JPH03131545A - Resistor paste and ceramics substrate - Google Patents

Resistor paste and ceramics substrate

Info

Publication number
JPH03131545A
JPH03131545A JP2170196A JP17019690A JPH03131545A JP H03131545 A JPH03131545 A JP H03131545A JP 2170196 A JP2170196 A JP 2170196A JP 17019690 A JP17019690 A JP 17019690A JP H03131545 A JPH03131545 A JP H03131545A
Authority
JP
Japan
Prior art keywords
resistor paste
resistance value
powder
glass powder
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2170196A
Other languages
Japanese (ja)
Inventor
Ryuichi Tanabe
隆一 田辺
Yoshiyuki Nishihara
芳幸 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPH03131545A publication Critical patent/JPH03131545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To make resistor paste capable of baking in a nonoxidizing atmosphere such as nitrogen and to obtain stable resistant value and resistance coefficient of temperature by blending glass powder having a specific composition with electroconductive powder in a specific ratio to form an inorganic component of resistor paste. CONSTITUTION:Inorganic components of resistor paste substantially comprise 20-70wt.% glass powder and 30-80wt.% SnO2 and/or SnO2 powder doped with Sn. The glass powder substantially consists of 7-50wt.% SiO2, 0-20wt.% Al2O3, 10-60wt.% MgO+CaO+SrO, 0-40wt.% MgO, 0-40wt.% CaO, 0-60wt.% SrO, 0-10wt.% Li2O+Na2O+K2O+CS2O, 0-10wt.% PbO, 0-20wt.% ZnO, 0-10wt.% ZrO2+TiO2, 5-40wt.% B2O5, 0-60wt.% Ta2O5; 0-50wt.% Nb2O5 and 0.1-60wt.% Ta2O5+Nb2O5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス基板に適した抵抗体ペースト及び
それを用いたセラミックス基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resistor paste suitable for ceramic substrates and a ceramic substrate using the same.

[従来の技術] 従来混成集積回路における抵抗はセラミックス基板上又
は内部に銀(Ag)又はAg−パラジウム(Pd)導体
を形成し、その間に抵抗体ペーストを印刷し、空気等の
酸化性雰囲気中で約850〜900℃で焼成し、形成さ
れていた。
[Prior Art] Conventionally, a resistor in a hybrid integrated circuit is made by forming a silver (Ag) or Ag-palladium (Pd) conductor on or inside a ceramic substrate, printing a resistor paste between them, and placing the conductor in an oxidizing atmosphere such as air. It was formed by firing at about 850 to 900°C.

その際に使用されていた抵抗体ペーストは主としてRu
O2とガラスからなっていた。
The resistor paste used at that time was mainly Ru.
It consisted of O2 and glass.

しかし最近ではマイグレーション等の信頼性の面からA
g又はAg−Pd導体に代わり、銅(Cu)導体が使用
されるようになってきている。
However, recently, due to reliability issues such as migration,
Copper (Cu) conductors are increasingly being used to replace g or Ag--Pd conductors.

しかしCu導体は窒素等の非酸化性雰囲気中で焼成しな
いと酸化されてしまうため、非酸化性雰囲気で還元され
抵抗を形成しないRII02は使用できない。
However, since the Cu conductor will be oxidized unless it is fired in a non-oxidizing atmosphere such as nitrogen, RII02, which is reduced in a non-oxidizing atmosphere and does not form a resistance, cannot be used.

そこで最近、L a B e粉末とガラス粉末、 5n
02ド一プ品とガラス粉末、珪化物とガラス粉末等が提
案されている。
Therefore, recently, L a B e powder and glass powder, 5n
02 doped products, glass powder, silicide and glass powder, etc. have been proposed.

しかし上記組み合わせは抵抗値や抵抗値温度係数(TC
R)がまだ十分に安定して得られないという欠点がある
However, the above combinations are limited by resistance value and temperature coefficient of resistance (TC).
There is a drawback that R) cannot yet be obtained in a sufficiently stable manner.

[発明の解決しようとする課題] 本発明は、窒素等の非酸化性雰囲気中で焼成が可能で、
抵抗値、抵抗値温度係数(TCP)が安定的に得られる
従来知られていなかった抵抗体ペースト及びセラミック
ス基板を新規に提供することを目的とするものである。
[Problems to be solved by the invention] The present invention can be fired in a non-oxidizing atmosphere such as nitrogen,
The object of the present invention is to provide a new resistor paste and ceramic substrate that are hitherto unknown and can stably obtain resistance values and temperature coefficients of resistance (TCP).

[課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、無機成分が重量%表示で実質的に、ガラス粉末20
〜70とSnO□及び/又はsbをドープした5nu2
粉末30〜80からなり、当該ガラス粉末は重量%表示
で実質的に51027〜50゜A1□030〜20、M
gO+CaO+SrO10〜60. MgOO〜40、
 CaOO〜40. SrOO〜60. Li2O+ 
NazO+KzO+Cs、00〜10. PbOO〜1
0. Zn00〜20. Zr0z+Ti0z O〜1
0. B2O35〜40. Ta2es O〜60゜N
b2050〜50. Ta205+NbzOs o、i
 〜6oからなる抵抗体ペースト等を提供するものであ
る。
[Means for Solving the Problem] The present invention has been made to solve the above-mentioned problems, and the inorganic component is substantially 20% by weight of glass powder.
~70 and 5nu2 doped with SnO□ and/or sb
Powder 30-80, the glass powder is substantially 51027-50°A1□030-20, M
gO+CaO+SrO10-60. MgOO~40,
CaOO~40. SrOO~60. Li2O+
NazO+KzO+Cs, 00-10. PbOO~1
0. Zn00~20. Zr0z+Ti0z O~1
0. B2O35-40. Ta2es O~60°N
b2050-50. Ta205+NbzOs o,i
6o is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の抵抗体ペーストは単層又は多層セラミックス基
板に使用するのに適したものであり、焼成後の固化した
アルミナ基板等のセラミックス基板、あるいはセラミッ
クス基板用のグリーンシート上に印刷等の方法により形
成した後、窒素雰囲気中等の非酸化性雰囲気中で焼成さ
れるものである。尚%は特に記載しない限り、重量%を
意味する。
The resistor paste of the present invention is suitable for use in single-layer or multi-layer ceramic substrates, and can be applied to ceramic substrates such as solidified alumina substrates after firing, or by printing or other methods on green sheets for ceramic substrates. After forming, it is fired in a non-oxidizing atmosphere such as a nitrogen atmosphere. Note that % means weight % unless otherwise specified.

本発明の抵抗体ペーストは無機成分が実質的に ガラス粉末   20〜70% 導電物質粉末  30〜80% からなり、以下順次これらについて説明する。The resistor paste of the present invention contains substantially no inorganic components. Glass powder 20-70% Conductive material powder 30-80% These are explained below in order.

ガラス粉末は、低温度(例えば900’C以下)で充分
に流動性を有し、焼成時に上記導電物質粉末を覆って充
分に濡らし、かつ焼結するSiO□−B203系ガラス
のものが好ましい。
The glass powder is preferably SiO□-B203 glass, which has sufficient fluidity at low temperatures (for example, 900'C or lower) and covers and sufficiently wets the conductive material powder during firing and sinters.

かかるガラス粉末の含有量が20%より少ないど導電物
質粉末を充分に濡らすことができないため、焼結層に空
孔が多(なり、本発明の抵抗体ペーストを焼成すること
によって得られる抵抗体の強度が弱くなり、又抵抗値の
安定性が低下するので好ましくな(,70%を越えると
、導電物質粉末間の接着が少なくなり、上記抵抗値が大
きくなりすぎ適当でない。
If the content of such glass powder is less than 20%, the conductive material powder cannot be sufficiently wetted, and the sintered layer will have many pores. If it exceeds 70%, the adhesion between the conductive material powders will decrease, and the resistance value will become too large, which is not suitable.

本発明にかかるガラス粉末は上記範囲中25〜65%の
範囲が望ましい。
The glass powder according to the present invention preferably has a content of 25 to 65% of the above range.

一方導電物質粉末としては、通常市販されているSnO
□、Sbを通常5bz03の酸化物としてドープしたS
nO□が単独又は併用して使用できるが、その理由は、
かかる物質は、導電率が高い、すなわち抵抗率が低い特
性を有するため、導電物質とガラスとの複合体である本
発明にがかる抵抗体の抵抗値を目標に合致させることが
可能であるためである。
On the other hand, the conductive material powder is SnO, which is usually commercially available.
□, Sb doped as oxide, usually 5bz03
nO□ can be used alone or in combination, and the reason is that
This is because such a material has a property of high electrical conductivity, that is, low resistivity, and therefore it is possible to match the resistance value of the resistor according to the present invention, which is a composite of a conductive material and glass, to the target. be.

sbをSnO□にドープしたものは、ドープしないSn
O□に比較して抵抗値が低(なり、ドープ量が多くなる
と抵抗値が高くなる。本発明にかかる抵抗が10 MΩ
以下のものなら、上記ドープ量は5bzOaの酸化物換
算で0〜20%が適正な範囲であり、望ましい範囲は0
.1〜15%、特に望ましい範囲は1〜10%である、
また本発明にかがる抵抗がIOMΩ以上ならば、上記ド
ープ量は5b20aの酸化物換算で20%以上のものも
使用できる。
sb doped into SnO□, undoped Sn
The resistance value is low (compared to O□), and the resistance value increases as the amount of doping increases.
For the following, the appropriate doping amount is 0 to 20% in terms of 5bzOa oxide, and the desirable range is 0.
.. 1 to 15%, a particularly desirable range is 1 to 10%,
Further, if the resistance according to the present invention is IOMΩ or more, the above-mentioned doping amount can be 20% or more in terms of 5b20a oxide.

本発明にかかるガラスの粒度は、小さすぎると上記抵抗
値が大きくなりすぎ好ましくなく、大きすぎると、ガラ
スを充分に濡らすことができず、焼結層に空孔が多くな
り好ましくない。
If the particle size of the glass according to the present invention is too small, the above-mentioned resistance value becomes too large, which is undesirable. If it is too large, the glass cannot be sufficiently wetted, and the sintered layer has many pores, which is not preferable.

平均粒径は0.5〜6μmが必要な範囲であり、望まし
い範囲は1〜5μmである。
The required average particle diameter is 0.5 to 6 μm, and the desirable range is 1 to 5 μm.

一方、本発明にかかる導電物質粉末の粒度は小さすぎる
と抵抗値が太き(なり過ぎ好ましくな(、大きすぎると
セラミックス基板上で不均一になり、抵抗値のバラツキ
が太き(なるので好ましくない。平均粒径は0.01〜
5μmの範囲が必要な範囲であり、望ましい範囲は0.
05〜3μmである。
On the other hand, if the particle size of the conductive material powder according to the present invention is too small, the resistance value will become large (unpreferably), and if it is too large, it will become uneven on the ceramic substrate and the variation in resistance value will become large (unpreferably). No. Average particle size is 0.01~
The necessary range is 5 μm, and the desirable range is 0.5 μm.
05-3 μm.

本発明にかかるガラス粉末は、無機成分が実質的に 5iOz         7〜50%A1□030〜
20% MgO+CaO+Sr0    10〜60%(Mg0
0〜40%、 CaOO〜40%、 SrOO〜60%
)Li20+Na2O+に20+C5zOo〜to%p
bo          o〜10%Zn0     
    0〜20% Zr0z+Ti0z       0〜10%8203
        5〜40% TazOs+NbzOs     0.1〜60%Ta
zOs         0〜60%Nb2O50〜5
0% からなり、順次これらについて説明する。
The glass powder according to the present invention has an inorganic component of substantially 5iOz 7-50%A1□030-
20% MgO+CaO+Sr0 10-60% (Mg0
0~40%, CaOO~40%, SrOO~60%
) Li20+Na2O+ to 20+C5zOo~to%p
bo o~10%Zn0
0~20% Zr0z+Ti0z 0~10%8203
5~40% TazOs+NbzOs 0.1~60%Ta
zOs 0~60%Nb2O50~5
0%, and these will be explained in turn.

かかる組成において、SiO□はガラスのネットワーク
フォーマ−であり、7%より少ないと、軟化点が低くな
りすぎ耐熱性が低下し、再焼成時に変形を生じ易(なる
ので好ましくない。
In such a composition, SiO□ is a glass network former, and if it is less than 7%, the softening point becomes too low, the heat resistance decreases, and deformation is likely to occur during re-firing, which is not preferable.

一方、SiO□が50%より多いと、軟化点が高くなり
過ぎ、焼成時にガラスの流動が悪くなり、導電物質粉末
を覆って濡らすことができず、焼結層の空孔が多くなり
すぎ、抵抗の安定性が悪くなるので適当でない。望まし
くは、10〜45%の範囲である。
On the other hand, when SiO This is not appropriate because the stability of the resistance will deteriorate. Desirably, it is in the range of 10 to 45%.

A1□03は必須ではないが、含有することにより、耐
湿性の向上に効果がある。20%を超えるとガラスの軟
化温度が高くなり、焼結性が悪くなり適当でない。望ま
しくは18%以下である。
Although A1□03 is not essential, its inclusion is effective in improving moisture resistance. If it exceeds 20%, the softening temperature of the glass will become high and the sinterability will deteriorate, making it unsuitable. It is preferably 18% or less.

MgO+CaO+SrOはガラス粉末製造時の溶解性を
向上さすため及び熱膨張係数を調整する働きがある。1
0%より少ないと上記の溶解性が充分に向上しないと共
にガラス製造時に失透を生じやす(,60%を超えると
熱膨張係数が大きくなりすぎ、いずれも適当でない。望
ましくは、15〜55%の範囲である。
MgO+CaO+SrO functions to improve the solubility during glass powder production and to adjust the coefficient of thermal expansion. 1
If it is less than 0%, the above-mentioned solubility will not be sufficiently improved, and devitrification will easily occur during glass production. is within the range of

また、上記MgO+CaO+SrOの内のMgO,Ca
Oはそれぞれ40%以上であると、熱膨張係数が大きく
なりすぎ、不適当である。望ましい範囲は0〜35%で
ある。上記MgO+CaO+SrOの内のSrOは60
%以上であると熱膨張係数が太き(なりすぎ、不適当で
ある。望ましい範囲は0〜55%である。
Also, MgO, Ca in the above MgO+CaO+SrO
If O is 40% or more, the coefficient of thermal expansion becomes too large, which is inappropriate. A desirable range is 0-35%. SrO in the above MgO+CaO+SrO is 60
% or more, the coefficient of thermal expansion becomes too thick (too large, which is inappropriate).The desirable range is 0 to 55%.

LizO+NazO+に20+Cs2Oは必須ではない
が、ガラスの溶解性の向上を図ることができ、又抵抗値
を高くする作用がある。10%を超えると、熱膨張係数
が太き(なりすぎ、基板とのマツチングが悪くなり、焼
成後厚膜にクラックが入る可能性が大となり、適当でな
い。望ましくは8%以下である。
Although 20+Cs2O is not essential to LizO+NazO+, it can improve the solubility of glass and has the effect of increasing the resistance value. If it exceeds 10%, the coefficient of thermal expansion becomes too large (too much), the matching with the substrate becomes poor, and the possibility of cracks appearing in the thick film after firing becomes large, which is not appropriate.The coefficient of thermal expansion is preferably 8% or less.

PbOは必須ではないが、ガラスのフラックス成分とし
ての効果があり、又抵抗値を高くする作用がある。10
%を超えると抵抗値が不安定になるため適当でない。望
ましくは5%以下である。
Although PbO is not essential, it is effective as a flux component of the glass and also has the effect of increasing the resistance value. 10
% is not suitable because the resistance value becomes unstable. It is preferably 5% or less.

ZnOは必須ではないが、ガラスの溶解性の改善のため
に20%まで含有させることが可能であり、15%以下
が望ましい範囲である。
Although ZnO is not essential, it can be contained up to 20% to improve the solubility of the glass, with a desirable range of 15% or less.

ZrO□+TiO□は必須ではないが、添加することに
より、抵抗体の耐湿信頼性を向上さすことができる。添
加量は10%が可能であるが、望ましくは7%以下であ
る。
Although ZrO□+TiO□ is not essential, adding it can improve the moisture resistance reliability of the resistor. The amount added can be 10%, but is preferably 7% or less.

B20.はフラックス成分として用いるが、5%より少
ないと軟化点が高くなり、焼結不足となり、焼結層に空
孔が多くなりすぎる。また40%を超えるとガラスの耐
水性が低下し適当でない。望ましくは7〜38%の範囲
である。
B20. is used as a flux component, but if it is less than 5%, the softening point will be high, resulting in insufficient sintering, and the sintered layer will have too many pores. Moreover, if it exceeds 40%, the water resistance of the glass decreases and is not suitable. It is preferably in the range of 7 to 38%.

TazOs、 Nb2O5は、抵抗値と抵抗値温度係数
(TCR)の調整のために使用する。
TazOs and Nb2O5 are used to adjust the resistance value and temperature coefficient of resistance (TCR).

Taxes、 NbzOsを導入することにより、抵抗
値を高い方向へ動かすことができ、更にTCRを正の方
向へ動かす効果がある。その鼠は、目標抵抗値に合致す
るように決める。
By introducing Taxes and NbzOs, it is possible to move the resistance value in a higher direction, and there is also the effect of moving the TCR in a positive direction. The mouse decides to match the target resistance value.

但し、Taxesは60%、Nb2O,は50%、Ta
205+NbzOsは60%を超えるとガラス化が困難
となり、TazOs+Nb20gは0.1以下であると
効果が少ない。Ta205の望ましい範囲は0〜50%
、Nb2O5の望ましい範囲は0〜45%、Ta205
+Nb2O5の望ましい範囲は1〜50%である。
However, Taxes is 60%, Nb2O is 50%, Ta
When the content of 205+NbzOs exceeds 60%, vitrification becomes difficult, and when the content of 20g of TazOs+Nb is 0.1 or less, the effect is small. The desirable range of Ta205 is 0-50%
, the desirable range of Nb2O5 is 0-45%, Ta205
The desirable range of +Nb2O5 is 1 to 50%.

Ta205. Nb2O5,TazOs+NbzOsの
必要な範囲、望ましい範囲については、それぞれ第1図
、第2図、第3図に示す。
Ta205. The necessary and desirable ranges of Nb2O5 and TazOs+NbzOs are shown in FIGS. 1, 2, and 3, respectively.

第1図はTa2esを単独(NbzOs:O)で使用す
る場合のTaJsの量の抵抗値に対する必要な範囲と望
ましい範囲を示す説明図、 第2図はNb、O5を単独(TazOs・O)で使用す
る場合のNb2O5の量の抵抗値に対する必要な小百四
と望ましい範囲を示す説明図、 第3図はTazOs + NbzOsの量の抵抗値(こ
対する必要な範囲と望ましい範囲を示す説明図、更に第
1〜3図の主な点を以下にまとめる。
Figure 1 is an explanatory diagram showing the necessary and desirable ranges for the resistance value of the amount of TaJs when Ta2es is used alone (NbzOs:O), and Figure 2 is an explanatory diagram showing the necessary and desirable ranges for the resistance value of TaJs when Ta2es is used alone (NbzOs:O). Fig. 3 is an explanatory diagram showing the necessary range and desirable range of the resistance value of the amount of TazOs + NbzOs when used. Furthermore, the main points of Figures 1 to 3 are summarized below.

TaaOs、Nb2O5 をそれぞれ単独で使用する場合の 各抵抗値に対するTaz05+ NbJsの使用範囲 TazOsとNb2O5を併用して使用する場合の各抵
抗値に対するTa2es 、NbzOsの使用範囲以上
記載したガラス粉末の組成の望ましい範囲についてまと
めると以下の通りとなる。
Usage range of Taz05+NbJs for each resistance value when TaaOs and Nb2O5 are used alone Usage range of Ta2es and NbzOs for each resistance value when TazOs and Nb2O5 are used together Desirable composition of the glass powder described above The scope can be summarized as follows.

Si0□        10〜45%Al2O30〜
18% MgO+CaO+SrO15〜55% (Mg00〜35%、 Ca00〜35%、 Sr00
〜55%)LizO+NazO+KzO+C5zOO〜
 8%pbo          o〜5% ZnO0〜15% Zr0z+Ti0z           Q〜 7%
8203             7〜38%Taz
Os+NbzOs         1〜50%Ta2
05            0〜50%Nb2O5O
〜45% 本発明の抵抗体ペーストの組成物は、各粉末が上記割合
に混合されているものであり、以下本発明の抵抗体ペー
ストの作製方法とそれを使用した厚膜回路の製造の一例
について説明する。
Si0□ 10~45% Al2O30~
18% MgO+CaO+SrO15-55% (Mg00-35%, Ca00-35%, Sr00
~55%) LizO+NazO+KzO+C5zOO~
8%pbo o~5% ZnO0~15% Zr0z+Ti0z Q~7%
8203 7-38%Taz
Os+NbzOs 1~50%Ta2
05 0-50%Nb2O5O
~45% The composition of the resistor paste of the present invention is one in which each powder is mixed in the above ratio, and below is an example of the method for producing the resistor paste of the present invention and the production of a thick film circuit using the same. I will explain about it.

上記本発明の抵抗体ペーストの組成物に有機バインダー
、溶剤からなる有機ビヒクルを添加し、混合し、ペース
ト状とする。この有機バインダーとしては、エチルセル
ロース、アクリル樹脂、エチレン−酢酸ビニル共重合樹
脂、ポリα−メチルスチレン樹脂、溶剤としては、α−
テルピネオール;ブチルカルピトールアセテート;ブチ
ルカルピトール、 2,2.4−1−リメチルベンクン
ジオール−1,3,−モノイソブチレート;ジエチレン
グリコールジ−n−ブチルエーテル等が通常使用できる
。さらに分散剤として界面活性剤を添加してもよい。
An organic vehicle consisting of an organic binder and a solvent is added to the composition of the resistor paste of the present invention and mixed to form a paste. The organic binder includes ethyl cellulose, acrylic resin, ethylene-vinyl acetate copolymer resin, polyα-methylstyrene resin, and the solvent includes α-
Terpineol; butylcarpitol acetate; butylcarpitol, 2,2,4-1-limethylbencunediol-1,3,-monoisobutyrate; diethylene glycol di-n-butyl ether, etc. can be commonly used. Furthermore, a surfactant may be added as a dispersant.

次いで焼成後の固化したアルミナ基板、又はガラスセラ
ミックス基板等のセラミックス基板上に導体を作成する
ために、Cuを主成分とするCuペースト等の導体ペー
ストを所定の回路パターンに印刷等の方法で形成、乾燥
後、酸素濃度約20ppm以下の窒素雰囲気等の非酸化
性雰囲気中で800〜1000℃程度、5〜30分程度
で焼成する。この焼成条件の望ましい範囲は880〜9
20℃、7〜15分である。次いで抵抗を設けるべき所
定の箇所に上記本発明の抵抗体ペーストを印刷した後乾
燥させ、上記窒素雰囲気中、800〜lO圓℃程度、5
〜30分程度で焼成する。この焼成条件の望ましい範囲
は880〜920°C,7〜15分である。
Next, in order to create a conductor on the solidified alumina substrate after firing or a ceramic substrate such as a glass-ceramic substrate, a conductor paste such as Cu paste containing Cu as a main component is formed into a predetermined circuit pattern by a method such as printing. After drying, it is fired at about 800 to 1000° C. for about 5 to 30 minutes in a non-oxidizing atmosphere such as a nitrogen atmosphere with an oxygen concentration of about 20 ppm or less. The desirable range of this firing condition is 880 to 9
20°C, 7 to 15 minutes. Next, the resistor paste of the present invention is printed on a predetermined location where a resistor is to be provided, dried, and heated at about 800 to 10 °C in the nitrogen atmosphere at 5°C.
Bake in about 30 minutes. The preferred range of firing conditions is 880-920°C and 7-15 minutes.

多層セラミックス基板−括焼成の場合は、上記Cuペー
ストと本発明の抵抗体ペーストを印刷したセラミックス
基板用等のセラミックスのグノーンシートを熱圧着後積
層し、上記窒素雰囲気等の非酸化性雰囲気中で800〜
1000℃程度。
In the case of bulk firing of multilayer ceramic substrates, ceramic gnome sheets for ceramic substrates printed with the above-mentioned Cu paste and the resistor paste of the present invention are laminated after thermocompression bonding, and then heated for 800 min in a non-oxidizing atmosphere such as the above-mentioned nitrogen atmosphere. ~
About 1000℃.

数分〜数時間で一括焼成し、多層基板を作成する。Batch firing is performed in a few minutes to several hours to create a multilayer board.

尚本発明の抵抗体ペーストには、着色のために金属酸化
物、耐熱性無機顔料等の着色顔料を0〜5%添加するこ
とができる。
Note that 0 to 5% of a coloring pigment such as a metal oxide or a heat-resistant inorganic pigment can be added to the resistor paste of the present invention for coloring.

また、ガラス製造時、清澄剤、溶融促進剤として硝酸塩
、亜ヒ酸、硫酸塩、フッ化物、塩化物等を0〜5%添加
してすることができる。
Further, during glass production, 0 to 5% of nitrates, arsenous acid, sulfates, fluorides, chlorides, etc. can be added as clarifying agents and melting accelerators.

[実施例] 本発明にかかるガラス粉末の各原料を酸化物換算で表−
1に示す割合で調合し、これを白金ルツボに入れ、13
50〜1500℃で2〜3時間撹拌しつつ加熱撹拌した
。次いでこれを水砕又はフレーク状とし、更に粉砕装置
により平均粒径0.5〜6μmになるように粉砕し、ガ
ラス粉末を製造した。次いで導電物質としてSnO□及
び/又はsbを5b2o、の酸化物換算で5%ドープし
たSnO□の粉末を平均粒径0.01〜51tmになる
ように調整した。次いでこれらのガラス粉末と上記導電
物質粉末を表−1に記載の割合で混合し、本発明の抵抗
体ペーストにかかる組成物を得た。
[Example] Each raw material of the glass powder according to the present invention is shown in terms of oxides.
Mix the proportions shown in 1, put this in a platinum crucible, and 13
The mixture was heated and stirred at 50 to 1500°C for 2 to 3 hours. Next, this was pulverized into water or flakes, and further pulverized using a pulverizer to an average particle size of 0.5 to 6 μm to produce glass powder. Next, SnO□ powder doped with 5% of SnO□ and/or sb as a conductive material in terms of 5b2o oxide was adjusted to have an average particle size of 0.01 to 51 tm. Next, these glass powders and the above-mentioned conductive material powder were mixed in the proportions shown in Table 1 to obtain a composition for the resistor paste of the present invention.

次いでこれらに有機バインダーとしてエチルセルロース
、溶剤としてα−テルピネオールからなる有機ビヒクル
を添加し、混練し、粘度が30X 10’ cpsのペ
ーストを作成した。次いで固化したアルミナ基板上に本
発明にかかる抵抗の電極としてCuペーストを所定の回
路にスクリーン印刷、乾燥し、酸素濃度20ppm以下
の窒素雰囲気中900℃、10分で焼成した。
Next, an organic vehicle consisting of ethyl cellulose as an organic binder and α-terpineol as a solvent was added and kneaded to prepare a paste having a viscosity of 30×10′ cps. Next, on the solidified alumina substrate, a Cu paste was screen printed as a resistor electrode according to the present invention in a predetermined circuit, dried, and fired at 900° C. for 10 minutes in a nitrogen atmosphere with an oxygen concentration of 20 ppm or less.

次いで抵抗所定箇所に上記抵抗体ペーストを200メツ
シユスクリーンでスクリーン印刷、乾燥し、酸素濃度2
0ppm以下の窒素雰囲気中で900℃lO分で焼成し
た。焼成膜厚は約15μmであった。
Next, the above resistor paste was screen printed on a predetermined location of the resistor using a 200 mesh screen, dried, and the oxygen concentration was reduced to 2.
It was fired at 900° C. for 10 minutes in a nitrogen atmosphere of 0 ppm or less. The fired film thickness was about 15 μm.

このようにしてセラミック基板上に回路を作成した。こ
の回路について、抵抗値、抵抗温度係数(TCP)、高
温放置による抵抗値ドリフトを測子した。これらの結果
を表−1に言P井した。表−1から明らかなように本発
明にがかる抵抗体ペーストは抵抗特性に優れ、厚膜回路
用抵抗体ペーストとして十分使用できる特性を有するこ
とが認められる。
In this way, a circuit was created on the ceramic substrate. Regarding this circuit, the resistance value, temperature coefficient of resistance (TCP), and resistance value drift due to high temperature storage were measured. These results are shown in Table 1. As is clear from Table 1, the resistor paste according to the present invention has excellent resistance characteristics and is recognized to have characteristics that can be used sufficiently as a resistor paste for thick film circuits.

比較例として本発明にかかる抵抗体ペースト以外のもの
についても同様の評価を行ったので表−1に記載した。
As a comparative example, similar evaluations were conducted on resistor pastes other than the resistor paste according to the present invention, which are listed in Table 1.

なお各特性の測定方法は次の通りである。The method for measuring each characteristic is as follows.

i)抵抗値及び抵抗値温度係数(TCR)25℃、−5
5℃、 +125℃の抵抗値(R25゜R−ss + 
R+zs )を恒温槽中で抵抗計により測定し、次の式
により算出した。
i) Resistance value and temperature coefficient of resistance (TCR) 25°C, -5
Resistance value at 5℃, +125℃ (R25゜R-ss +
R+zs) was measured using a resistance meter in a constant temperature bath, and calculated using the following formula.

ii)高温放置による抵抗値ドリフト 150℃の恒温槽中で100時間放置し、次の式により
算出した。
ii) Resistance value drift due to high temperature storage The resistance value was calculated by the following formula after being left in a constant temperature bath at 150° C. for 100 hours.

上式において R100I’l” 100時間後の抵抗値 R。In the above formula R100I’l” Resistance value after 100 hours R.

=抵抗の初期値 [発明の効果] 本発明の抵抗体ペーストは、窒素雰囲気等の非酸化性雰
囲気中で焼成が可能で、安定した信頼性の高い抵抗をセ
ラミックス基板上に形成可能であり、特に高温放置によ
る抵抗値ドリフト特性に優れているという効果も認めら
れる。
=Initial value of resistance [Effects of the invention] The resistor paste of the present invention can be fired in a non-oxidizing atmosphere such as a nitrogen atmosphere, and a stable and highly reliable resistor can be formed on a ceramic substrate. In particular, the effect of excellent resistance value drift characteristics when left at high temperatures is also recognized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図: Ta*Osを単独(Nb20g=0)で使用
する場合のTa1lsの量の抵抗値に対する必要な範囲
と望ましい範囲を示す説明図。 第2図: Nb2O5を単独(Ta20s”0)で使用
する場合のNbJsの量の抵抗値に対する必要な範囲と
望ましい範囲を示す説明図。 第3図: TaJs + NbaOsの量の抵抗値に対
する必要な範囲と望ましい範囲を示す説明図。
FIG. 1: An explanatory diagram showing the necessary range and desirable range of the amount of Ta1ls with respect to the resistance value when Ta*Os is used alone (Nb20g=0). Figure 2: Explanatory diagram showing the necessary range and desirable range of the resistance value of the amount of NbJs when Nb2O5 is used alone (Ta20s"0). Figure 3: The necessary range of the resistance value of the amount of TaJs + NbaOs Explanatory diagram showing ranges and desirable ranges.

Claims (2)

【特許請求の範囲】[Claims] (1)無機成分が重量%表示で実質的に、ガラス粉末2
0〜70とSnO_2及び/又はSbをドープしたSn
O_2粉末30〜80からなり、当該ガラス粉末は重量
%表示で実質的にSiO_27〜50,Al_2O_3
0〜20,MgO+CaO+SrO10〜60,MgO
0〜40,CaO0〜40,SrO0〜60,Li_2
O+Na_2O+K_2O+Cs_2O0〜10,Pb
O0〜10,ZnO0〜20,ZrO_2+TiO_2
0〜10,B_2O_35〜40,Ta_2O_50〜
60,Nb_2O_50〜50,Ta_2O_5+Nb
_2O_50.1〜60からなる抵抗体ペースト。
(1) The inorganic component is substantially 2% by weight of glass powder.
Sn doped with 0-70 and SnO_2 and/or Sb
It consists of O_2 powder 30-80, and the glass powder is substantially SiO_27-50, Al_2O_3 in weight%.
0~20, MgO+CaO+SrO10~60, MgO
0~40, CaO0~40, SrO0~60, Li_2
O+Na_2O+K_2O+Cs_2O0~10,Pb
O0~10, ZnO0~20, ZrO_2+TiO_2
0~10, B_2O_35~40, Ta_2O_50~
60, Nb_2O_50~50, Ta_2O_5+Nb
A resistor paste consisting of _2O_50.1 to 60.
(2)第1項記載の抵抗体ペーストを使用して焼成され
たセラミックス基板。
(2) A ceramic substrate fired using the resistor paste described in item 1.
JP2170196A 1989-07-18 1990-06-29 Resistor paste and ceramics substrate Pending JPH03131545A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-183701 1989-07-18
JP18370189 1989-07-18

Publications (1)

Publication Number Publication Date
JPH03131545A true JPH03131545A (en) 1991-06-05

Family

ID=16140438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170196A Pending JPH03131545A (en) 1989-07-18 1990-06-29 Resistor paste and ceramics substrate

Country Status (1)

Country Link
JP (1) JPH03131545A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248859A (en) * 2005-03-11 2006-09-21 Tdk Corp Conductive paste, electronic component and electronic apparatus
JP2008030994A (en) * 2006-07-28 2008-02-14 Nihon Yamamura Glass Co Ltd Bismuth-based lead-free powdered glass
US7544314B2 (en) 2004-09-01 2009-06-09 Tdk Corporation Glass composition for thick film resistor paste, thick film resistor paste, thick-film resistor, and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544314B2 (en) 2004-09-01 2009-06-09 Tdk Corporation Glass composition for thick film resistor paste, thick film resistor paste, thick-film resistor, and electronic device
JP2006248859A (en) * 2005-03-11 2006-09-21 Tdk Corp Conductive paste, electronic component and electronic apparatus
JP2008030994A (en) * 2006-07-28 2008-02-14 Nihon Yamamura Glass Co Ltd Bismuth-based lead-free powdered glass

Similar Documents

Publication Publication Date Title
JP4839539B2 (en) Lead-free glass, glass frit, glass paste, electronic circuit components and electronic circuits
US5051381A (en) Powdery coating glass material, coating glass paste using the same and coating glass composition prepared thereby
JPH0624795A (en) Glass, dielectric composition, multilayer circuit board and multilayer ceramic capacitor
JP2002053342A (en) Low melting point glass for electrode coating
JP2001222912A (en) Conductive paste and ceramic electronic part
JPH11310458A (en) Glass ceramic composition, its baking and glass ceramic composite material
JPH03150234A (en) Resistor paste and ceramic substrate
JP3230394B2 (en) Porcelain capacitors
JPH01252548A (en) Glass ceramic composition
JPH01179741A (en) Glass-ceramic composition
JPS62137897A (en) Insulating layer compound
JPH03131545A (en) Resistor paste and ceramics substrate
JPH03131546A (en) Resistor paste and ceramic substrate
JPH0374005A (en) Resistor paste and ceramics substrate
US3849142A (en) Barium- or strontium-containing glass frits for silver metallizing compositions
JPH06239646A (en) Coating glass composition and paste prepared by using the same
JPH03183640A (en) Resistor paste and ceramic substrate
JPH03126639A (en) Glass composition for coating
JPH02288106A (en) Resistor paste and ceramics substrate
JPH0380591A (en) Resistor paste and ceramic substrate
JPH038302A (en) Resistor paste and ceramic substrate
JPH02212336A (en) Glass-ceramic composition and its use
JPH0232587A (en) Composite for circuit substrate and electronic parts using composite therefor
JP2002274883A (en) Low melting point glass
JPH02288203A (en) Resistor paste and ceramic substrate