JPH04142001A - Resistance paste and ceramic substrate - Google Patents

Resistance paste and ceramic substrate

Info

Publication number
JPH04142001A
JPH04142001A JP2262976A JP26297690A JPH04142001A JP H04142001 A JPH04142001 A JP H04142001A JP 2262976 A JP2262976 A JP 2262976A JP 26297690 A JP26297690 A JP 26297690A JP H04142001 A JPH04142001 A JP H04142001A
Authority
JP
Japan
Prior art keywords
resistance
paste
glass
ceramic substrate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2262976A
Other languages
Japanese (ja)
Inventor
Ryuichi Tanabe
隆一 田辺
Mikio Sasaki
幹夫 佐々木
Yoshiyuki Nishihara
芳幸 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2262976A priority Critical patent/JPH04142001A/en
Publication of JPH04142001A publication Critical patent/JPH04142001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain resistance paste which can be baked in a nonoxidizing atmosphere of nitrogen, etc., and has a stable resistance value and temperature coefficient of resistance (TCR) when the paste is baked by preparing the inorganic component of the paste of 20-70wt.% of glass powder and 30-80wt.% of the powder of a conductive substance composed at least of one of NbO, NbO2, and Nb. CONSTITUTION:The inorganic component of this ceramic substrate is composed substantially of 20-70% of glass powder and 30-80% of an Nb-based conductive substance. The powder of such SiO2-B2O3 glass that has sufficiently high fluidity at a low temperature, can cover the conductive substance, and allows the conductive substance to be sufficiently wet and sintered at the time of sintering is preferable as the glass powder. Therefore, resistance paste which can be baked in a nonoxidizing atmosphere of nitrogen, etc., and is excellent in sinterability and water resistance, especially, in resistance value drifting characteristic when the paste is left at a high temperature and from which a highly reliable stable resistance can be formed on a ceramic substrate can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス基板用に適した抵抗体ペーストに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a resistor paste suitable for ceramic substrates.

[従来の技術〕 従来混成集積回路における抵抗はセラミックス基板上又
は内部に銀(Ag)又はAg−パラジウム(Pd)導体
を形成し、その間に抵抗体ペーストを印刷し、空気等の
酸化性雰囲気中で約850〜900℃で焼成し、形成さ
れていた。
[Prior art] Conventionally, a resistor in a hybrid integrated circuit is made by forming a silver (Ag) or Ag-palladium (Pd) conductor on or inside a ceramic substrate, printing a resistor paste between them, and placing the conductor in an oxidizing atmosphere such as air. It was formed by firing at about 850 to 900°C.

その際に使用されていた抵抗体ペーストは主としてRu
0aとガラスからなっていた。
The resistor paste used at that time was mainly Ru.
It was made of 0a and glass.

しかし最近ではマイグレーション等の信頼性の面からA
g又はAg−Pd導体に代わり、銅(Cu)導体が使用
されるようになってきている。
However, recently, due to reliability issues such as migration,
Copper (Cu) conductors are increasingly being used to replace g or Ag--Pd conductors.

しかしCu導体は窒素等の非酸化性雰囲気中で焼成しな
いと酸化されてしまうため、非酸化性雰囲気で還元され
抵抗を形成しないRungは使用できない。
However, since the Cu conductor is oxidized unless it is fired in a non-oxidizing atmosphere such as nitrogen, Rung, which is reduced in a non-oxidizing atmosphere and does not form a resistance, cannot be used.

そこで最近、LaBa?ft末とガラス粉末、 SnO
So recently, LaBa? ft powder and glass powder, SnO
.

ドープ品とガラス粉末、珪化物とガラス粉末等が提案さ
れている。
Dope products and glass powder, silicide and glass powder, etc. have been proposed.

しかし上記組み合わせは抵抗値や抵抗値温度係数(TC
R)がまだ十分に安定して得られないという欠点がある
However, the above combinations are limited by resistance value and temperature coefficient of resistance (TC).
There is a drawback that R) cannot yet be obtained in a sufficiently stable manner.

[発明の解決しようとする課題] 本発明は、窒素等の非酸化性雰囲気中で焼成が可能で、
抵抗値、抵抗値温度係数(TCR)が安定的に得られる
従来知られていなかった抵抗体ペースト及びセラミック
ス基板を新規に提供することを目的とするものである。
[Problems to be solved by the invention] The present invention can be fired in a non-oxidizing atmosphere such as nitrogen,
The object of the present invention is to provide a new resistor paste and ceramic substrate that are hitherto unknown and can stably obtain resistance values and temperature coefficients of resistance (TCR).

[課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、無機成分が重量%表示でガラス粉末20〜70とN
b01Nb02、Nbのうち少くとも一種からなる導電
物質粉末30〜80からなる抵抗体ペースト等を提供す
るものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and the inorganic components are glass powder of 20 to 70% by weight and N
The object of the present invention is to provide a resistor paste or the like made of conductive material powder 30 to 80 made of at least one of b01Nb02 and Nb.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の抵抗体ペーストは単層又は多層焼成後の固化し
たアルミナ基板等のセラミックス基板、あるいはセラミ
ックス基板用のグリーンシート上に印刷等の方法により
形成した後、窒素雰囲気中等の非酸化性雰囲気中で焼成
され゛るものに適したものである。尚%は特に記載しな
い限り、重量%を意味する。
The resistor paste of the present invention is formed by a method such as printing on a solidified ceramic substrate such as an alumina substrate after single-layer or multilayer firing, or a green sheet for a ceramic substrate, and then placed in a non-oxidizing atmosphere such as a nitrogen atmosphere. It is suitable for things that are baked in. Note that % means weight % unless otherwise specified.

本発明の抵抗体ペーストは無機成分が実質的に ガラス粉末    20〜70% Nb系導電物質粉末 30〜80% からなり、以下順次これらについて説明する。The resistor paste of the present invention contains substantially no inorganic components. Glass powder 20-70% Nb-based conductive material powder 30-80% These are explained below in order.

ガラス粉末は、低温度(例えば900℃以下)で充分に
流動性を有し、焼成時に上記導電物質粉末を覆って充分
に濡らし、かつ焼結する5iC1a  BJs系ガラス
のものが好ましい。
The glass powder is preferably a 5iC1a BJs glass that has sufficient fluidity at low temperatures (for example, 900° C. or lower) and covers and sufficiently wets the conductive material powder during firing and sinters.

かかるガラス粉末の含有量が20%より少ないと本発明
にかかるNb系導電物質粉末を充分に濡らすことができ
ないため、焼結層に空孔が多くなり、本発明の抵抗体ペ
ーストを焼成することによって得られる抵抗体の強度が
弱(なり、又抵抗値の安定性が低下するので好ましくな
(,70%を越えると、導電物質粉末間の接着が少なく
なり、上記抵抗値が大きくなりすぎ適当でない。
If the content of such glass powder is less than 20%, the Nb-based conductive material powder according to the present invention cannot be sufficiently wetted, and the sintered layer will have many pores, making it difficult to sinter the resistor paste of the present invention. If it exceeds 70%, the adhesion between the conductive material powders will decrease and the resistance value will become too large, making it undesirable because the strength of the resistor obtained will be weak and the stability of the resistance value will decrease. Not.

本発明にかかるガラス粉末は上記範囲中25〜65%の
範囲が望ましい。
The glass powder according to the present invention preferably has a content of 25 to 65% of the above range.

一方、導電物質粉末としては、Nb05NbO□、Nb
からなるものが好ましい。
On the other hand, Nb05NbO□, Nb
Preferably, it consists of

上記導電物質粉末を使用する理由は、かかる物質は導電
率が高い、すなわち抵抗率が低い特性を有するため、導
電物質とガラスとの複合体である本発明にかかる抵抗体
の抵抗値を目標に合致させることが可能であるためであ
る。
The reason for using the above-mentioned conductive material powder is that such a material has a property of high conductivity, that is, low resistivity. This is because it is possible to make them match.

本発明にかかるガラスの粒度は、小さすぎると上記抵抗
値が太き(なりすぎ好ましくなく、大きすぎると、ガラ
スを充分に濡らすことができず、焼結層に空孔が多くな
り好ましくない。
If the particle size of the glass according to the present invention is too small, the above-mentioned resistance value becomes too large (unpreferably), and if it is too large, the glass cannot be sufficiently wetted, and the sintered layer has many pores, which is not preferable.

平均粒径は0.5〜6μmが必要な範囲であり、望まし
い範囲は1〜5μmである。
The required average particle diameter is 0.5 to 6 μm, and the desirable range is 1 to 5 μm.

−力木発明にかかる導電物質粉末の粒度は小さすぎると
抵抗値が大きくなり過ぎ好ましくなく、大きすぎるとセ
ラミックス基板上で不均一になり、抵抗値のバラツキが
大きくなるので好ましくない。平均粒径は0.01〜5
μmの範囲が必要な範囲であり、望ましい範囲は0.0
5〜3μmである。
- If the particle size of the electrically conductive material powder according to the invention is too small, the resistance value will become too large, which is undesirable; if it is too large, it will become non-uniform on the ceramic substrate, resulting in large variations in the resistance value, which is not preferable. Average particle size is 0.01-5
The required range is μm, and the desirable range is 0.0
It is 5 to 3 μm.

本発明にかかるガラス粉末は、無機成分が実質的に 5iCh         15〜60%A12as 
        O〜30%MgO+CaO+SrO+
Ba0    10〜60%(MgOO〜40%、Ca
00〜40%、   Sr0 0〜60%BaOO〜6
0%) Li20+Na2O+KzO÷C8200〜lO%pb
o                  o〜10%Z
n0                0〜20%Zr
(lz+Tich           O〜10%T
aaOs                0〜60%
Nb2O50〜50% Ta2O+NbzOs           0〜60
%820、               5〜40%
からなり、順次これらについて説明する。
The glass powder according to the present invention has an inorganic component of substantially 5iCh 15 to 60% A12as
O~30%MgO+CaO+SrO+
Ba0 10~60% (MgOO~40%, Ca
00~40%, Sr0 0~60%BaOO~6
0%) Li20+Na2O+KzO÷C8200~lO%pb
o o~10%Z
n0 0~20% Zr
(lz+Tich O~10%T
aaOs 0-60%
Nb2O50~50% Ta2O+NbzOs 0~60
%820, 5-40%
These will be explained in turn.

かかる組成において、5i02はガラスのネットワーク
フォーマ−であり、15%より少ないと、軟化点が低く
なりすぎ耐熱性が低下し、再焼成時に変形を生じ易くな
るので好ましくない。
In this composition, 5i02 is a glass network former, and if it is less than 15%, the softening point becomes too low, the heat resistance decreases, and deformation tends to occur during re-firing, which is not preferable.

方5i02が60%より多いと、軟化点が高くなり過ぎ
、焼成時にガラスの流動が悪くなり、導電物質粉末を覆
って濡らすことができず、焼結層の空孔が多(なりすぎ
、抵抗の安定性が悪(なるので適当でない。望ましくは
、20〜55%の範囲である。
If 5i02 is more than 60%, the softening point will be too high, the flow of the glass will be poor during firing, it will not be possible to cover and wet the conductive material powder, and the sintered layer will have too many pores (too much, resistance It is not suitable because it results in poor stability.The desirably range is from 20 to 55%.

Alto3は必須ではないが、添加することにより、耐
湿性の向上に効果がある。30%を越えるとガラスの軟
化温度が高くなり、焼結性が悪くなり適当でない。望ま
しくは25%以下である。
Alto3 is not essential, but its addition is effective in improving moisture resistance. If it exceeds 30%, the softening temperature of the glass will become high and the sinterability will deteriorate, making it unsuitable. It is preferably 25% or less.

MgO+CaO+SrO+BaOはガラス粉末製造時の
溶解性を向上さすため及び熱膨張係数を調整する目的で
添加する。10%より少ないと上記の溶解性が充分に向
上しないと共にガラス製造時に失透を生じやす(,60
%を越えると熱膨張係数が大きくなりすぎ、いずれも適
当でない。望ましくは、15〜55%の範囲である。
MgO+CaO+SrO+BaO is added for the purpose of improving solubility during glass powder production and adjusting the thermal expansion coefficient. If it is less than 10%, the above-mentioned solubility will not be improved sufficiently and devitrification will easily occur during glass production (60%).
%, the coefficient of thermal expansion becomes too large, and neither is suitable. Desirably, it is in the range of 15 to 55%.

また上記MgO+CaO+SrO+BaOの内のMgO
、CaOはそれぞれ40%以上であると、熱膨張係数が
大きくなりすぎ、不適当である。望ましい範囲は0〜3
5%である。上記MgO+CaO+SrO+BaOの内
のSrO,BaOはそれぞれ60%以上であると熱膨張
係数が大きくなりすぎ、不適当である。望ましい範囲は
それぞれ0〜55%である。
Also, MgO in the above MgO + CaO + SrO + BaO
, CaO of 40% or more, the coefficient of thermal expansion becomes too large, which is inappropriate. Desirable range is 0-3
It is 5%. If SrO and BaO in the MgO+CaO+SrO+BaO are each 60% or more, the coefficient of thermal expansion becomes too large, which is inappropriate. The desirable range is 0-55% for each.

Li zO+Na2O+KJ+cs*oは必須ではない
が、添加することによりガラスの溶解性の向上を図るこ
とができる。10%を越えると、熱膨張係数が大きくな
りすぎ、基板とのマツチングが悪くなり、焼成後厚膜に
クラックが入る可能性が大となり、適当でない、望まし
くは8%以下である。
Although LizO+Na2O+KJ+cs*o is not essential, by adding it, the solubility of the glass can be improved. If it exceeds 10%, the coefficient of thermal expansion becomes too large, the matching with the substrate becomes poor, and the possibility of cracks appearing in the thick film after firing increases, so it is not appropriate, and preferably 8% or less.

PbOは必須ではないが、ガラスのフラックス成分とし
ての効果がある。10%を越えると抵抗値が不安定にな
り適当でない。望ましくは5%以下である。
Although PbO is not essential, it is effective as a flux component for glass. If it exceeds 10%, the resistance value becomes unstable and is not appropriate. It is preferably 5% or less.

ZnOは必須ではないが、ガラスの溶解性の改善のため
に20%まで添加することが可能であり、15%以下が
望ましい範囲である。
Although ZnO is not essential, it can be added up to 20% to improve the solubility of the glass, with a desirable range of 15% or less.

Zr0z+Ti0aは必須ではないが、添加することに
より抵抗体の耐湿信頼性を向上さすことができる。添加
量は10%までが可能であるが、望ましくは7%以下で
ある。
Although Zr0z+Ti0a is not essential, adding it can improve the moisture resistance reliability of the resistor. The amount added can be up to 10%, but is preferably 7% or less.

Ta1ls、 Nb2O5は、抵抗値と抵抗値温度係数
(TCP)の調整のために使用する。Ta*01+Nb
2O,を導入することにより、より抵抗値を低いものが
可能となり、また高抵抗値でのTCPを正の方向へ動か
す。その量は、目標抵抗値に合致するように決める。
Ta1ls and Nb2O5 are used to adjust the resistance value and temperature coefficient of resistance value (TCP). Ta*01+Nb
By introducing 2O, it becomes possible to lower the resistance value, and also moves the TCP at a high resistance value in the positive direction. The amount is determined to match the target resistance value.

但し、Ta2O,は60%、Nb1Osは50%、Ta
zOa+Nb、05は60%を超えるとガラス化が困難
となる。Ta205の望ましい範囲は0〜50%、Nb
2O5の望ましい範囲は0〜45%、Ta205+Nb
2O5の望ましい範囲は0〜50%である。
However, Ta2O, is 60%, Nb1Os is 50%, Ta
When zOa+Nb, 05 exceeds 60%, vitrification becomes difficult. The desirable range of Ta205 is 0-50%, Nb
The desirable range of 2O5 is 0-45%, Ta205+Nb
The desirable range of 2O5 is 0-50%.

B2O3はフラックス成分として用いるが、5%より少
ないと軟化点が高くなり、焼結不足となり、焼結層に空
孔が多(なりすぎる。また40%を越えるとガラスの耐
水性が低下し適当でない。望ましくは7〜35%の範囲
である。
B2O3 is used as a flux component, but if it is less than 5%, the softening point will be high, resulting in insufficient sintering, and the sintered layer will have too many pores. Also, if it exceeds 40%, the water resistance of the glass will decrease and it is not suitable. It is preferably in the range of 7 to 35%.

以上記載した望ましい範囲についてまとめると以下の通
りとなる。
The desirable ranges described above are summarized as follows.

5iOi            20〜55%A1□
0,0〜25% MgO÷CaO+SrO÷Ba0     15〜55
%(MgOO〜35%、  Ca00〜35%、5r0
0〜55%。
5iOi 20~55%A1□
0.0~25% MgO÷CaO+SrO÷Ba0 15~55
%(MgOO~35%, Ca00~35%, 5r0
0-55%.

BaO(1−55%) Li20+NaaO+に20+C520D〜8%ρbO
o〜 5% ZnOO〜15% ZrO2+Ti0a            O〜7%
TaaOs              (1−50%
NbaOs              O〜45%T
aaO+Nb1Os           (1−50
%B20j7A+35% 本発明の抵抗体ペーストの組成物は、各粉末が前記割合
に混合されているものであり、以下本発明の抵抗体ペー
ストの作製方法とそれを使用した厚膜回路の製造の一例
について説明する。
BaO (1-55%) Li20+NaaO+ 20+C520D~8%ρbO
o~5% ZnOO~15% ZrO2+Ti0a O~7%
TaaOs (1-50%
NbaOs O~45%T
aaO+Nb1Os (1-50
%B20j7A+35% The composition of the resistor paste of the present invention is one in which each powder is mixed in the above ratio, and below is an example of the method for producing the resistor paste of the present invention and the production of a thick film circuit using the same. I will explain about it.

上記本発明の抵抗体ペーストの組成物に有機バインダー
、溶剤からなる有機ビヒクルを添加し、混練し、ペース
ト状とする。この有機バインダーとしては、エチルセル
ロース、アクリル樹脂、エチレン−酢酸ビニル共重合樹
脂、ポリα−メチルスチレン樹脂、溶剤としては、α−
テルピネオール、プチルヵルビトールアセテート、ブチ
ルカルピトール、 2,2.4−トリメチルペンタンジ
オ−ルー1.3.−モノイソブチレート ジエチレング
リコールジ−n−ブチルエーテル、等が通常使用できる
。さらに分散剤として界面活性剤を添加してもよい。
An organic vehicle consisting of an organic binder and a solvent is added to the composition of the resistor paste of the present invention and kneaded to form a paste. The organic binder includes ethyl cellulose, acrylic resin, ethylene-vinyl acetate copolymer resin, polyα-methylstyrene resin, and the solvent includes α-
Terpineol, butyl carbitol acetate, butyl carpitol, 2,2,4-trimethylpentanedio-ru 1.3. -Monoisobutyrate, diethylene glycol di-n-butyl ether, etc. can usually be used. Furthermore, a surfactant may be added as a dispersant.

次いで焼成後の固化したアルミナ基板、又はガラスセラ
ミックス基板等のセラミックス基板上に導体を作成する
ために、Cuペーストを所定の回路に印刷、乾燥後、酸
素濃度20 ppm以下の窒素雰囲気中で850〜95
0℃、5〜20分で焼成する。この焼成条件の望ましい
範囲は880〜920℃、7〜15分である。次いで抵
抗を設けるべき所定の箇所に上記本発明の抵抗体ペース
トを印刷した後乾燥させ、上記窒素雰囲気中。
Next, in order to create a conductor on a solidified alumina substrate after firing or a ceramic substrate such as a glass-ceramic substrate, Cu paste is printed on a predetermined circuit, and after drying, it is heated at 850 ~ 95
Bake at 0°C for 5 to 20 minutes. The preferred range of firing conditions is 880 to 920°C and 7 to 15 minutes. Next, the resistor paste of the present invention is printed on a predetermined location where a resistor is to be provided, and then dried in the nitrogen atmosphere.

850〜950℃、5〜20分で焼成する。この焼成条
件の望ましい範囲は880で〜920℃、7〜15分で
ある。
Bake at 850-950°C for 5-20 minutes. The preferred range of firing conditions is 880° C. to 920° C. for 7 to 15 minutes.

多層セラミックス基板−括焼成の場合は、上記Cuペー
ストと本発明の抵抗体ペーストを印刷したセラミックス
基板用等のセラミックスのグノーンシートを熱圧着後積
層し、上記窒素雰囲気中で850〜950℃、数分〜数
時間で一括焼成し、多層セラミックス基板を作成する。
In the case of bulk firing of multilayer ceramic substrates, ceramic gnome sheets for ceramic substrates printed with the above Cu paste and the resistor paste of the present invention are laminated after thermocompression bonding, and then laminated at 850 to 950°C for several minutes in the above nitrogen atmosphere. ~Create a multilayer ceramic substrate by batch firing in several hours.

尚本発明の抵抗体ペーストには、着色のために金属酸化
物、耐熱性無機顔料等の着色顔料を0〜5%添加するこ
とができる。
Note that 0 to 5% of a coloring pigment such as a metal oxide or a heat-resistant inorganic pigment can be added to the resistor paste of the present invention for coloring.

また、ガラス溶解時に清澄剤、溶融促進剤として硝酸塩
、亜ヒ酸、酸化アンチモン、硫酸塩、フッ化物、塩化物
等を0〜5%添加することができる。
Further, during glass melting, 0 to 5% of nitrates, arsenous acid, antimony oxide, sulfates, fluorides, chlorides, etc. can be added as clarifying agents and melting accelerators.

[実施例] 本発明にかかるガラス粉末の各原料を酸化物換算で表−
1に示す割合で調合し、これを白金ルツボに入れ、13
50〜1500℃で2〜3時間撹拌しつつ加熱撹拌した
。次いでこれを水砕又はフレーク状とし、更に粉砕装置
により平均粒径0.5〜6μmになるように粉砕し、ガ
ラス粉末を製造した。次いで導電物質として表=1に示
す物質粉末を表−1に記載の割合で混合し、本発明の抵
抗体ペーストにかかる組成物を得た。
[Example] Each raw material of the glass powder according to the present invention is shown in terms of oxides.
Mix the proportions shown in 1, put this in a platinum crucible, and 13
The mixture was heated and stirred at 50 to 1500°C for 2 to 3 hours. Next, this was pulverized into water or flakes, and further pulverized using a pulverizer to an average particle size of 0.5 to 6 μm to produce glass powder. Next, material powders shown in Table 1 as conductive substances were mixed in the proportions shown in Table 1 to obtain a composition for the resistor paste of the present invention.

次いでこれらに有機バインダーとしてエチルセルロース
、溶剤としてα−テルピネオールからなる有機ビヒクル
を添加し、混練し、粘度が30X 10’ cpsのペ
ーストを作成した。次いで固化したアルミナ基板上に本
発明にかかる抵抗の電極としてCuペーストを所定の回
路にスクリーン印刷、乾燥し、酸素濃度201)pII
I以下の窒素雰囲気中900℃、10分で焼成した。
Next, an organic vehicle consisting of ethyl cellulose as an organic binder and α-terpineol as a solvent was added and kneaded to prepare a paste having a viscosity of 30×10′ cps. Next, on the solidified alumina substrate, a Cu paste was screen printed as an electrode of the resistor according to the present invention in a predetermined circuit, dried, and the oxygen concentration was adjusted to 201) pII.
It was fired at 900° C. for 10 minutes in a nitrogen atmosphere of I or less.

次いで抵抗所定箇所に上記抵抗体ペーストを200メツ
シユスクリーンでスクリーン印刷、乾燥し、酸素濃度2
0 ppm以下の窒素雰囲気中で900℃、10分で焼
成した。焼成膜厚は約15μmであった。
Next, the above resistor paste was screen printed on a predetermined location of the resistor using a 200 mesh screen, dried, and the oxygen concentration was reduced to 2.
It was fired at 900° C. for 10 minutes in a nitrogen atmosphere of 0 ppm or less. The fired film thickness was about 15 μm.

このようにしてセラミック基板上に回路を作成した。こ
の回路について、抵抗値、抵抗値温度係数(TCR)、
高温放置による抵抗値ドリフトを測定した。これらの結
果を表−1に記載した。表−1から明らかなように本発
明にかかる抵抗体ペーストは抵抗特性に優れ、厚膜回路
用抵抗体ペーストとして十分使用できる特性を有するこ
とが認められる。
In this way, a circuit was created on the ceramic substrate. Regarding this circuit, the resistance value, temperature coefficient of resistance (TCR),
The resistance value drift due to high temperature storage was measured. These results are listed in Table-1. As is clear from Table 1, it is recognized that the resistor paste according to the present invention has excellent resistance characteristics and has characteristics that can be used sufficiently as a resistor paste for thick film circuits.

比較例として本発明にががる抵抗体ペースト以外のもの
についても同様の評価を行ったので同時に表−1に記載
した。
As a comparative example, similar evaluations were conducted on resistor pastes other than the resistor paste according to the present invention, which are also listed in Table 1.

なお各特性の測定方法は次の通りである。The method for measuring each characteristic is as follows.

i)抵抗値及び抵抗値温度係数(TCP)25℃ 、−
55℃、+125℃の抵抗値(R2゜R−ss 、  
R+2s )を恒温槽中で抵抗計により測定し、次の式
により算出した。
i) Resistance value and temperature coefficient of resistance (TCP) 25℃, -
Resistance value at 55℃, +125℃ (R2゜R-ss,
R+2s) was measured using a resistance meter in a constant temperature bath, and calculated using the following formula.

(pprn/ ”C) (ppm/”C) ii)高温放置による抵抗値ドリフト 150℃の恒温槽中で100時間放置し、により算出し
た。
(pprn/"C) (ppm/"C) ii) Resistance value drift due to high-temperature storage. Calculated by leaving in a constant temperature bath at 150° C. for 100 hours.

次の式 上式において R3゜。、=  100時間後の抵抗値R0=抵抗の初
期値 [発明の効果〕 本発明の抵抗体ペーストは窒素雰囲気等の非酸化性雰囲
気中で焼成が可能で安定した信頼性の高い抵抗をセラミ
ックス基板上に形成可能であるとともに焼結性、耐水性
がよく、特に高温放置による抵抗値ドリフト特性に優れ
ているという効果も認められる。
In the following formula, R3°. , = Resistance value after 100 hours R0 = Initial value of resistance [Effects of the invention] The resistor paste of the present invention can be fired in a non-oxidizing atmosphere such as a nitrogen atmosphere, and can provide a stable and reliable resistor to a ceramic substrate. It is also recognized that it can be formed on top of the substrate, has good sinterability and water resistance, and is particularly excellent in resistance value drift characteristics when left at high temperatures.

Claims (2)

【特許請求の範囲】[Claims] (1)無機成分が重量%表示でガラス粉末20〜70と
NbO、NbO_2、Nbのうち少くとも一種からなる
導電物質粉末30〜80からなる抵抗体ペースト。
(1) A resistor paste consisting of 20 to 70% glass powder and 30 to 80% conductive material powder consisting of at least one of NbO, NbO_2, and Nb in terms of inorganic components in weight percent.
(2)第1項記載の抵抗体ペーストを使用して焼成され
たセラミックス基板。
(2) A ceramic substrate fired using the resistor paste described in item 1.
JP2262976A 1990-10-02 1990-10-02 Resistance paste and ceramic substrate Pending JPH04142001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2262976A JPH04142001A (en) 1990-10-02 1990-10-02 Resistance paste and ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2262976A JPH04142001A (en) 1990-10-02 1990-10-02 Resistance paste and ceramic substrate

Publications (1)

Publication Number Publication Date
JPH04142001A true JPH04142001A (en) 1992-05-15

Family

ID=17383167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2262976A Pending JPH04142001A (en) 1990-10-02 1990-10-02 Resistance paste and ceramic substrate

Country Status (1)

Country Link
JP (1) JPH04142001A (en)

Similar Documents

Publication Publication Date Title
JPH0411495B2 (en)
JPH03116801A (en) Resistor paste
KR100366928B1 (en) Conductive paste and ceramic electronic component
JPH11310458A (en) Glass ceramic composition, its baking and glass ceramic composite material
JPH03150234A (en) Resistor paste and ceramic substrate
JPH0574166B2 (en)
JPH0740633B2 (en) Insulating layer composition
JPH03131546A (en) Resistor paste and ceramic substrate
JPH04142001A (en) Resistance paste and ceramic substrate
JPH03183640A (en) Resistor paste and ceramic substrate
JPH03131545A (en) Resistor paste and ceramics substrate
JPH06239646A (en) Coating glass composition and paste prepared by using the same
JPH0380591A (en) Resistor paste and ceramic substrate
JPH0374005A (en) Resistor paste and ceramics substrate
JPH02288106A (en) Resistor paste and ceramics substrate
JPH038302A (en) Resistor paste and ceramic substrate
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JPH02212336A (en) Glass-ceramic composition and its use
JPH02288203A (en) Resistor paste and ceramic substrate
JP2893711B2 (en) Conductive paste and ceramic substrate
JPH0686327B2 (en) Ceramic substrate composition
JPH0660718A (en) Resistor paste and ceramics board
JPH0334401A (en) Resistor paste
JPH0349201A (en) Resistor paste and ceramic subtrate