JPH04139013A - Production of superfine carbonaceous powder - Google Patents

Production of superfine carbonaceous powder

Info

Publication number
JPH04139013A
JPH04139013A JP2260549A JP26054990A JPH04139013A JP H04139013 A JPH04139013 A JP H04139013A JP 2260549 A JP2260549 A JP 2260549A JP 26054990 A JP26054990 A JP 26054990A JP H04139013 A JPH04139013 A JP H04139013A
Authority
JP
Japan
Prior art keywords
carbonaceous
powder
fiber
fibers
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2260549A
Other languages
Japanese (ja)
Other versions
JP2783905B2 (en
Inventor
Toshiaki Jinno
神野 敏明
Hidenori Yamanashi
山梨 秀則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2260549A priority Critical patent/JP2783905B2/en
Publication of JPH04139013A publication Critical patent/JPH04139013A/en
Application granted granted Critical
Publication of JP2783905B2 publication Critical patent/JP2783905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain super-fine carbonaceous powder which is made far fine than a conventional powder and has uniform particle size distribution by using an indenter having parallel planes to compress a carbonaceous fiber under specified pressure. CONSTITUTION:The super-fine carbonaceous powder is prepared by compressing a carbonaceous fiber once or more by using an indenter having parallel planes under 100-10000kg/cm<2>. Moreover, it is preferable that the carbonaceous fiber is a vapor-grown carbon fiber having the hexagonal network plane of carbon substantially parallel to the fiber axis and having a crystalline structure oriented like an annual ring.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、均一な粒度分布を有する超微細炭素質粉末を
効率的に製造する方法に関するもの、である。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a method for efficiently producing ultrafine carbonaceous powder having a uniform particle size distribution.

(従来の技術) 黒鉛粉末に代表される微細炭素質粉末は、軽量および高
強度なとの特徴と共に、すぐれた導電性を有しており、
触媒、電池、潤滑剤およびシールド用塗料などとして広
く使用されている。
(Prior art) Fine carbonaceous powder, represented by graphite powder, is lightweight and has high strength, as well as excellent electrical conductivity.
Widely used as catalysts, batteries, lubricants, and shielding paints.

なかでも、容易に黒鉛化し得る気相成長系炭素繊維は、
−層すくれた導電性を有していることから、これを粉砕
し黒鉛化した黒鉛粉末は、上記した用途以外にも、樹脂
に配合した樹脂組成物として、エレクトロニクス分野に
おける静電気や電磁波のシールド材料などの各種用途に
活用されている。
Among them, vapor-grown carbon fibers that can be easily graphitized are
- Because it has a thin layer of conductivity, graphite powder obtained by pulverizing it and graphitizing it is used not only for the above-mentioned purposes, but also as a resin composition blended with resin to shield static electricity and electromagnetic waves in the electronics field. It is used for various purposes such as materials.

そして、上記微細炭素質粉末は、従来カーボンブラック
や黒鉛などのブロックを粉砕、分級することにより製造
されていたが、上記ブロック自体が柔らかく、滑りやす
い性質を有しているため粉砕が困難であり、全体的に均
一に微粉砕することが不可能であった。
The above-mentioned fine carbonaceous powder has conventionally been produced by crushing and classifying blocks of carbon black, graphite, etc., but since the blocks themselves are soft and slippery, it is difficult to crush them. , it was impossible to pulverize the material uniformly throughout.

そこで、均一に微粉砕化するための方法として、炭素繊
維や黒鉛繊維などの炭素質繊維を材料に用い、これをボ
ールミル、ジェットミル、ロータースピードミル、カッ
ティンクミル、ホモジナイザ、振動ミルおよびアトライ
タなどの粉砕機で粉砕することにより、材料繊維の直径
に近い粒径にまで微粉砕化する技術が種々提案されてお
り、本田願人も気相成長系炭素繊維を粉砕して、直径が
0.05〜2μm1長さが10μm以下の粉末状にする
技術(特開昭64−65144号公報)について、先に
提案した。
Therefore, as a method for uniformly pulverizing carbon fibers such as carbon fibers and graphite fibers, it is possible to use carbon fibers such as carbon fibers and graphite fibers as materials, and to use carbon fibers such as ball mills, jet mills, rotor speed mills, cutting mills, homogenizers, vibration mills, and attritors. Various techniques have been proposed to finely pulverize the material fibers to a particle size close to the diameter of the material fibers by pulverizing them with a pulverizer, and Ganto Honda also pulverized vapor-grown carbon fibers to reduce the diameter to 0. A technique (Japanese Unexamined Patent Publication No. 64-65144) was previously proposed to form a powder having a length of 10 μm or less.

(発明が解決しようとする課8) しかしながら、炭素質繊維を粉砕することにより炭素質
微粉末を得る方法においては、かなりの微粉砕化は計れ
るものの、使用するベース材料の繊維の1本1本に局所
的な破壊力を与える必要があることから、微粉砕化に長
時間を要し、しかも得られる微粉末の粒径分布のバラツ
キが大きいため、微粉砕化後分級工程によって品質を安
定させる必要があった。
(Issue 8 to be solved by the invention) However, in the method of obtaining carbonaceous fine powder by crushing carbonaceous fibers, although it is possible to achieve considerable fineness, each fiber of the base material used Since it is necessary to apply local destructive force to the powder, it takes a long time to pulverize the powder, and the particle size distribution of the resulting fine powder varies widely, so the quality is stabilized by a classification process after pulverization. There was a need.

本発明は、上述した従来技術の問題点を解決するために
検討した結果、達成されたものである。
The present invention was achieved as a result of studies aimed at solving the problems of the prior art described above.

したがって、本発明の目的は、従来にもまして超微粉末
化され、かつ均一な粒度分布を有する超微細炭素質粉末
を効率的に製造する方法を提供することにある。
Therefore, an object of the present invention is to provide a method for efficiently producing ultrafine carbonaceous powder that is more finely powdered than ever before and has a uniform particle size distribution.

[発明の構成〕 (課題を解決するための手段) すなわち本発明は、炭素質繊維を、平行な平面を有する
圧子を用いて、100〜10000kg/Cシの圧力で
、1回以上圧縮することを特徴とする超微細炭素質粉末
の製造方法を提供するものである。
[Structure of the Invention] (Means for Solving the Problems) That is, the present invention involves compressing carbonaceous fibers one or more times at a pressure of 100 to 10,000 kg/C using an indenter having parallel planes. The present invention provides a method for producing ultrafine carbonaceous powder characterized by the following.

以下、本発明の構成について、さらに詳細に説明する。Hereinafter, the configuration of the present invention will be explained in more detail.

本発明で用いる炭素質繊維としては、PAN素炭素繊維
、ピッチ系炭素繊維、繊維状炭素繊維および繊維状黒鉛
繊維などから選ばれた、直径0゜05〜500μm1長
さ1〜5000umのものが挙げられるが、なかでも容
易に黒鉛化し得る気相成長系炭素繊維が好適である。
Examples of the carbonaceous fibers used in the present invention include those selected from PAN basic carbon fibers, pitch-based carbon fibers, fibrous carbon fibers, fibrous graphite fibers, etc., and having a diameter of 0.05 to 500 μm and a length of 1 to 5000 μm. Among them, vapor-grown carbon fibers that can be easily graphitized are preferred.

ここで、気相成長系炭素繊維とは、X[回折および電子
顕微鏡の観察により、炭素の六角網表面か繊維軸に対し
て実質的に平行で、かつ年輪状に配向し結晶構造を有し
ているものであり、たとえば炭化水素を気相熱分解する
ことによって得られたものを意味する 上記で用いる炭化水素としては、たとえばトルエン、ベ
ンゼン、ナフタレンなどの芳香族炭化水素およびプロパ
ン、エタン、エチレンなどの脂肪族炭化水素などが挙げ
られ、なかでもベンゼンおよびナフタレンが好ましく用
いられる。
Here, vapor-grown carbon fiber is defined as having a crystal structure with the surface of the hexagonal network of carbon substantially parallel to the fiber axis and oriented in the form of tree rings, according to diffraction and electron microscopy observations. The hydrocarbons used above, which mean those obtained by gas-phase pyrolysis of hydrocarbons, include, for example, aromatic hydrocarbons such as toluene, benzene, and naphthalene, and propane, ethane, and ethylene. Examples include aliphatic hydrocarbons such as, among others, benzene and naphthalene are preferably used.

気相熱分解は、上記炭化水素をガス化して、水素などの
キャリアガスと共に、900〜1500℃の温度で、超
微粒金属からなる触媒、たとえば粒径100〜300オ
ングストロームの鉄、ニッケルおよび鉄−ニッケル合金
などを、炭化水素の熱分解域に浮遊するように存在させ
、接触分解させることにより行なわれる。
Gas-phase pyrolysis involves gasifying the hydrocarbons and using a catalyst made of ultrafine metal particles, such as iron, nickel, and iron with a particle size of 100 to 300 angstroms, at a temperature of 900 to 1500°C together with a carrier gas such as hydrogen. This is done by floating a nickel alloy or the like in a hydrocarbon thermal decomposition zone and causing catalytic decomposition.

なお、本発明においては、上記のようにして得られる気
相成長系炭素繊維を、アルゴンなどの不活性ガス雰囲気
下に、20 CI ’O〜35oo℃、とくに2500
〜3000℃の温度で、20〜120分間、とくに30
〜60分間熱処理した後、以下に述べる圧縮工程に供す
ることか望ましい。
In the present invention, the vapor-grown carbon fiber obtained as described above is heated at 20 CI'O to 350°C, particularly at 2500°C, in an inert gas atmosphere such as argon.
at a temperature of ~3000°C for 20-120 minutes, especially 30
After heat treatment for ~60 minutes, it is desirable to subject the material to the compression process described below.

また、炭素繊維を材料とする場合には、上記熱処理は省
略することができる。
Further, when carbon fiber is used as the material, the above heat treatment can be omitted.

本発明における炭素質繊維の微粉末化は、上記炭素質繊
維を、平行な平面を有する圧子(ピストン)を用いて、
100〜10000 kg / cd、好ましくは50
0〜4000kg/cdの圧力で、1回以上圧縮するこ
とにより行われる。
In the present invention, the carbonaceous fibers are pulverized by using an indenter (piston) having parallel planes to
100-10000 kg/cd, preferably 50
This is done by compressing one or more times at a pressure of 0 to 4000 kg/cd.

ここで用いる加圧圧縮装置の態様についてはと(に制限
がなく、油圧式、機械式などを使用することができる。
There is no limit to the mode of the pressurization and compression device used here, and hydraulic, mechanical, etc. can be used.

また、加圧圧縮装置の圧縮に用いるシリンダー形状およ
び材質についてもとくに制限しないが、圧子(ピストン
)については平行な平面を有することが必須条件であり
、平面を有しない、例えばシボ状などの場合には、内部
圧力が不均一となり、得られる超微粉末の粒径が不均一
になるため好ましくない。
In addition, there are no particular restrictions on the shape and material of the cylinder used for compression in the pressure compression device, but it is essential that the indenter (piston) has parallel planes, and if it does not have a plane, such as a textured shape, etc. This is not preferable because the internal pressure becomes non-uniform and the particle size of the resulting ultrafine powder becomes non-uniform.

加圧圧縮条件において、圧力が100kg/cd以下で
は十分な超微粉末化を達成することができず、また1 
0000kg/cd以上ては粉末が固形化する傾向が招
かれるため好ましくない。
Under pressure compression conditions, if the pressure is less than 100 kg/cd, sufficient ultrafine powder cannot be achieved;
If it exceeds 0,000 kg/cd, the powder tends to solidify, which is not preferable.

なお、圧縮時における温度調節はとくに必要としないが
、場合によっては冷却または加熱を併用することも可能
である。
Note that temperature control during compression is not particularly required, but cooling or heating may be used in combination depending on the case.

また、圧縮時間についてもとくに制限しないが、1回に
ついて、5秒以上が好ましい。
Further, the compression time is not particularly limited, but it is preferably 5 seconds or more per compression time.

圧縮を1回行なうことによっても、十分な微粉末化を達
成することができるが、圧縮工程を数回繰り返すことに
より、さらに超微粉末化することが可能となる。
Sufficient pulverization can be achieved by performing compression once, but by repeating the compression process several times, it becomes possible to further pulverize the material into ultra-fine powder.

(1禰−か作用) 次に、本発明の方法における超微粉末化のメカニズムに
ついて説明する。
(1-layer effect) Next, the mechanism of ultrafine powderization in the method of the present invention will be explained.

炭素質繊維を、平行な平面を有する圧子を用いて圧縮す
る際の、圧縮された繊維の破壊モードとしては、繊維同
志の接触点を支点として曲げ応力が作用し、相互の繊維
が折れて微粉末化するモードと、繊維同志か重なった部
分に強い力が加わり、相互に圧装破壊するモードの2種
類か作用する。
When carbonaceous fibers are compressed using an indenter with parallel planes, the fracture mode of the compressed fibers is that bending stress acts on the contact point between the fibers as a fulcrum, causing the mutual fibers to break and cause slight damage. There are two modes of operation: a mode in which the fibers are pulverized, and a mode in which a strong force is applied to the overlapped portions of the fibers, causing them to collapse under pressure.

そして、前者のモードは低圧領域の繊維内部密度が低い
場合に生起し、後者のモードは高圧圧縮時における繊維
の高密度状態で多く生起する。
The former mode occurs when the fiber internal density is low in the low-pressure region, and the latter mode often occurs when the fiber is in a high-density state during high-pressure compression.

このときの、荷重によ°る繊維の微粉末化平均サイズ(
Ls)は、実際には繊維の接触間距離の相違によりやや
バラツくか、大路次式(1)で表される。
At this time, the average size of the fine powder of the fibers due to the load (
Ls) actually varies slightly depending on the difference in the contact distance between the fibers, or is expressed by Ohji's equation (1).

Ls −(Fo−8F/ F ) ”’ −−(1)た
だし、Sf;加圧面積 F:加圧荷重 Fo:圧装荷重 また、このときの圧装荷重(Fo)は、次式(■)に近
似して表される。
Ls −(Fo-8F/F) ”' --(1) However, Sf: Pressurized area F: Pressure load Fo: Pressure loading In addition, the pressurization load (Fo) at this time is calculated using the following formula (■ ) is expressed as an approximation.

Po=Ts−d210.9− (II)ただし、Ts:
引張張力 d:繊維の半径 したがって、圧縮された微粉末のサイズは、加圧面積と
繊維直径に大きく依存するため、圧力によって微粉末の
サイズを容易にコントロールすることができ、均一な微
粉末化も可能である。
Po=Ts-d210.9- (II) However, Ts:
Tensile tension d: fiber radius Therefore, the size of the compressed fine powder largely depends on the pressing area and the fiber diameter, so the size of the fine powder can be easily controlled by pressure, and uniform fine powderization can be achieved. is also possible.

また、希望する微粉末のサイズよりも小さい直径を有す
る繊維を用いることにより、超微細粉末を一層効率的に
得ることができる。
Also, by using fibers having a diameter smaller than the desired size of the fine powder, ultrafine powder can be obtained more efficiently.

さらに、圧縮時の加圧荷重を増加して、得られる微粉末
のサイズを、繊維の直径よりも小さくすることにより、
従来の粉砕方法ではごくわずかしか得られない超微細炭
素質粉末を取得することが可能である。
Furthermore, by increasing the pressure load during compression and making the size of the resulting fine powder smaller than the diameter of the fiber,
It is possible to obtain ultrafine carbonaceous powder, which can only be obtained in small amounts using conventional grinding methods.

しかして、本発明の方法によれば、均一な粒度分布を有
する超微細炭素質粉末を短時間でかつ大量に製造するこ
とができ、従来よりも効率的でしかも生産性にすぐれて
いる。
Therefore, according to the method of the present invention, ultrafine carbonaceous powder having a uniform particle size distribution can be produced in large quantities in a short period of time, and is more efficient and has superior productivity than conventional methods.

また、本発明の方法で得られる超微細炭素質粉末は、超
微細かつ均一な粒径を有しており、合成ゴムや合成樹脂
に対する混合分散性がすぐれている。
Further, the ultrafine carbonaceous powder obtained by the method of the present invention has an ultrafine and uniform particle size, and has excellent mixing and dispersibility in synthetic rubber and synthetic resin.

よって、本発明の方法により得られた超微細炭素質粉末
は、導電性樹脂組成物を形成するシールド用途の他にも
、触媒、電池、潤滑剤およびシールド用塗料などの材料
としてきわめて有用である。
Therefore, the ultrafine carbonaceous powder obtained by the method of the present invention is extremely useful as a material for catalysts, batteries, lubricants, shield coatings, etc., in addition to shielding applications for forming conductive resin compositions. .

(実施例) 以下、本発明を実施例に基づいてさらに詳細に説明する
が、本発明はこれにより限定されるものではない。
(Examples) Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited thereto.

実施例1 直径0.1〜0.5μmの年輪状配向を有する気相成長
系炭素繊維を2300”Cで熱処理した後、その1gを
平行な平面を有するピストンを備え−た直径1011I
のシリンダ中に入れ、2000 kg / cjの圧力
で30秒間圧縮した。
Example 1 After heat-treating a vapor-grown carbon fiber having a ring-like orientation with a diameter of 0.1 to 0.5 μm at 2300"C, 1 g of it was transferred to a 1011I diameter carbon fiber with a piston having parallel planes.
It was placed in a cylinder and compressed for 30 seconds at a pressure of 2000 kg/cj.

次に、シリンダ内から繊維(または粉末)を取り出して
撹拌した後、再度シリンダ中に入れて、上記と同様の圧
縮を3回繰り返した。
Next, the fibers (or powder) were taken out from the cylinder and stirred, then put back into the cylinder and the same compression as above was repeated three times.

各圧縮回数毎の繊維(または粉末)の嵩密度を測定した
結果を第1表に示す。
Table 1 shows the results of measuring the bulk density of the fiber (or powder) for each number of compressions.

なお、嵩密度の測定は、0.5〜1.0gの重量を精密
に計測した試料を、10ccのメスシリンダーに採取し
、これに一定の振動を与えてから測定した体積と前記重
量から算出した。
The bulk density is measured by taking a precisely measured sample of 0.5 to 1.0 g into a 10 cc measuring cylinder, giving it constant vibration, and then calculating it from the measured volume and the weight. did.

第1表の結果から明らかなように、本発明の方法によれ
ば、圧縮によって繊維の嵩密度が増加し、超“微粉末化
が効率的に達成される。
As is clear from the results in Table 1, according to the method of the present invention, the bulk density of the fibers is increased by compression, and ultra-fine powderization is efficiently achieved.

実施例2 気相成長系炭素繊維の代わりに、PAN系炭素繊維“ト
レカMLD−300” (東し■製)を用いた以外は、
実施例1と同様の条件で圧縮を繰り返した場合の嵩密度
測定結果を第1表に併せて示す。
Example 2 Except for using PAN-based carbon fiber “Torayca MLD-300” (manufactured by Toshi ■) instead of vapor-grown carbon fiber,
Table 1 also shows the bulk density measurement results when compression was repeated under the same conditions as in Example 1.

実施例2 気相成長系炭素繊維の代わりに、ピッチ系炭素繊維“T
101S″ (クレハ■製)を用いた以外は、実施例1
と同様の条件で圧縮を繰り返した場合の嵩密度測定結果
を第1表に併せて示す。
Example 2 Pitch-based carbon fiber “T” was used instead of vapor-grown carbon fiber.
Example 1 except that 101S″ (manufactured by Kureha ■) was used.
Table 1 also shows the bulk density measurement results when compression was repeated under the same conditions as above.

実施例2および3の結果からも、本発明の方法によれば
、圧縮によって繊維の嵩密度が増加し、超微粉末化が効
率的に達成されていることが明らかである。
From the results of Examples 2 and 3, it is clear that according to the method of the present invention, the bulk density of the fibers is increased by compression, and ultrafine powdering is efficiently achieved.

比較例1 気相成長系炭素繊維の代わりに、黒鉛粉末“5PG−4
0” (日本坩堝■製)を用いた以外は、実施例1と同
様の条件で圧縮を繰り返した場合の嵩密度測定結果を第
1表に併せて示す。
Comparative Example 1 Graphite powder “5PG-4” was used instead of vapor grown carbon fiber.
Table 1 also shows the bulk density measurement results when compression was repeated under the same conditions as in Example 1, except that 0'' (manufactured by Nippon Crucible ■) was used.

この結果から、繊維以外の粉末材料の圧縮では、固形化
を招き好ましくないことが明らがである。
From this result, it is clear that compression of powder materials other than fibers causes solidification, which is undesirable.

以下#D 第1表 比較例2 実施例1で用いた気相成長系炭素繊維を、遊星型ボール
ミル″Pu1ver1sette  5 ’  (7’
J ッf ユ・ジャパン側製)に供し、第2表に示した
各時間粉砕して、各粉砕時間ごとの嵩密度を測定した。
Below #D Table 1 Comparative Example 2 The vapor grown carbon fiber used in Example 1 was processed using a planetary ball mill "Pu1ver1sette 5'(7'
(manufactured by J.F. Japan) and pulverized for each time shown in Table 2, and the bulk density was measured for each pulverization time.

この結果を第2表に示す。The results are shown in Table 2.

比較例3 実施例2で用いたピッチ系炭素繊維“T101S°を比
較例2と同様のボールミルに供し、同様に試験した結果
を第2表に併せて示す。
Comparative Example 3 The pitch-based carbon fiber "T101S°" used in Example 2 was subjected to the same ball mill as in Comparative Example 2, and the results of the same tests are also shown in Table 2.

第2表の結果から、粉砕法では本発明に比較して長時間
を要し、生産効率が劣ることが明らかである。
From the results in Table 2, it is clear that the pulverization method requires a longer time and has lower production efficiency than the method of the present invention.

L文丁氷色 第2表 [発明の効果] 以上詳細に説明したように、本発明の方法によれば、均
一な粒度分布を有する超微細炭素質粉末を短時間でかつ
大量に製造することができ、従来よりも効率的でしかも
生産性にすくれている。
Table 2 [Effects of the Invention] As explained in detail above, according to the method of the present invention, ultrafine carbonaceous powder having a uniform particle size distribution can be produced in large quantities in a short time. This makes it more efficient and more productive than ever before.

また、本発明の方法で得られる超微細炭素質粉末は、超
微細かつ均一な粒径を有しており、合成ゴムや合成樹脂
に対する混合分散性かすぐれている。
Further, the ultrafine carbonaceous powder obtained by the method of the present invention has an ultrafine and uniform particle size, and has excellent mixing and dispersibility in synthetic rubber and synthetic resin.

したがって、本発明の方法で得られた超微細炭素質粉末
は、各種合成樹脂やゴムに混合分散させて、導電性樹脂
組成物を形成する用途以外にも、触媒、電池、潤滑剤お
よびシールド用塗料などの材料としてきわめて有用であ
る。
Therefore, the ultrafine carbonaceous powder obtained by the method of the present invention can be mixed and dispersed in various synthetic resins and rubbers to form conductive resin compositions, and can also be used for catalysts, batteries, lubricants, and shields. It is extremely useful as a material for paints, etc.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素質繊維を、平行な平面を有する圧子を用いて
、100〜10000kg/cm^2の圧力で、1回以
上圧縮することを特徴とする超微細炭素質粉末の製造方
法。
(1) A method for producing ultrafine carbonaceous powder, which comprises compressing carbonaceous fibers one or more times at a pressure of 100 to 10,000 kg/cm^2 using an indenter having parallel planes.
(2)炭素質繊維が、炭素の六角網表面が繊維軸に対し
て実質的に平行で、かつ年輪状に配向し結晶構造を有す
る気相成長系炭素繊維であることを特徴とする請求項(
1)に記載の超微細炭素質粉末の製造方法。
(2) A claim characterized in that the carbonaceous fiber is a vapor-grown carbon fiber whose hexagonal network surface of carbon is substantially parallel to the fiber axis, and which is oriented in the shape of annual rings and has a crystal structure. (
1) The method for producing ultrafine carbonaceous powder.
JP2260549A 1990-10-01 1990-10-01 Method for producing ultrafine carbonaceous powder Expired - Fee Related JP2783905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260549A JP2783905B2 (en) 1990-10-01 1990-10-01 Method for producing ultrafine carbonaceous powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260549A JP2783905B2 (en) 1990-10-01 1990-10-01 Method for producing ultrafine carbonaceous powder

Publications (2)

Publication Number Publication Date
JPH04139013A true JPH04139013A (en) 1992-05-13
JP2783905B2 JP2783905B2 (en) 1998-08-06

Family

ID=17349504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260549A Expired - Fee Related JP2783905B2 (en) 1990-10-01 1990-10-01 Method for producing ultrafine carbonaceous powder

Country Status (1)

Country Link
JP (1) JP2783905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020418A (en) * 2001-07-09 2003-01-24 Showa Denko Kk Fine graphite powder, method for producing the same and use thereof
WO2004038074A1 (en) * 2002-10-28 2004-05-06 Bussan Nanotech Reserch Institute Inc. Method and apparatus for heat treatment of powder of fine carbon fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992326A (en) * 1972-10-26 1974-09-03
JPH0415397A (en) * 1990-05-09 1992-01-20 Dainippon Ink & Chem Inc Carbon fiber heat insulating material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992326A (en) * 1972-10-26 1974-09-03
JPH0415397A (en) * 1990-05-09 1992-01-20 Dainippon Ink & Chem Inc Carbon fiber heat insulating material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020418A (en) * 2001-07-09 2003-01-24 Showa Denko Kk Fine graphite powder, method for producing the same and use thereof
WO2004038074A1 (en) * 2002-10-28 2004-05-06 Bussan Nanotech Reserch Institute Inc. Method and apparatus for heat treatment of powder of fine carbon fiber

Also Published As

Publication number Publication date
JP2783905B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JP3502490B2 (en) Carbon fiber material and method for producing the same
EP0381761B1 (en) Fine flaky graphite particles and process for their production
US7390593B2 (en) Fine carbon fiber, method for producing the same and use thereof
US8007755B2 (en) Carbon fibrous structure
JP2003227039A (en) Fine carbon fiber, method for producing the same and use thereof
CN109844015A (en) Composite resin material and formed body
JP3881332B2 (en) Carbon fiber material and composite material thereof
Lin et al. Ultra-strong nanographite bulks based on a unique carbon nanotube linked graphite onions structure
KR100312282B1 (en) Graphite Fibrillated Materials
US4217336A (en) Artificial graphite
JP2783905B2 (en) Method for producing ultrafine carbonaceous powder
Kumar et al. Effect of flake reinforcement on mechanical properties of AA 6061 nano composite with secondary nano platelet-Graphene processed through powder metallurgy
JPH11335929A (en) Highly electroconductive carbon fiber and its production
Ovsyannikov et al. High-hardness ceramics based on boron carbide fullerite derivatives
WO2022039240A1 (en) Boron nitride particle, boron nitride powder, resin composition, and resin composition production method
JP2022517022A (en) Ultra-fine carbon powder and its manufacturing method and application
JP2013001582A (en) Isotropic graphite material, and method for producing the same
US20230323090A1 (en) Boron nitride particles, resin composition, and method for producing resin composition
EP1950229A1 (en) Molded fluororesin
KR100896340B1 (en) Method for manufacturing onion-like carbon particles in the aqueous solution
JPH0735251B2 (en) Graphite fine powder
JPH08217434A (en) Production of flaky graphite fine powder
WO2022039232A1 (en) Composite material, heat dissipating material, and method for producing heat dissipating material
US20240025741A1 (en) Boron nitride particles, resin composition, and method for producing resin composition
WO2022039234A1 (en) Boron nitride particles, method for producing boron nitride particles, resin composition, and method for producing resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees