JPH04137762A - Image sensor - Google Patents

Image sensor

Info

Publication number
JPH04137762A
JPH04137762A JP2260900A JP26090090A JPH04137762A JP H04137762 A JPH04137762 A JP H04137762A JP 2260900 A JP2260900 A JP 2260900A JP 26090090 A JP26090090 A JP 26090090A JP H04137762 A JPH04137762 A JP H04137762A
Authority
JP
Japan
Prior art keywords
fet
access
amplification
potential
reset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2260900A
Other languages
Japanese (ja)
Inventor
Kazufumi Yamaguchi
山口 和文
Yasunaga Yamamoto
泰永 山本
Akira Kadoma
門間 明
Tatsushizu Okamoto
龍鎮 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2260900A priority Critical patent/JPH04137762A/en
Publication of JPH04137762A publication Critical patent/JPH04137762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To make each picture element simple-structured for reducing an area of the picture element by constituting the picture element with a photo diode, a first FET for amplification and access and a second FET for reset, with a P well diffusion layer of the first FET and a diffusion layer of the photo diode being continuous. CONSTITUTION:By letting second FET's 3a-3d conduct at a reset pulse, the potential of an anode of photo diodes 1a-1d and the potential of a P-well to which terminals are connected in common are set to a reset voltage Vrs. Afterwards, the anode potential of the photo diodes 1a-1d increases due to the discharging by photoelectric current, causing a threshold voltage of first FET's 2a-2d to decrease due to a substrate bias effect. A signal current which corresponds to the anode potential of the photo diodes 1a-1d is led to an image signal output line 7 by an access pulse applied to a gate of the first FET's 2a-2d. Since the photo diodes 1a-1d and the FET's 2a-2d for amplification are connected through semiconductor diffusion layers, a picture element can be made compact.

Description

【発明の詳細な説明】 産業上の利用分野 情報処理機器の進展にともなって、その入力装置として
イメージセンサのニーズが高まっていa本発明は原稿情
報を高解像且つ高速で読み取ることを可能にしたイメー
ジセンサに関するものであ従来の技術 イメージセンサはSi結晶上に形成された光電変換素子
のアレイと走査回路からなり、空間的な光量の分布を時
系列の電気信号に変換するデバイスであり、集積回路技
術によって作られも 方式的にはCCDイメージセンサ
、MOSイメージセンサが開発 実用化されていも CCDイメージセンサは光電変換素子としてのフォトダ
イオード、転送ゲート、転送CCDレジス久 出力アン
プ等からなり、フォトダイオードで蓄積された光信号電
荷が転送ゲートによってCCDレジスタに移された紘 
クロックパルスによって出力アンプに転送され 出力ア
ンプによって信号電荷を電圧に変換 増幅した抵 画像
信号を得ていも MOSイメージセンサは少なくとも光電変換素子として
のフォトダイオード、アクセス用F E T。
[Detailed Description of the Invention] Industrial Application Fields With the advancement of information processing equipment, the need for image sensors as input devices has increased.The present invention makes it possible to read document information at high resolution and high speed. Conventional technology An image sensor is a device that consists of an array of photoelectric conversion elements formed on a Si crystal and a scanning circuit, and converts the spatial distribution of light amount into a time-series electrical signal. Although manufactured using integrated circuit technology, CCD image sensors and MOS image sensors have been developed.Even though they have been put into practical use, CCD image sensors consist of a photodiode as a photoelectric conversion element, a transfer gate, a transfer CCD register, an output amplifier, etc. The optical signal charge accumulated in the photodiode is transferred to the CCD register by the transfer gate.
The signal charge is transferred to the output amplifier by the clock pulse, and the output amplifier converts the signal charge into a voltage.

走査用シフトレジスタからなり、蓄積信号電荷をアクセ
ス用FETを介して順次出力ラインに導き、画像信号を
得るものである。昨今、感度またはS/N向上のためへ
 第2図に示すようにフォトダイオード1(la、 l
b〜ld)、増幅用FET4 (4a、4b〜4d)、
アクセス用FET5 (5a、 5b〜5d)、 リセ
ット用FET3  (3a、3b〜3d)および走査用
シフトレジスタ9からなる増幅型MOSイメージセンサ
が開発されていも 光電流による放電後のフォトダイオ
ードの残留電圧を増幅用FET2のゲートに受(す、順
次アクセス用FET5、 リセット用FET導通させる
ことによって時系列の画像信号を得ていも こへ増幅型
MOSイメージセンサの画素の断面構造を第3図に示す
。フォトダイオード以外の占有面積が大きく素子間の結
線も複雑であム デジタル複写風 ファクシミリ等のイメージセンサを応
用する機器か収 読み取りの高解像度化の要求が強く、
そのために画素面積の縮小と高SZN化が求められてい
も 発明が解決しようとする課題 増幅型MOSイメージセンサは高感皮  高S/Nであ
る力丈 各画素がフォトダイオードと3個のFETで構
成され 素子数が多いと同時に素子間の結線も多く、そ
のために画素構造が複雑で画素面積が大きくなム これ
は特に高解像度化の障害となると同時にチップ面積が大
きくなりチップコストが高くなム 本発明は上記課題を解決するイメージセンサを提供する
ことを目的とすム 課題を解決するための手段 各画素をフォトダイオ−K 増幅兼アクセス用の第1の
FET、リセット用の第2のFETで構成し 第1のF
ETのPウェル拡散層とフォトダイオードの拡散層を連
続させも 第2のFETはフォトダイオードとリセット
電源(電圧Vrs)の間に接続し アクセスパルスは第
1のFETのゲート電極に印加す4 第1のFETのソ
ースは画素間で共通に接続して画像信号出力ラインとす
ム 出力ラインは一定電位(Vsb)として画像信号を
電流の形態で出力させム Pウェルから第1のFETへ
の漏れ電流を阻止して正常な動作をさせるためにVr 
s<Vs bでなければならな1.%作用 リセットパルスで第2のFETを導通させることによっ
てフォトダイオードのアノードおよび共通に接続された
Pウェルの電位をリセット電圧Vrsに設定すム その
後、光電流による放電のためにフォトダイオードのアノ
ード電位が上昇しその結果 第1のFETのスレショー
ルド電圧が基板バイアス効果によって減少すa 第1の
FETのゲートに加えられたアクセスパルスによってフ
ォトダイオードのアノード電像 つまりPウェルの電位
に対応する信号電流が画像信号出力ラインに導かれも 
本発明によればフォトダイオードと増幅用FETの結線
が半導体の拡散層によって接続されるために画素が一体
化されコンパクトになると同時へ 増幅用FETのゲー
ト電極にアクセスパルスが加えることが可能になり、別
途アクセスFETを設ける必要がな(〜 そのために画
素構造が簡単になり画素面積も削減できも その結果 
高解像度化への対応も可能にな一 実施例 以下、本発明の一実施例を図面を参照しなから説明すも
 第1図は本発明によるイメージセンサの等価回路を示
す。各画素はフォトダイオード1(la、 1b〜1d
)、増幅兼アクセス用FET2  (2a、  2b〜
2d)、 リセットFET3  (3a、 3b〜3d
)で構成されている。フォトダイオードのアノード拡散
層はFET2のPウェル拡散ji  FET3のソース
拡散層に繋がっている。
It consists of a scanning shift register and sequentially guides accumulated signal charges to an output line via an access FET to obtain an image signal. Recently, in order to improve sensitivity or S/N, photodiodes 1 (la, l) are used as shown in Figure 2.
b~ld), amplification FET4 (4a, 4b~4d),
Even if an amplified MOS image sensor consisting of access FET 5 (5a, 5b to 5d), reset FET 3 (3a, 3b to 3d) and scanning shift register 9 has been developed, the residual voltage of the photodiode after discharge by photocurrent A time-series image signal can be obtained by sequentially conducting the access FET 5 and the reset FET. .There is a strong demand for high-resolution reading in equipment that uses image sensors, such as digital copy-like facsimiles, which occupy a large area other than the photodiode, and the wiring between the elements is complicated.
For this purpose, a reduction in pixel area and a high SZN are required, but the problem that the invention aims to solve is that an amplified MOS image sensor has high sensitivity, high S/N, and high strength.Each pixel consists of a photodiode and three FETs. At the same time, the number of elements is large, and there are also many connections between the elements, resulting in a complex pixel structure and large pixel area. An object of the present invention is to provide an image sensor that solves the above-mentioned problems.Means for solving the problemsEach pixel is connected to a photodiode, a first FET for amplification and access, and a second FET for resetting. The first F
Even if the P-well diffusion layer of the ET and the diffusion layer of the photodiode are connected, the second FET is connected between the photodiode and the reset power supply (voltage Vrs), and the access pulse is applied to the gate electrode of the first FET. The source of FET 1 is commonly connected between pixels and serves as an image signal output line.The output line is set at a constant potential (Vsb) to output an image signal in the form of current.Leakage from P well to first FET Vr to block the current and ensure normal operation.
s<Vs b must be satisfied1. The potential of the anode of the photodiode and the commonly connected P-well is set to the reset voltage Vrs by making the second FET conductive with a reset pulse.Then, the anode potential of the photodiode is set to the reset voltage Vrs for discharge by the photocurrent. increases, and as a result, the threshold voltage of the first FET decreases due to the substrate bias effect.a The access pulse applied to the gate of the first FET causes the anode voltage of the photodiode, that is, the signal corresponding to the P-well potential. Even if current is introduced into the image signal output line
According to the present invention, since the photodiode and the amplification FET are connected by a semiconductor diffusion layer, the pixel is integrated and compact, and at the same time, it becomes possible to apply an access pulse to the gate electrode of the amplification FET. , there is no need to provide a separate access FET (~ This simplifies the pixel structure and reduces the pixel area.
One Embodiment That Can Also Be Compatible with Higher Resolutions Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an equivalent circuit of an image sensor according to the present invention. Each pixel has a photodiode 1 (la, 1b to 1d)
), amplification/access FET2 (2a, 2b~
2d), reset FET3 (3a, 3b~3d
). The anode diffusion layer of the photodiode is connected to the P-well diffusion layer of FET2 and the source diffusion layer of FET3.

ま、”QFET2のソースは共通に接続して画像信号出
力ライン7とLA FET3のソースは共通に接続して
リセット電圧供給ライン8としてい49は走査用シフト
レジスタであり、スタートパルスS T、  クロック
パルスCKによって動作する。
Well, the sources of QFET2 are connected in common to the image signal output line 7 and the sources of LA FET3 are connected in common to form the reset voltage supply line 8. 49 is a scanning shift register, and the start pulse ST, clock Operates by pulse CK.

6a、 6b〜6eはシフトレジスタ9の並列出力端子
であり、順次 各画素のFET2、FET3のゲート端
子に接続していも 次に 本発明のイメージセンサの動作を説明すも 第4
図は本発明のイメージセンサの動作タイミングチャート
であり、スタート信号ST、クロツク信号CKと共にシ
フトレジスタの並列出力端子6a、 6b〜6eに現わ
れる走査信号Y1、Y2〜Y5および端子7に現われる
画像出力信号電流を示してい4 本発明によるイメージ
センサはリセット時において、フォトダイオードを一定
電圧(Vdd−Vrs)に充電することによって一定電
荷を蓄えた徽 光電流による充電電荷の放電によって生
ずるフォトダイオードの端子電圧の変化を増幅兼アクセ
ス用FETのPウェル電位として受けて増幅画像出力電
流を端子7に得るものであ&  FET2は基本的にソ
ース ドレイン、ゲート、Pウェルからなる4端子素子
と見なすことかで東 ソース電流はゲート電位によって
変調されると同時に Pウェル電位によってもFETの
スレショールド電位が変調されて、その結果ソース電流
が変化す4 Pウェル電位を入力とするソース電流の関
係を第5図に示す。大振幅領域では2次カーブであるが
小振幅領域ではリニアな関係にあると見なすことができ
も 第6図は本発明によるイメージセンサの画素構造を
示す。アクセス信号がFET2のゲートに印加すること
が可能となり、別途アクセス用FETを必要としないこ
と、およびフォトダイオードとウェル拡散層 リセッ)
FETのソースは半導体拡散層で運がっているために相
互結線が不用となること等が本発明の特徴であり、その
結果 画素がコンパクトに形成することが可能になム 
本実施例では基板をN型半導体とし 増幅兼アクセス用
FET2をNチャンネル監 リセットFETをPチャン
ネル型とした場合について示したパ 基板をP型半導体
として、FET2をPチャンネル瓢 FET3をNチャ
ンネル型としても本実施例と同様の効果を得ることがで
きも 発明の効果 本発明により、画素構造が簡単になり画素面積も削減で
きも その結果 安価で高解像度化への対応も可能にな
り、産業上の効果は太きt〜
6a, 6b to 6e are parallel output terminals of the shift register 9, which are sequentially connected to the gate terminals of FET2 and FET3 of each pixel.The operation of the image sensor of the present invention will be explained next.
The figure is an operation timing chart of the image sensor of the present invention, in which scanning signals Y1, Y2 to Y5 appearing at the parallel output terminals 6a, 6b to 6e of the shift register, and an image output signal appearing at the terminal 7 together with the start signal ST and the clock signal CK are shown. 4 The image sensor according to the present invention stores a constant charge by charging the photodiode to a constant voltage (Vdd-Vrs) at the time of reset. The amplified image output current is obtained at terminal 7 by receiving the change in the P-well potential of the amplification/access FET, and FET2 can be basically regarded as a four-terminal element consisting of source, drain, gate, and P-well. Higashi: The source current is modulated by the gate potential, and at the same time the FET threshold potential is also modulated by the P-well potential, resulting in a change in the source current. As shown in the figure. Although the relationship is quadratic in the large amplitude region, it can be considered that the relationship is linear in the small amplitude region. FIG. 6 shows the pixel structure of the image sensor according to the present invention. The access signal can be applied to the gate of FET2, so there is no need for a separate access FET, and the photodiode and well diffusion layer (reset)
A feature of the present invention is that since the FET source is carried by a semiconductor diffusion layer, there is no need for interconnection, and as a result, pixels can be formed compactly.
In this example, the substrate is an N-type semiconductor, the amplification/access FET2 is an N-channel type, and the reset FET is a P-channel type. Effects of the Invention According to the present invention, the pixel structure can be simplified and the pixel area can be reduced. The effect is thick T~

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるイメージセンサの等価回路医 第
2図は従来例による増幅型MO′Sイメージセンサの等
価回路医 第3図は従来例による増幅型MOSイメージ
センサの画素の断面構造医第4図は本発明によるイメー
ジセンサの動作タイミングチャート、第5図はPウェル
電位を入力とするソース電流の関係諷 第6図は本発明
によるイメージセンサの画素構造図であも 1・・・フォトダイオード、 2・・・増幅兼アクセス
用FET、 3・・・リセット用FET、4・・・増幅
用FET、5・・・アクセス用FET、6・・・シフト
レジスタの出力ライン、 7・・画像信号出力ライン、
 8・ ・リセット電源用ライン、 9・・・走査用シ
フトレジスタ。 代理人の氏名 弁理士 小鍜治 明 ほか2名 ζ7 図 第 図
FIG. 1 shows an equivalent circuit diagram of an image sensor according to the present invention. FIG. 2 shows an equivalent circuit diagram of an amplified MO'S image sensor according to a conventional example. FIG. 3 shows a diagram of the cross-sectional structure of a pixel of an amplified MOS image sensor according to a conventional example. Figure 4 is an operation timing chart of the image sensor according to the present invention, Figure 5 is the relationship between the source current with the P well potential as input, and Figure 6 is a pixel structure diagram of the image sensor according to the present invention. Diode, 2... FET for amplification and access, 3... FET for reset, 4... FET for amplification, 5... FET for access, 6... Output line of shift register, 7... Image signal output line,
8. -Reset power supply line, 9...Scanning shift register. Name of agent: Patent attorney Akira Okaji and two others ζ7

Claims (2)

【特許請求の範囲】[Claims] (1)画素がフォトダイオード、増幅用FET、アクセ
ス用FET、リセット用FETからなる増幅型MOSイ
メージセンサにおいて、 フォトダイオードの拡散層を増幅用FETのウェル拡散
層に連続的に形成させ、蓄積光信号電荷をウェル拡散層
の電位として検知することを特徴とするイメージセンサ
(1) In an amplification type MOS image sensor in which the pixel consists of a photodiode, an amplification FET, an access FET, and a reset FET, the diffusion layer of the photodiode is continuously formed in the well diffusion layer of the amplification FET, and the accumulated light is An image sensor characterized by detecting signal charges as a potential of a well diffusion layer.
(2)増幅用FETのゲートにアクセスパルスを印加す
ることによりアクセスFETを除去したことを特徴とす
る請求項(1)のイメージセンサ
(2) The image sensor according to claim (1), wherein the access FET is removed by applying an access pulse to the gate of the amplification FET.
JP2260900A 1990-09-28 1990-09-28 Image sensor Pending JPH04137762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260900A JPH04137762A (en) 1990-09-28 1990-09-28 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260900A JPH04137762A (en) 1990-09-28 1990-09-28 Image sensor

Publications (1)

Publication Number Publication Date
JPH04137762A true JPH04137762A (en) 1992-05-12

Family

ID=17354320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260900A Pending JPH04137762A (en) 1990-09-28 1990-09-28 Image sensor

Country Status (1)

Country Link
JP (1) JPH04137762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563429A (en) * 1994-06-14 1996-10-08 Nikon Corp. Solid state imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563429A (en) * 1994-06-14 1996-10-08 Nikon Corp. Solid state imaging device

Similar Documents

Publication Publication Date Title
US10608101B2 (en) Detection circuit for photo sensor with stacked substrates
US4117514A (en) Solid state imaging device
TWI413241B (en) Solid-state imaging device
US6903768B1 (en) Solid state image sensor device free of influence on optical black level by signal potential change of optical black pixels
JPH11261046A (en) Solid-state image pickup device
JPS5958306A (en) Range finder
US6642561B2 (en) Solid imaging device and method for manufacturing the same
KR940006394A (en) Solid state imaging device
US5235197A (en) High photosensitivity and high speed wide dynamic range ccd image sensor
JP2500428B2 (en) Image sensor and driving method thereof
US20070216790A1 (en) Matching free dynamic digital pixel sensor
JPS5858716B2 (en) Self-scanning light sensing circuit
TWI238526B (en) Photoelectric transfer amount detection method and photoelectric transfer device, image input method and image input device, and two-dimensional image sensor and driving method of same
US7372489B2 (en) Signal processing circuit and solid-state image pickup device
US7872674B2 (en) Solid-state imaging device and method of operating solid-state imaging device
JPH04137762A (en) Image sensor
US6822212B2 (en) Photoelectric device having noise reduction circuitry
US6545776B1 (en) Image sensor IC, facsimile apparatus and image scanner apparatus using the image sensor ICS
JP3527911B2 (en) Optical sensor monitor circuit
JPS59108460A (en) Solid-state image pickup device
EP3445039B1 (en) Detection circuit for photo sensor with stacked substrates
EP4102568A1 (en) Solid-state imaging element and imaging device
JPS61255062A (en) Optical sensor array
JPH0477171A (en) Linear image sensor
KR100683396B1 (en) Method for interlace scanning pixel array in image sensor