JPH04138816A - Method for correcting hard-to-work material by hot extrusion - Google Patents

Method for correcting hard-to-work material by hot extrusion

Info

Publication number
JPH04138816A
JPH04138816A JP26152690A JP26152690A JPH04138816A JP H04138816 A JPH04138816 A JP H04138816A JP 26152690 A JP26152690 A JP 26152690A JP 26152690 A JP26152690 A JP 26152690A JP H04138816 A JPH04138816 A JP H04138816A
Authority
JP
Japan
Prior art keywords
extruded
outer skin
core material
difficult
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26152690A
Other languages
Japanese (ja)
Inventor
Akiyasu Morita
森田 章靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26152690A priority Critical patent/JPH04138816A/en
Publication of JPH04138816A publication Critical patent/JPH04138816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To restrict the heat transfer between the core material and the outer skin material and to extrude the outer skin material even through a thin wall thickness by forming an insulating layer at the boundary of the hard-to-work material and the outer skin material. CONSTITUTION:The core material 1 is coated with the outer skin material 2 through the insulating layer 3. The composite billet is hot-extruded after heating to the temperature so that the core material 1 shows the ductility and the plastic working is possible. The extruded material 5 to be extruded is stretched while heating with the induction heater and the bent is corrected. Both end parts of the extruded material are clamped with the chucking part 6 of the stretching device (stretcher).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、常温では加工困難な難加工材の外側をそれよ
りも加工性に優れた外皮材で被覆した複合ビレットを熱
間押出しすると共に、押出材の曲がりを矯正する方法に
関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention involves hot extruding a composite billet in which the outside of a difficult-to-process material that is difficult to process at room temperature is covered with a skin material that has better processability. , relates to a method for straightening curvature of extruded material.

(従来の技術) 従来、難加工材を熱間押出する場合、第3図に示すよう
に、難加工材11を芯材とし、その外側をそれよりも加
工性に優れた外皮材12で被覆した複合ビレットに加工
し、この複合ビレットを所定温度に加熱して熱間押出す
ることか一般に知られている。尚、13は電子ビーム溶
接による接合部を示す。
(Prior art) Conventionally, when hot-extruding difficult-to-process materials, as shown in FIG. 3, a difficult-to-process material 11 is used as a core material, and the outside thereof is covered with a skin material 12 that has better workability. It is generally known to process the composite billet into a composite billet, heat the composite billet to a predetermined temperature, and hot extrude it. Note that 13 indicates a joint portion formed by electron beam welding.

難加工材に対してこのような熱間押出方法を採用する理
由は、難加工材ビレットそのものを直接熱間押出すると
、加熱から押出し開始に至るまでに大気、潤滑側、押出
コンテナ等に触れるためビレット表面が冷却されてしま
い、押出加工中、延性が保てずにビレットが割れてしま
う。これに対して、複合ビレットに加工すると、冷却が
激しい表面には外皮材が存在するので難加工材そのもの
の冷却が防止され、また押出加工中も保熱されるため円
滑な押出ができるためとされている。
The reason why such a hot extrusion method is adopted for difficult-to-process materials is that if the billet of difficult-to-process materials is directly hot extruded, it will come into contact with the atmosphere, the lubricating side, the extrusion container, etc. from heating to the start of extrusion. The billet surface is cooled and ductility cannot be maintained during extrusion, resulting in billet cracking. On the other hand, when processed into a composite billet, there is a skin material on the surface where cooling is intense, which prevents the difficult-to-process material itself from cooling, and also retains heat during extrusion, allowing smooth extrusion. ing.

(発明が解決しようとする課題) しかしながら、複合ビレットは炉出しから加工開始まで
の間、冷たい雰囲気にさらされるので、難加工材を押出
温度に保持するには、外皮材をある程度の厚みに形成す
る必要がある。そのため、必然的に難加工材の大きさ(
直径)は制限され、加工歩留りが悪くなっていた。
(Problem to be solved by the invention) However, since the composite billet is exposed to a cold atmosphere from the time it is taken out of the furnace until the start of processing, it is necessary to form the outer skin material to a certain thickness in order to maintain the difficult-to-process material at the extrusion temperature. There is a need to. Therefore, the size of difficult-to-process materials (
diameter) was limited, resulting in poor processing yields.

また、押出材は熱間押出後、急速に温度が低下するため
、押出直後に強制的に押出材の曲がりを塑性変形させて
矯正することができず、−旦、押出した後に曲がりを矯
正することが必要となる。
In addition, since the temperature of extruded materials rapidly decreases after hot extrusion, it is not possible to forcibly correct the bending of the extruded material by plastically deforming it immediately after extrusion. This is necessary.

矯正法としては、押出材を塑性変形可能な温度に加熱し
、軸方向に引張ればよい。加熱手段としては、インダク
ションヒータによる誘導加熱が設備も簡単でエネルギー
効率もよいため好適である。
As a straightening method, the extruded material may be heated to a temperature at which it can be plastically deformed, and then pulled in the axial direction. As the heating means, induction heating using an induction heater is suitable because the equipment is simple and energy efficient.

しかし、押出材は表面から急速加熱されるため、熱応力
が生じ、これによって延性がほとんどない芯材が割れる
という問題がある。尚、矯正用引張装置のチャック部を
炉中に設け、押出材と共にチャックごと低速加熱して塑
性変形域まで加熱すれば熱応力の問題は解消するが、熱
効率が悪く、処理に時間がかかり、又チャックの材質と
して高温耐熱性に優れた特殊なものを必要とするという
問題がある。
However, since the extruded material is rapidly heated from the surface, thermal stress is generated, which causes the problem that the core material, which has little ductility, cracks. Incidentally, the problem of thermal stress can be solved by installing the chuck part of the straightening tension device in a furnace and heating the chuck together with the extruded material at a low speed until it reaches the plastic deformation range, but the thermal efficiency is poor and the processing takes a long time. Another problem is that the chuck requires a special material with excellent high-temperature resistance.

本発明はかかる問題に鑑みなされたもので、加熱した複
合ビレットの保温効果を高め、また押出材の曲がりの矯
正に際し、誘導加熱によって加熱することができる難加
工材の熱間押出矯正方法を提供することを目的とする。
The present invention was made in view of such problems, and provides a method for hot extrusion straightening of difficult-to-process materials, which increases the heat retention effect of a heated composite billet, and can heat the extruded material by induction heating when straightening the bending of the extruded material. The purpose is to

(課題を解決するための手段) 上記目的を達成するためになされた本発明の熱間押出矯
正方法は、常温では加工困難な難加工材の外側を断熱層
を介して前記難加工材よりも加工性に優れた外皮材で被
覆した複合ビレットを加熱して熱間押出した後、押出材
の両端部を把持し、その間を誘導加熱すると共に引張り
、押出材の曲がりを矯正することを発明の構成とするも
のである。
(Means for Solving the Problems) The hot extrusion straightening method of the present invention, which has been made in order to achieve the above object, is such that the outer side of the difficult-to-process material, which is difficult to process at room temperature, is After heating and hot extruding a composite billet covered with an outer skin material with excellent workability, the invention aims to straighten the bends of the extruded material by gripping both ends of the extruded material and applying induction heating and pulling between them. The structure is as follows.

(作 用) 本発明によれば、難加工材(芯材)1と外皮材2との界
面に断熱層3を形成することにより、芯材1と外皮材2
とは直接接触しなくなり、断熱層3により、芯材1と外
皮材2との熱の移動が抑制され、結果として芯材1の温
度が保持され、従来に比べてうすい厚みの外皮材2でも
押出加工が可能になる。
(Function) According to the present invention, by forming the heat insulating layer 3 at the interface between the difficult-to-process material (core material) 1 and the outer skin material 2, the core material 1 and the outer skin material 2
The heat insulating layer 3 suppresses the transfer of heat between the core material 1 and the outer skin material 2, and as a result, the temperature of the core material 1 is maintained, even if the outer skin material 2 is thinner than before. Extrusion processing becomes possible.

前記断熱層3を形成しない場合、押出温度が画材の合金
の共晶点以上必要なとき、画材の接触部が共晶反応を起
こし、゛溶融状態となるため、熱間押出を行うことがで
きない。しかし、本発明では断熱層3が形成されている
ため、画材は非接触状態となり、画材の組み合せに拘ら
ず、共晶反応が生じず、円滑な熱間押出を行うことがで
きる。
If the heat insulating layer 3 is not formed, when the extrusion temperature is required to be higher than the eutectic point of the alloy of the art material, the contact area of the art material will undergo a eutectic reaction and become in a molten state, making hot extrusion impossible. . However, in the present invention, since the heat insulating layer 3 is formed, the art materials are in a non-contact state, and regardless of the combination of art materials, no eutectic reaction occurs and smooth hot extrusion can be performed.

また、押出材にも芯材と外皮材との間に断熱層が介在す
るため、誘導加熱により急速な加熱を行っても、前記断
熱層が熱的緩衝材として作用し、芯材の温度勾配ひいて
は熱応力が緩和され、芯材の割れの発生が防止される。
In addition, since extruded materials also have a heat insulating layer interposed between the core material and the outer skin material, even if rapid heating is performed by induction heating, the heat insulating layer acts as a thermal buffer, causing a temperature gradient in the core material. As a result, thermal stress is alleviated and cracking of the core material is prevented.

また、押出材を直接加熱することができるため、温度制
御も容品に行うことができる。
Furthermore, since the extruded material can be directly heated, temperature control can also be performed on the container.

更に、引張装置のチャック部が装着される押出材の両端
部は加熱されないので、チャック部の加熱に要する無駄
な熱エネルギーを節約することができ、またチャック部
も特殊な耐熱合金を使用しなくて済む。
Furthermore, since both ends of the extruded material to which the chuck part of the tensioning device is attached are not heated, wasted thermal energy required to heat the chuck part can be saved, and the chuck part does not require the use of special heat-resistant alloys. It's done.

(実施例) 第1図は本発明において熱間押出に使用される複合ビレ
ットであり、芯材1は断熱層3を介して外皮材2によっ
て被覆されており、4は溶接部である。
(Example) FIG. 1 shows a composite billet used for hot extrusion in the present invention, in which a core material 1 is covered with a skin material 2 via a heat insulating layer 3, and 4 is a welded part.

芯材1としては種々の難加工材を用いることができる。As the core material 1, various difficult-to-process materials can be used.

例えば、Nを12原子%以上含有するAj−Ti合金は
難加工材であり、加工温度が10日5°C未満では加工
不可能である。尚、N含有量が70原子%以上になると
加工温度を1300°Cに昇温しても延性が得られない
For example, an Aj-Ti alloy containing 12 atomic percent or more of N is a difficult-to-process material, and cannot be processed at a processing temperature of less than 5° C. for 10 days. Note that when the N content is 70 at % or more, ductility cannot be obtained even if the processing temperature is raised to 1300°C.

前記外皮材2としては、低Cの炭素鋼やステンレス鋼等
の通常の鉄網材が一般的に使用される。
As the outer skin material 2, a normal iron mesh material such as low C carbon steel or stainless steel is generally used.

安価で加工性が良好だからである。芯材1として高N含
有Ti合金を使用し、外皮材2としてFe系外皮材を使
用した場合、Fe  Ti2元合金の共晶点は1085
°Cであるため、前記断熱層3を使用することなく、複
合ビレットを1085°C以上に加熱すると、画材の接
触部に共晶反応が生じて溶融し、熱間押出が不可能にな
る。
This is because it is inexpensive and has good workability. When a high N-containing Ti alloy is used as the core material 1 and a Fe-based skin material is used as the skin material 2, the eutectic point of the Fe-Ti binary alloy is 1085.
If the composite billet is heated to 1085°C or higher without using the heat insulating layer 3, a eutectic reaction will occur in the contact area of the art material and it will melt, making hot extrusion impossible.

前記断熱N3はアルミナ等のセラミック、黒鉛、ガラス
系潤滑剤など、芯材や外皮材に対して不活性で耐熱性に
冨んだ耐火材が使用される。断熱層を形成するには耐火
材の微粉末スラリーや溶媒に溶かしたものを芯材に塗布
乾燥すればよい。断熱層の厚みは通常0.2〜1耽程度
でよい。
For the heat insulation N3, a refractory material that is inert to the core material and the outer skin material and has high heat resistance, such as ceramic such as alumina, graphite, or glass-based lubricant, is used. To form a heat insulating layer, a fine powder slurry of refractory material or a solution dissolved in a solvent may be applied to the core material and dried. The thickness of the heat insulating layer may normally be about 0.2 to 1 thick.

前記複合ビレットは、芯材1が延性を示し、塑性加工が
可能な温度に加熱された後、熱間押出に供される。押出
された押出材5は、第2図に示すように誘導加熱されつ
つストレッチされ、曲がりが矯正される。6は引張装置
(ストレッチャー)のチャック部であり、押出材の両端
部を把持している。その間には、誘導加熱用のインダク
ションヒータ7が付設されている。チャック部6は直接
加熱されないため、ステンレス鋼等の通常の鉄網材でよ
く、既存の引張装置を使用することができる。また、回
倒では押出材5は水平方向に支持されているが、垂直方
向に支持してもよい。
The composite billet is heated to a temperature at which the core material 1 exhibits ductility and is capable of plastic working, and then is subjected to hot extrusion. As shown in FIG. 2, the extruded material 5 is stretched while being subjected to induction heating, and its bends are corrected. Reference numeral 6 denotes a chuck part of a tensioning device (stretcher), which grips both ends of the extruded material. An induction heater 7 for induction heating is provided between them. Since the chuck part 6 is not directly heated, it may be made of ordinary iron mesh material such as stainless steel, and an existing tensioning device can be used. Moreover, although the extruded material 5 is supported in the horizontal direction in the rotation, it may be supported in the vertical direction.

尚、電気炉等の加熱炉中にチャック部を設け、炉中で矯
正処理を行う場合、チャック部も必然的に芯材の塑性変
形可能な温度まで昇温させられる。
In addition, when a chuck part is provided in a heating furnace such as an electric furnace and straightening treatment is performed in the furnace, the temperature of the chuck part is also inevitably raised to a temperature at which the core material can be plastically deformed.

かかる温度は1000°C以上になることが多いため、
チャック部の材質は特殊な耐熱合金(TZM  : T
iZr−Mo合金)で形成しなければならなくなる。し
かし、この合金は、400℃以上では気化するため、炉
中を不活性ガス雰囲気にしなければならない等の問題が
あり、処理に時間がかかる。
Since such temperatures are often over 1000°C,
The material of the chuck part is a special heat-resistant alloy (TZM: T
iZr-Mo alloy). However, since this alloy vaporizes at temperatures above 400° C., there are problems such as the need to create an inert gas atmosphere in the furnace, which takes time to process.

ストレッチの際の加熱により、押出材は塑性変形可能に
なると共にその芯材は再結晶が進行し、ある程度、等粗
晶になり、二次加工性が向上する。
By heating during stretching, the extruded material becomes plastically deformable, and the core material undergoes recrystallization, becoming homocoarse to some extent, and improving secondary workability.

等粗晶化を更に促進するには、ストレッチ後、除荷した
後、押出材をチャック部6に保持したまま、インダクシ
ョンヒータ7を継続使用して、再結晶化温度に保持すれ
ばよい。保持温度が1000°C以上と高いと、押出材
を水平に支持した状態ではクリープ強度の低下によりた
わみによる曲がりが生じることがあるので、かかる場合
は押出材を垂直に支持するのが好ましい。もっとも、等
粗晶化熱処理はストレッチ時の熱処理とは別に行っても
よい。
To further promote homocoarse crystallization, after stretching and unloading, the extruded material may be held in the chuck portion 6 and the induction heater 7 may be continuously used to maintain it at the recrystallization temperature. If the holding temperature is as high as 1000°C or higher, the extruded material may bend due to deflection due to a decrease in creep strength if it is supported horizontally, so in such a case, it is preferable to support the extruded material vertically. However, the homocoarse crystallization heat treatment may be performed separately from the heat treatment during stretching.

例えば、矯正後の押出材の複数本を加熱炉に寝かせて装
入し、所定の温度に保持すればよい。
For example, a plurality of straightened extruded materials may be placed in a heating furnace and maintained at a predetermined temperature.

次に、具体的実施例を掲げる。Next, specific examples are listed.

(1)芯材として、N含有量が50原子%のA/  T
i合金を用い、外皮材には5US316材を用いて複合
ビレットを製作した。芯材の外径は5oφであり、その
外周面にアルミナ層(厚み0.5+nm)を形成し、外
径67φの外皮材中に真空封入した。尚、比較のため、
アルミナ層の代りに、共晶反応防止用のCrメツキ(層
厚50μ蒙)を芯材表面に被着した同寸法の複合ビレッ
トも製作した。
(1) A/T with a N content of 50 at% as a core material
A composite billet was manufactured using i alloy and 5US316 material for the outer skin material. The outer diameter of the core material was 5oφ, and an alumina layer (thickness: 0.5+nm) was formed on the outer circumferential surface of the core material, and the core material was vacuum-sealed into an outer skin material having an outer diameter of 67φ. For comparison,
In place of the alumina layer, a composite billet of the same size was also produced in which a Cr plating (layer thickness: 50 μm) was applied to the surface of the core material to prevent the eutectic reaction.

(2)  (1)の複合ビレットを1200°Cに加熱
し、押出比5、歪速度1s−1で押出した。押出状態は
実施例、比較例とも良好であった。押出材には両者とも
1m当り30〜50閣の曲がりが発生した。
(2) The composite billet of (1) was heated to 1200°C and extruded at an extrusion ratio of 5 and a strain rate of 1 s-1. The extrusion conditions were good in both Examples and Comparative Examples. In both cases, the extruded materials were bent at a rate of 30 to 50 degrees per meter.

(3)実施例、比較例の押出材を第2図の要領で引張装
置のチャック部(材質5US316)に取付け、インダ
クションヒータを用いて30分間で1000″Cまで加
熱した後、1時間保持し、空冷後、断面を観察した。そ
の結果、実施例のビレット芯材にはクラックの発生は認
められなかったが、比較例ではクラックが発生していた
(3) The extruded materials of Examples and Comparative Examples were attached to the chuck part (Material 5US316) of a tensioning device as shown in Fig. 2, heated to 1000''C for 30 minutes using an induction heater, and then held for 1 hour. After air cooling, the cross section was observed. As a result, no cracks were observed in the billet core material of the example, but cracks were found in the comparative example.

(4)次に、実施例の押出材を(3)と同様にして10
00°Cに加熱した後、同温度で1.5時間ストレッチ
を行った。その結果、曲がりは1m当り1m以下となっ
た。
(4) Next, the extruded material of the example was made in the same manner as in (3) to give 10
After heating to 00°C, stretching was performed at the same temperature for 1.5 hours. As a result, the bending was less than 1 m per 1 m.

(5)また、実施例の押出材を(4)と同様にしてスト
レッチした後、除荷し、900°Cに降温後10時間保
持し、冷却した。断面観察したところ、芯材の結晶粒は
等粗晶となっており、平均粒径は10μ■であった。ま
た、曲がり量は1m当り1■以下であった。
(5) In addition, the extruded material of the example was stretched in the same manner as in (4), then unloaded, and after the temperature was lowered to 900°C, it was maintained for 10 hours and cooled. When the cross section was observed, the crystal grains of the core material were homocoarse crystals, and the average grain size was 10 μm. Further, the amount of bending was less than 1 inch per meter.

(6)また、実施例の押出材を(4)と同様にしてスト
レッチした後、除荷し、更に1000°Cで1.5時間
保持したところ、芯材の結晶粒は平均粒径20μ論の等
粗晶となっていた。また、曲がり量は1m当り2mm程
度であった。尚、曲がり量の増加は、等粗晶化の高温保
持中に生じたたわみが原因と考えられる。
(6) In addition, after stretching the extruded material of the example in the same manner as in (4), unloading it and further holding it at 1000°C for 1.5 hours, the average grain size of the core material was 20 μm. It was a coarse crystal. Moreover, the amount of bending was about 2 mm per 1 m. Incidentally, the increase in the amount of bending is considered to be caused by the deflection that occurred during high-temperature holding during isocoarse crystallization.

(発明の効果) 以上説明した通り、本発明の難加工材の熱間押出矯正方
法は、複合ビレットの芯材と外皮材との間に断熱層を介
在させたので、断熱層の断熱作用により難加工材の芯材
の温度が低下しにくくなり、外皮材を薄肉化することが
でき、歩留りが向上する。また、芯材と外皮材とが非接
触状態となるため、共晶反応による溶融を防止しうる。
(Effects of the Invention) As explained above, in the hot extrusion straightening method of difficult-to-process materials of the present invention, since a heat insulating layer is interposed between the core material and the outer skin material of the composite billet, the heat insulating effect of the heat insulating layer is effective. The temperature of the core material, which is a difficult-to-process material, is less likely to drop, the outer skin material can be made thinner, and the yield is improved. Furthermore, since the core material and the outer skin material are in a non-contact state, melting due to a eutectic reaction can be prevented.

また、押出材の芯材と外皮材との間にも断熱層が介在す
ることになるため、該断熱層が熱的緩衝材として作用し
、外表面から急速加熱することができる。このため、誘
導加熱を行うことが可能となり、簡単な設備で矯正時の
加熱を短時間で行うことができ、熱エネルギーのロスも
少なくて済む。また、押出材の両端部は加熱されないの
で、該端部を把持するチャック部には高温耐熱性は必要
でないため、通常の引張装置を使用することができる。
Further, since a heat insulating layer is also interposed between the core material and the outer skin material of the extruded material, the heat insulating layer acts as a thermal buffer material, and rapid heating can be performed from the outer surface. Therefore, induction heating can be performed, and heating during straightening can be performed in a short time with simple equipment, and loss of thermal energy can be reduced. Further, since both ends of the extruded material are not heated, the chuck portion that grips the ends does not need to be resistant to high temperatures, so a normal tensioning device can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る複合ビレットの断面図、第2図は
押出材の曲がり矯正要領を示す断面説明図、第3図は従
来の複合ビレットの断面図を示す。 1・・・難加工材、2・・・外皮材、3・・・断熱層、
5・・・押出材、 7・・・インダクションヒータ。
FIG. 1 is a cross-sectional view of a composite billet according to the present invention, FIG. 2 is a cross-sectional explanatory view showing the procedure for straightening the bending of an extruded material, and FIG. 3 is a cross-sectional view of a conventional composite billet. 1... Difficult-to-process material, 2... Outer skin material, 3... Heat insulation layer,
5... Extruded material, 7... Induction heater.

Claims (1)

【特許請求の範囲】[Claims] (1)常温では加工困難な難加工材の外側を断熱層を介
して前記難加工材よりも加工性に優れた外皮材で被覆し
た複合ビレットを加熱して熱間押出した後、押出材の両
端部を把持し、その間を誘導加熱すると共に引張り、押
出材の曲がりを矯正することを特徴とする難加工材の熱
間押出矯正方法。
(1) After heating and hot extruding a composite billet in which the outside of a difficult-to-process material that is difficult to process at room temperature is covered with a skin material that has better workability than the difficult-to-process material through a heat insulating layer, A hot extrusion straightening method for a difficult-to-process material, which comprises gripping both ends and applying induction heating and pulling between the ends to straighten the bend of the extruded material.
JP26152690A 1990-09-28 1990-09-28 Method for correcting hard-to-work material by hot extrusion Pending JPH04138816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26152690A JPH04138816A (en) 1990-09-28 1990-09-28 Method for correcting hard-to-work material by hot extrusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26152690A JPH04138816A (en) 1990-09-28 1990-09-28 Method for correcting hard-to-work material by hot extrusion

Publications (1)

Publication Number Publication Date
JPH04138816A true JPH04138816A (en) 1992-05-13

Family

ID=17363125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26152690A Pending JPH04138816A (en) 1990-09-28 1990-09-28 Method for correcting hard-to-work material by hot extrusion

Country Status (1)

Country Link
JP (1) JPH04138816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361477A (en) * 1994-03-10 1994-11-08 The United States Of America As Represented By The Secretary Of The Air Force Controlled dwell extrusion of difficult-to-work alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361477A (en) * 1994-03-10 1994-11-08 The United States Of America As Represented By The Secretary Of The Air Force Controlled dwell extrusion of difficult-to-work alloys

Similar Documents

Publication Publication Date Title
JPS61186462A (en) Production of seamless pipe
CN112845654B (en) Preparation method of large-size titanium and titanium alloy seamless pipe
US2653494A (en) Method of forging metals
JP4808835B2 (en) Cathode wire filament for X-ray tube applications
JPH04138816A (en) Method for correcting hard-to-work material by hot extrusion
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JPH0788586A (en) Hot upset forging method
JPS5910522B2 (en) copper coated aluminum wire
JP2002302727A (en) Electroconductive, heat-resistant aluminum alloy wire and production method therefor
JPS5822366A (en) Preparation of zirconium base alloy
JPS59185766A (en) Manufacture of superelastic ni-ti alloy
JPH03271351A (en) Heat treatment for corson alloy
JP2599442B2 (en) Method for producing Pt / Mo clad wire
JP2510055B2 (en) Manufacturing method of heater material with excellent oxidation resistance
JPS60196242A (en) Hollow forging method of large-diameter pipe while preventing cooling of inside surface
JP2743132B2 (en) Wire rod manufacturing method and annealing apparatus
JPS6036984A (en) Nuclear reactor fuel coated pipe and manufacture thereof
JP4447982B2 (en) Aluminum material with excellent ductility
JPS59191213A (en) Method of producing compound composite superconductive conductor
JPH101763A (en) Production of nickel-titanium alloy material
JPH0481217A (en) Method for hot extruding hard-to-work material
JPH06287725A (en) Method for heat-treating al-mg-si aluminum alloy extruded material
JPH0114993B2 (en)
JPH0729201B2 (en) Aluminum heat exchanger manufacturing method
JPS6331543B2 (en)