JPH03271351A - Heat treatment for corson alloy - Google Patents

Heat treatment for corson alloy

Info

Publication number
JPH03271351A
JPH03271351A JP7124990A JP7124990A JPH03271351A JP H03271351 A JPH03271351 A JP H03271351A JP 7124990 A JP7124990 A JP 7124990A JP 7124990 A JP7124990 A JP 7124990A JP H03271351 A JPH03271351 A JP H03271351A
Authority
JP
Japan
Prior art keywords
corson alloy
alloy
cooling
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7124990A
Other languages
Japanese (ja)
Other versions
JP2862942B2 (en
Inventor
Koichi Kato
宏一 加藤
Yoshimasa Oyama
大山 好正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7124990A priority Critical patent/JP2862942B2/en
Publication of JPH03271351A publication Critical patent/JPH03271351A/en
Application granted granted Critical
Publication of JP2862942B2 publication Critical patent/JP2862942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To prevent cracking in the undermentioned alloy and to carry out heat treatment in high product yield by subjecting a Corson alloy consisting of Ni, Si, and Cu to heating or cooling in a specific temp. region so that specific tensile thermal strain is generated. CONSTITUTION:A Corson alloy which has a composition consisting of, by weight, 1.5-4.0% Ni, 0.35-1.0% Si, and the balance Cu with inevitable impurities and further containing, if necessary, 0.05-1.0% of at least one metal among Zr, Cr, and Sn is heated, worked, and cooled, by which overhead power transmission wires, spring materials, etc., can be formed. At the time of heating or cooling the above Corson alloy, heating or cooling is carried out at 400-800 deg.C so that the tensile thermal strain of the above Corson alloy is regulated to <=1X10<-4>. By this method, the cracking of the above Corson alloy at the time of heating or cooling can be prevented, and cost reduction as well as the improvement of product yield can be attained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はコルソン合金の熱処理方法に関し、更に詳しく
は、コルソン合金の熱処理時における材料割れを防止す
るに有効なコルソン合金の熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for heat treating a Corson alloy, and more particularly to a method for heat treating a Corson alloy that is effective in preventing material cracking during heat treatment of the Corson alloy.

(従来の技術) 米国ではテンバロイとも呼ばれているコルソン合金は、
その標準的組成がNi 4重量%、  Si 1重量%
、残部がCuから成り、靭性に富み、導電率が純銅の約
40%の値を有する合金であって、架空送電線、耐摩耗
性が要求されるトロリー線。
(Conventional technology) Corson alloy, also called Tenvalloy in the United States,
Its standard composition is 4% by weight of Ni and 1% by weight of Si.
, the balance is made of Cu, and the alloy is rich in toughness and has an electrical conductivity of about 40% of that of pure copper, and is used for overhead power transmission lines and trolley wires that require wear resistance.

リン青銅に代わるバネ材などの用途に使用されている。It is used for applications such as spring materials as an alternative to phosphor bronze.

この合金から上記した各種部材を製造する際には、所定
組成のコルソン合金の鋳塊を所定温度に保持されている
加熱炉内に導入して、前記鋳塊が炉温度で均熱した時点
で炉から取り出して加工するか、または前記均熱温度に
保持しながら加工する。ついで、加工後にあっては、炉
冷、空冷、水冷などの方法でその加工品を冷却する。
When manufacturing the above-mentioned various parts from this alloy, an ingot of Corson alloy of a predetermined composition is introduced into a heating furnace maintained at a predetermined temperature, and when the ingot is soaked at the furnace temperature, It is processed after being removed from the furnace, or it is processed while being maintained at the soaking temperature. After processing, the processed product is cooled by furnace cooling, air cooling, water cooling, or the like.

ところで、上記したような方法で、コルソン合金の鋳塊
を加熱または冷却した場合、合金塊への熱伝導状態は非
定常熱伝導となる。その結果、合金塊の表面部分と中心
部分との間では温度差が発生し、そのときの熱膨張量の
差異に基づいて、表面部分と中心部分の間に熱応力、熱
歪みが発生する。そして、この熱応力量、熱歪み量が合
金塊それ自体の強度よりも大きくなると、合金塊に割れ
が発生する。
By the way, when a Corson alloy ingot is heated or cooled by the method described above, the state of heat conduction to the alloy ingot is unsteady heat conduction. As a result, a temperature difference occurs between the surface portion and the center portion of the alloy ingot, and thermal stress and thermal strain occur between the surface portion and the center portion based on the difference in the amount of thermal expansion at that time. When the amount of thermal stress and thermal strain becomes larger than the strength of the alloy ingot itself, cracks occur in the alloy ingot.

このような割れの発生が起こると、得られた製品は不良
品となり、製品歩留りの低下、したがってコストアップ
を招く。
When such cracking occurs, the resulting product becomes a defective product, leading to a decrease in product yield and, therefore, an increase in cost.

本発明は、上記したような問題を解決して、加熱または
冷却時におけるコルソン合金の割れを防止する熱処理方
法の提供を目的とする。
The present invention aims to solve the above-mentioned problems and provide a heat treatment method that prevents Corson alloy from cracking during heating or cooling.

(課題を解決するための手段・作用) 前記したように、加熱または冷却時におけるコルソン合
金の割れは、このときに発生する熱応力や熱歪みの値が
コルソン合金の強度を超えたときに発生する。
(Means and effects for solving the problem) As mentioned above, cracking of Corson alloy during heating or cooling occurs when the value of thermal stress or thermal strain generated at this time exceeds the strength of Corson alloy. do.

コルソン合金の強度は加熱または冷却時の温度によって
変化するが、その状態は第5図で示したような曲線を描
く。すなわち、第5図から明らかなように、コルソン合
金は400〜800°Cの温度域で脆性となり、破断し
やすい状態にある。
The strength of Corson alloy changes depending on the temperature during heating or cooling, and its state follows a curve as shown in FIG. That is, as is clear from FIG. 5, the Corson alloy becomes brittle in the temperature range of 400 to 800°C and is in a state where it is easily broken.

したがって、コルソン合金の割れを防ぐためには、40
0〜800℃の温度域における熱応力。
Therefore, in order to prevent Corson alloy from cracking, 40
Thermal stress in the temperature range of 0 to 800°C.

熱歪みが破断強度を超えないように熱処理することが必
要になる。
It is necessary to perform heat treatment so that the thermal strain does not exceed the breaking strength.

また一般に、金属においては、圧縮よりも引張りに対し
てその強度が小さい。
Additionally, metals generally have lower strength in tension than in compression.

このようなことから、本発明者らは、コルソン合金の加
熱または冷却時の温度と、その温度における引張り熱歪
みとの関係を調べた。その結果、400〜800℃の温
度域において、コルソン合金の引張り熱歪みが1X10
−’以下となるようにコルソン合金を熱処理すると、割
れの発生が著減するとの事実を見出し、本発明方法を開
発するに到った。
For this reason, the present inventors investigated the relationship between the temperature during heating or cooling of the Corson alloy and the tensile thermal strain at that temperature. As a result, in the temperature range of 400 to 800℃, the tensile thermal strain of Corson alloy is 1X10
It was discovered that the occurrence of cracks is significantly reduced when a Corson alloy is heat-treated to a temperature of -' or less, and the method of the present invention was developed.

すなわち、本発明のコルソン合金の熱処理方法は、Ni
:1.5〜4.0重量%、Si:0.35〜1.0重量
%、残部がCuおよび不可避的不純物から成るコルソン
合金を加熱または冷却する際に、400〜800℃の温
度域では、前記コルソン合金の引張り熱歪みが1X10
−’以下となるように前記コルソン合金を加熱または冷
却することを特徴とする。
That is, the heat treatment method for Corson alloy of the present invention
: 1.5 to 4.0% by weight, Si: 0.35 to 1.0% by weight, and the balance is Cu and unavoidable impurities. , the tensile thermal strain of the Corson alloy is 1X10
-' or less, the Corson alloy is heated or cooled.

本発明方法を適用するコルソン合金の組成は格別限定さ
れるものではなく、上記した組成の外にZ r、Cr、
 S nの1種または2種以上が0.05〜1.0重量
%配合されているものであってもよい。
The composition of the Corson alloy to which the method of the present invention is applied is not particularly limited, and in addition to the above composition, Zr, Cr,
One or more types of Sn may be blended in an amount of 0.05 to 1.0% by weight.

本発明においては、加熱または冷却時の400〜800
℃の温度域において、加熱または冷却されているコルソ
ン合金の引張り熱歪みが1X10−’以下となるように
熱処理が施される。
In the present invention, 400 to 800 during heating or cooling
In the temperature range of 0.degree. C., heat treatment is performed so that the tensile thermal strain of the Corson alloy being heated or cooled is 1.times.10-' or less.

400〜800℃の温度域における引張り熱歪みが1X
1O−’より大きくなるような熱処理の場合には、発生
する熱応力はコルソン合金の破断強度より大きくなって
しまって割れの発生が起こってしまう。
Tensile thermal strain in the temperature range of 400-800℃ is 1X
In the case of heat treatment that increases the stress by more than 1 O-', the generated thermal stress becomes greater than the breaking strength of the Corson alloy, resulting in cracking.

このような熱処理方法としては、コルソン合金の表面部
分と中央部分との温度差が35℃以下となるように管理
することが好ましい。
As for such a heat treatment method, it is preferable to manage the temperature difference between the surface portion and the center portion of the Corson alloy to be 35° C. or less.

例えば、加熱の場合、コルソン合金の組成や鋳塊の大き
さによっても異なってくるが、400°Cの均熱状態に
ある加熱炉にコルソン合金を導入し、コルソン合金が4
00℃で均熱したのちは、所定の昇温速度で徐々に炉内
温度を上昇せしめ、コルンン合金への定常熱伝導を図り
ながら表面部分と中央部分の温度差を小さくするように
熱処理すればよい。
For example, in the case of heating, although it depends on the composition of the Corson alloy and the size of the ingot, the Corson alloy is introduced into a heating furnace that is soaked at 400°C, and the Corson alloy is heated to 400°C.
After soaking at 00℃, the temperature inside the furnace is gradually raised at a predetermined heating rate, and heat treatment is performed to reduce the temperature difference between the surface and center areas while maintaining steady heat conduction to the Cornun alloy. good.

また、加工後の冷却時においても、加熱時の場合と同様
に表面部分と中央部分の温度差が小さくなるように炉内
で徐冷すればよい。
Also, during cooling after processing, the material may be slowly cooled in a furnace so that the temperature difference between the surface portion and the center portion becomes small, similar to the case during heating.

(発明の実施例) 長さ1000mm、幅500mm、厚み100+nmの
コルソン合金の鋳塊を用意した。
(Example of the Invention) A Corson alloy ingot having a length of 1000 mm, a width of 500 mm, and a thickness of 100+ nm was prepared.

この鋳塊を400℃の加熱炉内に導入した。鋳塊が40
0℃で均熱化したのちは、50°C/hrの昇温速度で
800℃まで加熱した。このときの鋳塊の表面部分の温
度変化を一△−として、また中心部分の温度変化を・・
・△・・・とじて第1図に示した。
This ingot was introduced into a heating furnace at 400°C. 40 ingots
After soaking at 0°C, it was heated to 800°C at a temperature increase rate of 50°C/hr. Let the temperature change at the surface of the ingot at this time be 1△-, and the temperature change at the center...
・△...shown in Figure 1.

比較のため、800℃の加熱炉内に前記鋳塊を直接導入
し、そのときの鋳塊の表面部分の温度変化を一〇−とじ
て、また中心部分の温度変化を・・・○・・・とじて第
1図に併記した。
For comparison, the ingot was directly introduced into a heating furnace at 800°C, and the temperature change at the surface of the ingot at that time was 10-, and the temperature change at the center was...・It is also shown in Figure 1.

また、鋳塊の昇温過程における表面部分の温度と中心部
分の温度との差を測定し、その経時的変化を第2図に示
した。更に、鋳塊の中心部分の温度と上記温度差との関
係を第3図に示した。第2図および第3図において、−
△−印は実施例の場合を、−〇−印は比較例の場合をそ
れぞれ示す。
In addition, the difference between the temperature of the surface portion and the temperature of the center portion during the temperature rising process of the ingot was measured, and the change over time is shown in Fig. 2. Further, FIG. 3 shows the relationship between the temperature at the center of the ingot and the above temperature difference. In FIGS. 2 and 3, -
The △- mark indicates the case of the example, and the -〇- mark indicates the case of the comparative example.

また、鋳塊の中心部分の各温度において鋳塊に発生した
引張り熱歪み(ε)を測定し、その結果を第4図に示し
た。図中、−△−印は実施例の場合、−〇−印は比較例
の場合を示す。
In addition, the tensile thermal strain (ε) generated in the ingot at each temperature at the center of the ingot was measured, and the results are shown in FIG. In the figure, the -△- mark indicates the example, and the -〇- mark indicates the comparative example.

以上のような態様でコルソン合金の鋳塊を800℃まで
加熱したのち、つぎに、表面部分と中心部分の温度差が
30℃以内となるよケに鋳塊を炉冷した。
After the Corson alloy ingot was heated to 800° C. in the manner described above, the ingot was cooled in a furnace so that the temperature difference between the surface portion and the center portion was within 30° C.

このような熱処理が施された鋳塊につき、その表面と内
部における割れ発生の状態を目視観察した。
The ingots subjected to such heat treatment were visually observed for the occurrence of cracks on the surface and inside.

その結果、実施例条件によるものには表面、内部のいず
れにも材料割れは認められなかったが、しかし比較例条
件によるものには表面、内部のいずれにも材料割れが認
められ、不良品になってしまった。
As a result, no material cracking was observed on either the surface or inside of the product under the example conditions, but material cracking was observed both on the surface and inside of the product under the comparative example conditions, resulting in defective products. It is had.

(発明の効果) 以上の説明で明らかなように、本発明方法は、コルソン
合金が最も強度低下する400〜800℃の温度域にお
いて、その引張り熱歪みを1X10−’以下となるよう
に熱処理を行うので、コルソン合金の割れを防止するこ
とができ、製品歩留りの向上、更にはコストダウンに資
すること大である。
(Effects of the Invention) As is clear from the above explanation, the method of the present invention performs heat treatment to reduce the tensile thermal strain of Corson alloy to 1X10-' or less in the temperature range of 400 to 800°C, where the strength of Corson alloy decreases the most. By doing so, cracking of the Corson alloy can be prevented, which greatly contributes to improving product yield and further reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコルソン合金の鋳塊を加熱炉内に導入したとき
の経時的な温度変化を示すグラフ、第2図は鋳塊の表面
部分と中心部分の温度差の経時変化を示すグラフ、第3
図は中心部分の温度に対する表面と中心の温度差の関係
を示すグラフ、第4図は中心部分の温度と鋳塊に発生す
る引張り熱歪みとの関係を示すグラフ、第5図はコルソ
ン合金の処理温度と単軸破断歪みとの関係を示すグラフ
である。 第2図
Figure 1 is a graph showing the temperature change over time when a Corson alloy ingot is introduced into the heating furnace. Figure 2 is a graph showing the change in temperature difference between the surface and center of the ingot over time. 3
The figure is a graph showing the relationship between the temperature at the center and the temperature difference between the surface and the center, Figure 4 is a graph showing the relationship between the temperature at the center and the tensile thermal strain occurring in the ingot, and Figure 5 is a graph showing the relationship between the temperature at the center and the tensile thermal strain occurring in the ingot. It is a graph showing the relationship between processing temperature and uniaxial fracture strain. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)Ni:1.5〜4.0重量%、Si:0.35〜
1.0重量%、残部がCuおよび不可避的不純物から成
るコルソン合金を加熱または冷却する際に、400〜8
00℃の温度域では、前記コルソン合金の引張り熱歪み
が1×10^−^4以下となるように前記コルソン合金
を加熱または冷却することを特徴とするコルソン合金の
熱処理方法。
(1) Ni: 1.5~4.0% by weight, Si: 0.35~
When heating or cooling a Corson alloy consisting of 1.0% by weight, the balance being Cu and unavoidable impurities, 400 to 8
A method for heat treating a Corson alloy, characterized in that the Corson alloy is heated or cooled so that the tensile thermal strain of the Corson alloy becomes 1×10^-^4 or less in a temperature range of 00°C.
(2)前記コルソン合金が、Ni:1.5〜4.0重量
%、Si:0.35〜1.0重量%、Zr、Cr、Sn
の群から選ばれる少なくとも1種の金属0.05〜1.
0重量%、残部がCuおよび不可避的不純物から成る請
求項1に記載のコルソン合金の熱処理方法
(2) The Corson alloy contains Ni: 1.5 to 4.0% by weight, Si: 0.35 to 1.0% by weight, Zr, Cr, Sn
At least one metal selected from the group of 0.05 to 1.
The method for heat treating a Corson alloy according to claim 1, wherein the heat treatment method is 0% by weight and the remainder is Cu and unavoidable impurities.
JP7124990A 1990-03-20 1990-03-20 Heat treatment method of Corson alloy Expired - Fee Related JP2862942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7124990A JP2862942B2 (en) 1990-03-20 1990-03-20 Heat treatment method of Corson alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7124990A JP2862942B2 (en) 1990-03-20 1990-03-20 Heat treatment method of Corson alloy

Publications (2)

Publication Number Publication Date
JPH03271351A true JPH03271351A (en) 1991-12-03
JP2862942B2 JP2862942B2 (en) 1999-03-03

Family

ID=13455240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7124990A Expired - Fee Related JP2862942B2 (en) 1990-03-20 1990-03-20 Heat treatment method of Corson alloy

Country Status (1)

Country Link
JP (1) JP2862942B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8070893B2 (en) 2005-03-31 2011-12-06 Jx Nippon Mining & Metals Corporation Cu—Ni—Si—Co—Cr copper alloy for electronic materials and method for manufacturing same
US8317948B2 (en) 2005-03-24 2012-11-27 Jx Nippon Mining & Metals Corporation Copper alloy for electronic materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270423B (en) * 2007-03-19 2010-10-06 日矿金属加工株式会社 Cu-Ni-Si based copper alloy for electronic material
JP4418028B2 (en) 2007-03-30 2010-02-17 日鉱金属株式会社 Cu-Ni-Si alloy for electronic materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8317948B2 (en) 2005-03-24 2012-11-27 Jx Nippon Mining & Metals Corporation Copper alloy for electronic materials
US8070893B2 (en) 2005-03-31 2011-12-06 Jx Nippon Mining & Metals Corporation Cu—Ni—Si—Co—Cr copper alloy for electronic materials and method for manufacturing same

Also Published As

Publication number Publication date
JP2862942B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
EP0902096B1 (en) Method for manufacturing copper alloy wire and copper alloy wire
CN111020380B (en) Alloy steel core wire for overhead conductor and preparation method thereof
US4150978A (en) High performance bearing steels
US4594116A (en) Method for manufacturing high strength copper alloy wire
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
JPS6132386B2 (en)
JPH03271351A (en) Heat treatment for corson alloy
CN109136634B (en) High-performance copper alloy material and preparation method thereof
JPS5893860A (en) Manufacture of high strength copper alloy with high electric conductivity
US3019102A (en) Copper-zirconium-hafnium alloys
US4727002A (en) High strength copper alloy wire
KR960001714B1 (en) Method of casting and mold making
JPH0718355A (en) Copper alloy for electronic appliance and its production
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
CN105908023A (en) Aluminum alloy conductor material and preparation method thereof
KR100395588B1 (en) Shape memory alloy in Ti-Ni-Cu-Mo
JPS63157843A (en) Manufacture of aluminum-alloy conductor
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture
CN112760521B (en) Beryllium-copper alloy and preparation method thereof
KR101317274B1 (en) Amorphous matrix composites modified from titanium alloys and method of manufactruing the same
JPS61288036A (en) Copper alloy for lead frame and its production
JPS63103055A (en) Manufacture of thin iron-copper alloy strip for lead frame
JPS6053739B2 (en) Method of manufacturing conductive wire
JPS60155657A (en) Production of ti-ni superelastic alloy
JP4019892B2 (en) Manufacturing method of electrode wire for wire electric discharge machining and electrode wire for wire electric discharge machining manufactured using the manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees