltage of the corresponding discharge tube is 60% or more of the normal discharge sustaining voltage. 7 of maintenance voltage
It will be about 0%. Therefore, the output voltage of the DC high voltage power supply becomes 120% of the normal voltage, and it is thought that the discharge returns to the normal discharge tube again.

この放電が戻る時間は、0.01 m!11150以下
の時間であり、このように放電が移行してもレーザビー
ムとしてはなんらの影響を受けないことが判った。
The time for this discharge to return is 0.01 m! It was found that the laser beam was not affected in any way even if the discharge shifted in this way.

また、放電部の長さ/放電管の長さの比率を小さくすれ
ば、直流高電圧電源の相互干渉は発生しなくなる。しか
し、第6図に放電部の長さ/放電管の長さとレーザビー
ム振動率の関係を示す通り、不放電部の長さによりレー
ザビームの吸収が発生し、レーザ出力が振動することが
判明した。レーザ出力が振動すれば、レーザ光を用いて
加工した加工物の面精度が悪くなることが知られており
、現在40%以下で使用されているが、第6図に示す通
り、放電部の長さ/放電管の長さの比率が60チ以上で
振動率が40%以下となることが判った。
Furthermore, if the ratio of the length of the discharge section to the length of the discharge tube is made small, mutual interference between the DC high voltage power supplies will not occur. However, as shown in Figure 6, which shows the relationship between the length of the discharge section/discharge tube length and the laser beam oscillation rate, it was found that absorption of the laser beam occurs depending on the length of the non-discharge section, causing the laser output to oscillate. did. It is known that if the laser output oscillates, the surface accuracy of the workpiece machined using laser light will deteriorate, and currently it is used at less than 40%, but as shown in Figure 6, the It was found that when the length/discharge tube length ratio was 60 inches or more, the vibration rate was 40% or less.

この結果かられかるとおり、放電管内に設ける放電部の
長さを放電管の長さの60%〜76%とすれば、安定し
たレーザビームを発生させ、良好な加工性が得られるこ
とがわかる。また接地のための高抵抗体も不要となった
As can be seen from this result, if the length of the discharge section provided in the discharge tube is 60% to 76% of the length of the discharge tube, a stable laser beam can be generated and good workability can be obtained. . It also eliminates the need for a high-resistance element for grounding.

発明の効果 以上のように本発明によれば、放電管内に設ける放電部
の長さを放電管の長さの50%〜76チとすることによ
シ、安定したレーザビームを発生させ、良好な加工性が
得られ、かつ接地用の高抵抗体が不要のガスレーザ発振
装置を提供することができる。
Effects of the Invention As described above, according to the present invention, by setting the length of the discharge section provided in the discharge tube to 50% to 76 inches of the length of the discharge tube, a stable laser beam can be generated and a good performance can be achieved. It is possible to provide a gas laser oscillation device that has excellent workability and does not require a high-resistance grounding member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(!L)は本発明の一実施例におけるガスレーザ
発振装置の放電管部の詳細図、第1図(b)はその等価
回路図、第2図は放電部の長さ一維持電圧の関係図、第
3図(a)、■)はそれぞれ不放電部への異常放電時の
状態図および等価回路図、第4図は放電部の長さ/放電
管の長さ一異常放電の発生頻度との関係図、第6図は放
電部の長さ/放電管の長さとレーザビーム振動率の関係
図、第6図は従来のガスレーザ発振装置の構成図、第7
図(a)、Φ)はそれぞれ従来の放電部の詳細図および
等価回路図である。 1・・・・°・放電管、2,3・・・・・・金属電極、
4・・・・・・直流高電圧電源、6・・・・・・放電部
、16・・・・・・不放電部、l・・・・・・放電部の
長さ、L・・・・・・放電管の長さ。 第2図 放電部の長さ (CWL) 第3図 嬉 第 図 図 Jダ#1部逼さ/オり電管0阪さ (%) 第 図
Fig. 1 (!L) is a detailed diagram of the discharge tube section of a gas laser oscillation device in an embodiment of the present invention, Fig. 1 (b) is its equivalent circuit diagram, and Fig. 2 is the length of the discharge section - maintenance voltage. Figure 3 (a) and ■) are the state diagram and equivalent circuit diagram at the time of abnormal discharge to the non-discharge area, respectively, and Figure 4 is the relationship between the length of the discharge area/the length of the discharge tube - the abnormal discharge Figure 6 shows the relationship between the length of the discharge section/discharge tube and the laser beam vibration rate. Figure 6 shows the configuration of a conventional gas laser oscillation device. Figure 7 shows the relationship between the frequency of occurrence and the laser beam vibration rate.
Figures (a) and Φ) are a detailed diagram and an equivalent circuit diagram of a conventional discharge section, respectively. 1...°・discharge tube, 2,3...metal electrode,
4...DC high voltage power supply, 6...Discharge part, 16...Non-discharge part, l...Length of discharge part, L... ...The length of the discharge tube. Figure 2 Length of discharge section (CWL) Figure 3 Figure 3 Figure 1 Part tightness/original tube 0 width (%) Figure

Claims (1)

【特許請求の範囲】[Claims] 絶縁体よりなる放電管内にその光軸方向に送風機により
レーザガスを流し、前記放電管内に設けられた金属電極
間に直流高電圧電源を接続して前記金属電極間に放電を
発生させ、この放電をレーザ励起源として前記放電管の
軸方向にレーザビームを発するガスレーザ発振装置にお
いて、前記放電管内に放電部と不放電部を設け、放電部
の長さを放電管の長さの50%〜75%としたことを特
徴とするガスレーザ発振装置。
Laser gas is passed through a discharge tube made of an insulator in the direction of its optical axis by a blower, and a DC high voltage power source is connected between metal electrodes provided in the discharge tube to generate a discharge between the metal electrodes. In a gas laser oscillation device that emits a laser beam in the axial direction of the discharge tube as a laser excitation source, a discharge portion and a non-discharge portion are provided in the discharge tube, and the length of the discharge portion is 50% to 75% of the length of the discharge tube. A gas laser oscillation device characterized by:
JP11829990A 1990-05-07 1990-05-07 Gas laser oscillating equipment Pending JPH0414271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11829990A JPH0414271A (en) 1990-05-07 1990-05-07 Gas laser oscillating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11829990A JPH0414271A (en) 1990-05-07 1990-05-07 Gas laser oscillating equipment

Publications (1)

Publication Number Publication Date
JPH0414271A true JPH0414271A (en) 1992-01-20

Family

ID=14733241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11829990A Pending JPH0414271A (en) 1990-05-07 1990-05-07 Gas laser oscillating equipment

Country Status (1)

Country Link
JP (1) JPH0414271A (en)

Similar Documents

Publication Publication Date Title
US5719896A (en) Low cost corona pre-ionizer for a laser
JP2862032B2 (en) Laser oscillation device
JP3036514B2 (en) Gas laser oscillation device
US4677637A (en) TE laser amplifier
US4597086A (en) Coaxial type laser oscillator for excitation by silent discharge
JPH0414271A (en) Gas laser oscillating equipment
US5268919A (en) Gas laser oscillating device
US4817107A (en) Laser plasma chamber
JP3757025B2 (en) Coaxial gas laser device
JP3154584B2 (en) Discharge excitation gas laser device
JP2640345B2 (en) Gas laser oscillation device
JP3764257B2 (en) Coaxial gas laser device
JPS61159780A (en) Silent discharge type gas laser device
JPH02281671A (en) Gas laser oscillation device
JPS631086A (en) Gas laser oscillator
JPS63292686A (en) Laser oscillating apparatus
JP2578014Y2 (en) Dielectric plate of laser device
JPH01214184A (en) Pulse laser oscillation device
Montes et al. Electron Bernstein wave current drive in the start-up phase of a tokamak discharge
JPH03123089A (en) Gas laser oscillator
JPS6339113B2 (en)
KR100272847B1 (en) Laser oscillator
JPH0240978A (en) Gas laser oscillator
JPH047110B2 (en)
JPH02130973A (en) Laser oscillator