JPH04132604A - Production of oxide superconductor thin film - Google Patents

Production of oxide superconductor thin film

Info

Publication number
JPH04132604A
JPH04132604A JP2256355A JP25635590A JPH04132604A JP H04132604 A JPH04132604 A JP H04132604A JP 2256355 A JP2256355 A JP 2256355A JP 25635590 A JP25635590 A JP 25635590A JP H04132604 A JPH04132604 A JP H04132604A
Authority
JP
Japan
Prior art keywords
thin film
substrate
oxygen
radical
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2256355A
Other languages
Japanese (ja)
Other versions
JP2533233B2 (en
Inventor
Shuji Komuro
修二 小室
Katsunobu Aoyanagi
克信 青柳
Takitaro Morikawa
森川 滝太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Mitsubishi Rayon Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2256355A priority Critical patent/JP2533233B2/en
Publication of JPH04132604A publication Critical patent/JPH04132604A/en
Application granted granted Critical
Publication of JP2533233B2 publication Critical patent/JP2533233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To accelerate oxidation reaction and prevent the deterioration of thin film by carrying out vapor-phase evaporation while applying oxygen radical radiation. CONSTITUTION:An oxygen radical beam is radiated to an evaporation source target 1, a substrate 5 or into vapor phase to promote the oxidation reaction in the vapor phase or on the surface of the substrate. For example, a superconducting bulk crystal of the target 1 is exposed to laser beam 2 to effect the sputtering. The sputtered and evaporated particles are oxidized with a radical beam 4 radiated from a radical gun 3 in the vapor phase or on the surface of the substrate 5 to form an oxide superconducting thin film 6. A high-quality thin film can be effectively formed on a semiconductor substrate, etc., by this process.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸化物超伝導薄膜の製造法に関するもので
ある。さらに詳しくは、この発明は、超高速素子等の電
子デバイスなどとして有用な、半導体基板上への薄膜形
成をも可能とする酸化物超伝導薄膜の製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing an oxide superconducting thin film. More specifically, the present invention relates to a method for producing an oxide superconducting thin film, which is useful for electronic devices such as ultrahigh-speed elements, and which enables the formation of thin films on semiconductor substrates.

(従来の技術とその課題) 酸化物高温超伝導体の登場は、今世紀末の最大の技術革
新として注目されており、全世界において、より高い臨
界温度(Tc)と臨界電流密度(J c)の実現をめざ
し、新しい組成の探索や、線材化、薄膜化等の製造、加
工法についての検討が精力的に進められている。
(Conventional technology and its challenges) The appearance of oxide high-temperature superconductors is attracting attention as the greatest technological innovation at the end of this century. Aiming to realize this, efforts are being made to search for new compositions, and to investigate manufacturing and processing methods such as wire rods and thin films.

これまでの検討においても、線祠とともに、酸化物超伝
導体の薄膜は超高速素子等の電子デバイスの革新をもた
らすものとして特に注目されているものであり、Y−B
a−Cu−Oxide、B1−8r−Ca−Cu−Ox
ide、さらにはTIl系、■系等の各種の酸化物超電
導体の高特性高品質な薄膜形成のための様々な方法が提
案されている。
Previous studies have shown that thin films of oxide superconductors are attracting particular attention as they bring about innovations in electronic devices such as ultra-high-speed devices, and Y-B
a-Cu-Oxide, B1-8r-Ca-Cu-Ox
Various methods have been proposed for forming high-quality, high-quality thin films of various oxide superconductors such as IDE, TIl-based, and 3-based oxide superconductors.

実際、これらの薄膜形成においては、真空蒸着、スパッ
タリング、プラズマ励起蒸着、光励起蒸着、MBEなど
の各種の方法が試みられている。そして、いずれの方法
においても、酸化物超伝導薄膜形成のための酸化反応の
制御が極めて重要な要件であることが明らかになってき
ている。
In fact, various methods such as vacuum evaporation, sputtering, plasma-enhanced evaporation, optically-enhanced evaporation, and MBE have been tried to form these thin films. In either method, it has become clear that controlling the oxidation reaction for forming an oxide superconducting thin film is an extremely important requirement.

この酸化反応の制御という観点からは、たとえばこれま
でにも、レーザを用いた蒸着法では、ターゲットと基板
の間にリング電極を設けるとともに、ターゲットと基板
との間に酸素分子ガスを吹き付け、リング電極に正電圧
を印加することにより直流放電を生じさせ、この放電に
より生成された酸素分子イオン(02+)を蒸発粒子お
よび基板に照射し酸化物超伝導薄膜を得る(第5図、A
ppl、 Phys、 Lett、、 53,234(
1988) )方法や、オゾン(03)を成膜した超伝
導薄膜に吹き付け、さらに紫外光を照射して薄膜の酸化
を促進する方法(第6図、Appl、 Phys、 L
ett、、 52.2183(1988))も報告され
ている。また、電子サイクロトロン共鳴(ECR)法に
より酸素プラズマを生成し、酸素分子イオン(02+)
、および酸素ラジカル(0*)をともに超伝導薄膜生成
時に照射し酸化を促進している報告(第7図、Jpn、
 J、 Appl。
From the perspective of controlling this oxidation reaction, for example, in the vapor deposition method using a laser, a ring electrode is provided between the target and the substrate, and oxygen molecular gas is sprayed between the target and the substrate. Direct current discharge is generated by applying a positive voltage to the electrode, and oxygen molecular ions (02+) generated by this discharge are irradiated onto the evaporated particles and the substrate to obtain an oxide superconducting thin film (Fig. 5, A).
ppl, Phys, Lett, 53,234 (
1988) ) method, and a method in which ozone (03) is sprayed onto the formed superconducting thin film and further irradiated with ultraviolet light to promote oxidation of the thin film (Fig. 6, Appl, Phys, L).
ett., 52.2183 (1988)) has also been reported. In addition, oxygen plasma is generated by electron cyclotron resonance (ECR) method, and oxygen molecular ions (02+) are generated.
, and oxygen radicals (0*) are both irradiated during superconducting thin film formation to promote oxidation (Fig. 7, Jpn,
J, Appl.

Phys、 28.L635(1989) )もある。Phys, 28. L635 (1989)) is also available.

これらの提案や報告からも明らかなように、酸化物であ
るがゆえに、超伝導薄膜の作製においては十分に酸化反
応を促進することが重要な要件であって、従来はこの酸
化反応の制御のために、酸素分子ガスの活性励起状態で
ある酸素分子イオン(02+)、酸素分子イオン(02
”)と酸素ラジカル(O″)との混合励起状態、あるい
はオゾン(03)を利用していた。
As is clear from these proposals and reports, since it is an oxide, it is important to sufficiently promote the oxidation reaction in the production of superconducting thin films, and conventionally it has been difficult to control this oxidation reaction. Therefore, oxygen molecular ions (02+), oxygen molecular ions (02+), which are active excited states of oxygen molecular gas,
) and oxygen radicals (O''), or ozone (03) was used.

しかしながら、これらの従来の酸素の励起状態では十分
に酸化を促進させることができなかった。
However, these conventional excited states of oxygen have not been able to sufficiently promote oxidation.

さらに、解決すべき問題は、酸素分子イオン(02” 
)などの高エネルギー粒子が薄膜表面に衝突することに
より薄膜の表面にエツチングや欠陥が生じ、薄膜の特性
が劣化するという欠点が避けられないことであった。た
とえば、そのような実例として、超伝導薄膜へのイオン
照射により特性劣化が生じた報告例を、Y−Ba−Cu
−0について第8図(Appl、 Phys、 Let
t、、  54.1054(1989))と第9図(A
ppl、Phys、 Lett、、 54.1178(
1989))に、また、TI −Ca−Ba−Cu−0
について第1O図(Appl、 Phys、 Lett
、、 55,507(1989))にそれぞれ示すこと
ができる。
Furthermore, the problem to be solved is the oxygen molecular ion (02”
) and other high-energy particles collide with the thin film surface, causing etching and defects on the thin film surface, resulting in the unavoidable drawback that the properties of the thin film deteriorate. For example, as an example of such a case, there is a reported example of property deterioration caused by ion irradiation of a superconducting thin film.
Figure 8 (Appl, Phys, Let
54.1054 (1989)) and Figure 9 (A
ppl, Phys, Lett, 54.1178 (
1989)) and also TI-Ca-Ba-Cu-0
Figure 1O (Appl, Phys, Lett
, 55, 507 (1989)).

いずれの場合も、イオン照射によるダメージとして超伝
導薄膜のTcの劣化を示している。
In either case, Tc deterioration of the superconducting thin film is shown as damage caused by ion irradiation.

このため、酸化物超伝導薄膜の製造においては、いかに
してイオンによるダメージを回避し、酸化反応を促進し
つつ薄膜の劣化を防止するかが太きな課題になっていた
。特にこのイオン損傷は、半導体基板上への高品質な酸
化物超伝導薄膜の製造にとってとりわけ重要な課題であ
った。
Therefore, in the production of oxide superconducting thin films, how to avoid damage caused by ions and prevent deterioration of the thin film while promoting the oxidation reaction has become a major issue. In particular, this ion damage has been a particularly important issue for the production of high-quality oxide superconducting thin films on semiconductor substrates.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、従来法による欠点を解消し、酸化反応を促進しつ
つ、薄膜の劣化を防止して高品質な超伝導薄膜を製造す
ることのできる新しい方法を提供することを目的として
いる。
This invention was made in view of the above circumstances, and aims to eliminate the drawbacks of conventional methods, promote oxidation reaction, and prevent deterioration of the thin film to produce a high-quality superconducting thin film. The aim is to provide new ways to do this.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、酸素ラ
ジカルを照射しつつ気相蒸着することを特徴とする酸化
物超伝導薄膜の製造法を提供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a method for producing an oxide superconducting thin film, which is characterized by performing vapor phase deposition while irradiating oxygen radicals.

さらに詳しくは、この発明の製造法においては、酸素ラ
ジカルビームを蒸着源ターゲット、基板および/または
気相中に照射し、気相中や、基板表面での酸化反応を十
分に促進するとともに、薄膜の劣化を防止し、酸化物超
伝導薄膜を気相蒸着する。
More specifically, in the manufacturing method of the present invention, an oxygen radical beam is irradiated into the evaporation source target, the substrate, and/or the gas phase to sufficiently promote the oxidation reaction in the gas phase and on the substrate surface. oxide superconducting thin film is vapor-phase evaporated.

この酸素ラジカルビームについては、酸素分子を直流放
電やECRでプラズマ化し、酸素分子イオン(02+)
、酸素イオン(O+)、酸素ラジカル(0” )などを
生成した後、これを電界または磁界印加により酸素分子
イオンと酸素イオンを偏向するか、電子シャワー照射に
よりこれらイオンを中和するなどして高濃度の酸素ラジ
カルまたは酸素ラジカルのみを抽出することにより形成
し、これを上記の通り照射することができる。
For this oxygen radical beam, oxygen molecules are turned into plasma by DC discharge or ECR, and oxygen molecular ions (02+) are generated.
After generating oxygen ions (O+), oxygen radicals (0''), etc., the oxygen molecular ions and oxygen ions are deflected by applying an electric or magnetic field, or these ions are neutralized by electron shower irradiation. It can be formed by extracting high concentrations of oxygen radicals or only oxygen radicals, which can then be irradiated as described above.

この発明の製造法においては、基板として各種のものを
使用することができ、特にその種類に制限はない。半導
体基板もこの発明においては好適に使用される。たとえ
ばこれら基板としては、MgO,5rTioa 、Zr
O,S i、GaAs。
In the manufacturing method of the present invention, various types of substrates can be used, and there are no particular restrictions on the types. Semiconductor substrates are also suitably used in this invention. For example, these substrates include MgO, 5rTioa, Zr
O, Si, GaAs.

InPなどを例示することができる。InP etc. can be exemplified.

また、ターゲット物質としても各種の酸化物超伝導体バ
ルク結晶が用いられる。La−3r−Cu−Ox i 
d l Y−Ba−Cu−Ox i d e。
Furthermore, various oxide superconductor bulk crystals are used as target materials. La-3r-Cu-Ox i
d l Y-Ba-Cu-Ox i d e.

B i−3r−Ca−Cu−Ox i d e、 Pb
 −Bi−8r−Ca−Cu−Oxide、Tl1−C
a−Ba−Cu−0xide、Tll−3r−V−Ox
ide、をはじめとする各種の組成物を使用することが
できる。
Bi-3r-Ca-Cu-Oxide, Pb
-Bi-8r-Ca-Cu-Oxide, Tl1-C
a-Ba-Cu-Oxide, Tll-3r-V-Ox
Various compositions can be used, including ide.

これらの蒸発の方法としても、抵抗加熱、高周波誘導加
熱、電子ビーム照射、レーザー照射などの任意の手段が
採用できる。なかでも、複合酸化物ターゲット物質の蒸
発温度の差異による影響が少なく、組成の均一性、薄膜
の高品質性を実現する上でレーザー照射法は好適なもの
の一つである。
Any means such as resistance heating, high frequency induction heating, electron beam irradiation, laser irradiation, etc. can be adopted as a method for evaporating these. Among these, the laser irradiation method is one of the preferred methods since it is less affected by differences in evaporation temperature of the composite oxide target material and achieves uniform composition and high quality of the thin film.

基板は、一般的には300〜550°C程度に加熱し、
反応時の酸素圧力は、通常10−4〜l O−2Tor
r程度とすることができる。
The substrate is generally heated to about 300 to 550°C,
The oxygen pressure during the reaction is usually 10-4 to 1 O-2 Tor
It can be about r.

もちろん、個々の操作条件については、目的とする酸化
物超伝導薄膜の組成、その物性等に応じて適宜に選択で
きることはいうまでもない。
Of course, it goes without saying that individual operating conditions can be appropriately selected depending on the composition, physical properties, etc. of the intended oxide superconducting thin film.

(作 用) この発明の製造方法においては、酸素の活性状態である
酸素分子イオン(0□+)、酸素ラジカル(O*)のう
ち、酸素ラジカルのみを選択的に使用する。イオンは薄
膜表面への衝突により薄膜の表面にエツチングや欠陥を
生成するため高品質薄膜の作製に適当ではない。従って
、活性状態である酸素ラジカルの濃度を高くするか、ま
たは酸素ラジカルのみをターゲット、半導体基板、およ
び気相中に照射し、気相中での酸化反応および基板表面
での酸化表面反応を促進し、効率よく高品質酸化物超伝
導薄膜を半導体基板等の上に蒸着することができる。
(Function) In the production method of the present invention, only oxygen radicals are selectively used among oxygen molecular ions (0□+) and oxygen radicals (O*), which are active states of oxygen. Ions are not suitable for producing high-quality thin films because they cause etching and defects on the surface of the thin film due to collisions with the surface of the thin film. Therefore, either increase the concentration of active oxygen radicals or irradiate only oxygen radicals into the target, semiconductor substrate, and gas phase to promote oxidation reactions in the gas phase and oxidation surface reactions on the substrate surface. Therefore, a high quality oxide superconducting thin film can be efficiently deposited on a semiconductor substrate or the like.

(実施例) 以下、実施例を示し、さらに詳しくこの発明の製造法に
ついて説明する。
(Examples) Hereinafter, examples will be shown and the manufacturing method of the present invention will be explained in more detail.

添付した図面の第1図は、この発明に用いることのでき
る反応装置の一例を示した構成概略図である。
FIG. 1 of the attached drawings is a schematic configuration diagram showing an example of a reaction apparatus that can be used in the present invention.

たとえばこの第1図に示したように、ターゲット(1)
の超伝導バルク結晶にレーザー(2)を照射してスパッ
タリングを行う。スパッタリングされた蒸着粒子は、ラ
ジカルガン(3)から照射されたラジカルビーム(4)
と気相中または基板(5)表面で酸化反応を生じ、酸化
物超伝導薄膜(6)が形成される。
For example, as shown in Figure 1, target (1)
Sputtering is performed by irradiating the superconducting bulk crystal with a laser (2). The sputtered vapor deposition particles are exposed to a radical beam (4) irradiated from a radical gun (3).
An oxidation reaction occurs in the gas phase or on the surface of the substrate (5), and an oxide superconducting thin film (6) is formed.

ラジカルビームの生成には、この例においては、電界・
磁界印加によるイオン/ラジカルセパレーター(7)を
内蔵したラジカルガン(3)を使用しているが、もちろ
んこれに限られることはない。
To generate the radical beam, in this example, an electric field and
A radical gun (3) equipped with a built-in ion/radical separator (7) by applying a magnetic field is used, but the invention is of course not limited to this.

たとえば電子シャワ一方式によるイオン分離手段を備え
たラジカルビーム生成装置を用いてもよい。
For example, a radical beam generation device equipped with ion separation means using an electronic shower may be used.

この反応装置のチャンバー内は、たとえば真空度約10
−7Torrまで排気する。基板(5)を500℃程度
まで加熱し、たとえばレーザー(2)としてエキシマレ
ーザ−をターゲット(1)に照射する。同時にラジカル
ガン(3)から酸素ラジカルビームを、レーザー生成プ
ラズマと基板表面に照射する。
The inside of the chamber of this reactor has a degree of vacuum of, for example, approximately 10
Exhaust to -7 Torr. The substrate (5) is heated to about 500° C., and the target (1) is irradiated with, for example, an excimer laser as the laser (2). At the same time, the laser-generated plasma and the substrate surface are irradiated with an oxygen radical beam from the radical gun (3).

第2図および第3図はレーザースパッタリングにより作
成されたY−Ba−Cu−0超伝導薄膜の抵抗率の温度
依存性を示したものである。作成条件として、基板温度
は640°C1酸素圧力は1.2X 10−2Torr
とした。第2図は酸素分子イオン(0□+)と酸素ラジ
カル(08)を、成膜時に基板に照射しながら作成した
場合である。また第3図はイオン/ラジカル分離器を通
しイオン量を減少させて、主に酸素ラジカルを成膜時に
照射して作成した場合である。第2図および第3図とも
に抵抗率が減少し始める温度はほぼ同じであるが、抵抗
率が完全に零になる温度(Tc)はそれぞれ、56に、
68にと異なる値を示し、酸素イオンを成膜時に照射す
ることにより約12にだけTcが減少する。この原因は
、イオンが成膜時に薄膜表面に衝突することにより薄膜
表面に生じたイオンによる照射損傷が、超伝導特性を劣
化させるものと思われる。したがって、酸化物超伝導薄
膜の作成にあたり、特性を劣化させずに十分な超電導特
性を発現させるためには、酸素分子イオンよりも酸素ラ
ジカルを成膜中に導入することが重要である。
FIGS. 2 and 3 show the temperature dependence of resistivity of a Y-Ba-Cu-0 superconducting thin film produced by laser sputtering. As for the production conditions, the substrate temperature is 640°C, the oxygen pressure is 1.2X 10-2 Torr
And so. FIG. 2 shows a case in which oxygen molecular ions (0□+) and oxygen radicals (08) are irradiated onto the substrate during film formation. Moreover, FIG. 3 shows the case where the film was created by passing through an ion/radical separator to reduce the amount of ions and irradiating mainly oxygen radicals during film formation. The temperature at which the resistivity begins to decrease in both Figures 2 and 3 is almost the same, but the temperature at which the resistivity becomes completely zero (Tc) is 56, respectively.
68, and the Tc is reduced to about 12 by irradiating oxygen ions during film formation. The reason for this is thought to be that ions collide with the thin film surface during film formation, causing ion-induced irradiation damage on the thin film surface that deteriorates the superconducting properties. Therefore, in creating an oxide superconducting thin film, it is important to introduce oxygen radicals during film formation rather than oxygen molecular ions in order to develop sufficient superconducting properties without deteriorating the properties.

また、イオン照射とラジカル照射により、どのように半
導体表面が損傷を受けるかを、n型GaAs半導体にお
いて調べた結果を第4図に示した。理想的なダイオード
特性(V−■特性)は、以下の式において、 n=oであるが、O” +02+を照射した場合に、n
値が(n=1.98)であり、ラジカルのみを照射した
時のn値(n=1.68)よりも大きい。したがって、
イオンが物質表面に照射された場合、表面での照射損傷
に基づく欠陥等のダメージが生ずることが第4図によっ
て判明した。
Furthermore, FIG. 4 shows the results of investigating how the semiconductor surface is damaged by ion irradiation and radical irradiation in an n-type GaAs semiconductor. The ideal diode characteristic (V-■ characteristic) is n=o in the following equation, but when irradiating O''+02+, n
The value is (n=1.98), which is larger than the n value (n=1.68) when only radicals are irradiated. therefore,
It has been found from FIG. 4 that when ions are irradiated onto a material surface, damage such as defects occurs due to irradiation damage on the surface.

(発明の効果) この発明の製造法により、以上詳しく説明した通り、薄
膜の特性劣化もなく、半導体基板等の上に高品質な酸化
物超伝導薄膜を効率的に製造することが可能となる。
(Effects of the Invention) As explained in detail above, the production method of the present invention makes it possible to efficiently produce high-quality oxide superconducting thin films on semiconductor substrates, etc., without deteriorating the properties of the thin film. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法に用いることのできる反応装
置の一例を示した構成概略図である。 第2図および第3図は、この発明により作成したY−B
a−Cu−0超伝導薄膜の抵抗率の温度依存性を示した
温度・抵抗相関図である。 第4図は、n型GaAs半導体にO” +02 +照射
と、0*照射した場合のV−I特性を示した電圧・電流
相関図である。 第5図、第6図および第7図は、各々、従来の進法のた
めの反応装置を例示した構成概略図である。 第8図、第9図および第1O図は、イオン照射による薄
膜劣化を示した温度−抵抗の相関図である。 ・・・ターゲット ・・・レーザー ・・・ラジカルガン ・・・ラジカルビーム ・・・基   板 ・・・酸化物超伝導薄膜 ・・・イオン/ラジカルセパレーター
FIG. 1 is a schematic configuration diagram showing an example of a reaction apparatus that can be used in the method of the present invention. FIGS. 2 and 3 show Y-B produced according to the present invention.
FIG. 2 is a temperature-resistance correlation diagram showing the temperature dependence of resistivity of an a-Cu-0 superconducting thin film. FIG. 4 is a voltage-current correlation diagram showing the VI characteristics when an n-type GaAs semiconductor is irradiated with O''+02+ and 0*. , respectively, are schematic configuration diagrams illustrating a conventional reaction apparatus for the base method. FIGS. 8, 9, and 10 are temperature-resistance correlation diagrams showing thin film deterioration due to ion irradiation. ...Target...Laser...Radical gun...Radical beam...Substrate...Oxide superconducting thin film...Ion/radical separator

Claims (1)

【特許請求の範囲】[Claims] (1)酸素ラジカルを照射しつつ気相蒸着することを特
徴とする酸化物超伝導薄膜の製造法。
(1) A method for producing an oxide superconducting thin film, which is characterized by vapor phase deposition while irradiating oxygen radicals.
JP2256355A 1990-09-25 1990-09-25 Manufacturing method of oxide superconducting thin film Expired - Fee Related JP2533233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256355A JP2533233B2 (en) 1990-09-25 1990-09-25 Manufacturing method of oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256355A JP2533233B2 (en) 1990-09-25 1990-09-25 Manufacturing method of oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JPH04132604A true JPH04132604A (en) 1992-05-06
JP2533233B2 JP2533233B2 (en) 1996-09-11

Family

ID=17291536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256355A Expired - Fee Related JP2533233B2 (en) 1990-09-25 1990-09-25 Manufacturing method of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP2533233B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265206A (en) * 1991-02-18 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing high temperature oxide superconductor thin film and device therefor
JP2013245388A (en) * 2012-05-28 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of superconductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487586A (en) * 1987-09-30 1989-03-31 Fujitsu Ltd Production of superconductor
JPH01286914A (en) * 1988-05-10 1989-11-17 Matsushita Electric Ind Co Ltd Production of superconductor of thin film
JPH0297660A (en) * 1988-10-03 1990-04-10 Matsushita Electric Ind Co Ltd Production of thin-film superconductor
JPH02195608A (en) * 1989-01-25 1990-08-02 Hitachi Ltd Manufacturing device for superconducting thin film
JPH0393608A (en) * 1989-09-05 1991-04-18 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of thin film of oxide superconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487586A (en) * 1987-09-30 1989-03-31 Fujitsu Ltd Production of superconductor
JPH01286914A (en) * 1988-05-10 1989-11-17 Matsushita Electric Ind Co Ltd Production of superconductor of thin film
JPH0297660A (en) * 1988-10-03 1990-04-10 Matsushita Electric Ind Co Ltd Production of thin-film superconductor
JPH02195608A (en) * 1989-01-25 1990-08-02 Hitachi Ltd Manufacturing device for superconducting thin film
JPH0393608A (en) * 1989-09-05 1991-04-18 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of thin film of oxide superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265206A (en) * 1991-02-18 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing high temperature oxide superconductor thin film and device therefor
JP2013245388A (en) * 2012-05-28 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of superconductor

Also Published As

Publication number Publication date
JP2533233B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JP2000068227A (en) Method for processing surface and device thereof
US7030045B2 (en) Method of fabricating oxides with low defect densities
US20040083969A1 (en) Film forming apparatus, substrate for forming oxide thin film, and production method thereof
JPH04132604A (en) Production of oxide superconductor thin film
JPS5957416A (en) Formation of compound semiconductor layer
Shrivastava Deposition techniques for high-tc superconducting YBCO thin films
JPH0639707B2 (en) Thin film forming equipment
JP2963901B1 (en) Manufacturing method of superconducting thin film
JP2605148B2 (en) Manufacturing method of oxide thin film
KR102297581B1 (en) Method for manufacturing oxide thin film transistor according to gas flow rate and oxide thin film transistor manufactured by the manufacturing method
JPH06291375A (en) Manufacture of thin film superconductor and its manufacture
KR102299641B1 (en) Method for manufacturing oxide thin film transistor according to power and oxide thin film transistor manufactured by the manufacturing method
JPH05166726A (en) Manufacture of compound thin film
JP2777657B2 (en) Plasma deposition equipment
JPH05311429A (en) Thin film forming device
JP2744505B2 (en) Silicon sputtering equipment
JPH048506B2 (en)
JP2916514B2 (en) Manufacturing method of oxide thin film
JPH05166727A (en) Manufacture of compound thin film
JPS63262457A (en) Preparation of boron nitride film
JPH05209265A (en) Sputtering device
JPH04358058A (en) Method and apparatus for forming thin film
JPH01244402A (en) Production of optical film
JPH01286914A (en) Production of superconductor of thin film
JPS609657B2 (en) Ion plating method and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees