JPH04131620A - Sub-combustion chamber type swirling combustion device - Google Patents

Sub-combustion chamber type swirling combustion device

Info

Publication number
JPH04131620A
JPH04131620A JP25303390A JP25303390A JPH04131620A JP H04131620 A JPH04131620 A JP H04131620A JP 25303390 A JP25303390 A JP 25303390A JP 25303390 A JP25303390 A JP 25303390A JP H04131620 A JPH04131620 A JP H04131620A
Authority
JP
Japan
Prior art keywords
combustion chamber
fuel
sub
primary air
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25303390A
Other languages
Japanese (ja)
Inventor
Satoshi Watanabe
智 渡辺
Yoshihisa Gunji
郡司 善壽
Yoichiro Okubo
陽一郎 大久保
Yoshinori Idota
芳典 井戸田
Yoshihiro Nomura
佳洋 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP25303390A priority Critical patent/JPH04131620A/en
Publication of JPH04131620A publication Critical patent/JPH04131620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Spray-Type Burners (AREA)

Abstract

PURPOSE:To improve a stable combustion, a thermal efficiency of a turbine and restrict a production of carbon by a method wherein an upstream end of an opening of a primary air passage at a wall surface of a sub-combustion chamber has a predetermined distance between it and an injection port of a fuel injection valve, thereby a predetermined injecting- and-evaporating spacing is formed on the upstream side of the sub-combustion chamber. CONSTITUTION:Openings of primary air passages 11' and their accompanying guide vanes 10' are disposed at a cylindrical wall forming a sub-combustion chamber 4' as close to a main combustion chamber 5 as possible, thereby a distance Y of about 1/2 of the diameter D of the sub-combustion chamber 4' is set between the front end of each of the openings of the primary air passages 11' and an injection port 16 of a fuel injection valve 8, and then an injection and evaporating spacing 17 where no injection of air is performed is formed at a front part of the sub-combustion chamber 4'. As the pressurized fuel is injected from the injection port 16 of the fuel injection valve 8, the fuel is dispersed into the injection evaporating spacing 17 in a conical form having an injection angle theta, its pressure is reduced and at the same time liquid fuel particles evaporate under acceptance of radiation heat from combustion gas or a wall of combustion chamber and then the fuel becomes rapidly gaseous fuel. The fuel enters a cylindrical. part 19 under a condition that gasification is promoted, meets with primary air flowing from the primary air passages 11' in a tangential direction, fuel molecules and air are well mixed while forming an eddy flow and then the mixture gas is ignited and burned.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主としてガスタービンに用いられる燃焼器、
特に主燃焼室の上流側に副燃焼室を設けたガスタービン
用の渦巻燃焼器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention mainly relates to a combustor used in a gas turbine,
In particular, the present invention relates to a swirl combustor for a gas turbine in which a sub-combustion chamber is provided upstream of a main combustion chamber.

〔従来の技術〕[Conventional technology]

第4図〜第6図に、主燃焼室の上流側に副燃焼室を設け
た従来のガスタービン用燃焼器(特公昭54−8890
号公報参照)が例示されている。これらの図において、
1は燃焼器外筒、2は外筒1の中に広い通気間隙3をお
いて支持された燃焼器内筒で、内筒2は副燃焼室4、主
燃焼室5等をその内部に形成している。燃焼器内筒2の
第4図及び第6図における左端部は、外筒1の端部壁6
にボルト等によって取付けられるフランジ部7を介して
固定・支持されるが、そのフランク部7の中心を貫通し
て燃料噴射弁8が副燃゛焼室4の中に噴口16を有して
おり、加圧された軽油のような燃料fを副燃焼室4の中
へ霧化して噴射するようになっている。なお9は副燃焼
室4内に臨んで設けられた点火プラグを示す。
Figures 4 to 6 show a conventional gas turbine combustor (Japanese Patent Publication No. 54-8890) in which an auxiliary combustion chamber is provided upstream of the main combustion chamber.
For example, In these figures,
1 is a combustor outer cylinder, 2 is a combustor inner cylinder supported with a wide ventilation gap 3 in the outer cylinder 1, and the inner cylinder 2 has a sub-combustion chamber 4, a main combustion chamber 5, etc. formed therein. are doing. The left end of the combustor inner cylinder 2 in FIGS. 4 and 6 is the end wall 6 of the outer cylinder 1.
The fuel injection valve 8 is fixed and supported via a flange portion 7 attached by bolts or the like to the flange portion 7, and a fuel injection valve 8 has a nozzle port 16 in the auxiliary combustion chamber 4, passing through the center of the flank portion 7. , pressurized fuel f such as light oil is atomized and injected into the sub-combustion chamber 4. Note that 9 indicates a spark plug provided facing into the sub-combustion chamber 4.

通気間隙3には図示されない空気圧縮機によって加圧さ
れた空気aが供給されており、その一部は1次空気すと
して、第5図に示すような案内羽根10を有する1次空
気通路11の開口を通り、副燃焼室4内へ接線方向に流
入して、燃料噴射弁8の噴口16から噴射される燃料噴
霧と共に副燃焼室4内において渦流を形成し、燃料と1
次空気が混合して、点火プラグ9により点火され、1次
燃焼を行なう。
Air a pressurized by an air compressor (not shown) is supplied to the ventilation gap 3, and a part of the air a is supplied as a primary air passage 11 having a guide vane 10 as shown in FIG. The fuel flows into the auxiliary combustion chamber 4 through the opening in the tangential direction, forms a vortex in the auxiliary combustion chamber 4 together with the fuel spray injected from the nozzle 16 of the fuel injection valve 8, and the fuel and 1
The secondary air is mixed and ignited by the spark plug 9 to perform primary combustion.

12は副燃焼室4と主燃焼室5の仕切壁に形成された絞
り開口で、1次燃焼をした未燃成分を含む燃焼ガスは、
旋回しながら絞り開口12を通過して主燃焼室5へ流入
し、主燃焼室5の下流側部分の壁に設けられている多数
の小さな空気孔13を通して、通気間隙3から2次空気
及び冷却空気Cとして加圧された空気の供給を受け、2
次燃焼を行なう。燃焼ガスは更に流出筒14に設けられ
た希釈空気口15を通して通気間隙3から流入する希釈
空気dによって増量されて大流量のタービン作動ガスg
となり、図示されないタービンロータを駆動して動力を
発生する。
12 is a throttle opening formed in the partition wall between the auxiliary combustion chamber 4 and the main combustion chamber 5, through which the combustion gas containing unburned components that has undergone primary combustion is
The secondary air and cooling flow from the ventilation gap 3 into the main combustion chamber 5 through a swirling throttle opening 12 and through a number of small air holes 13 provided in the wall of the downstream part of the main combustion chamber 5. Receiving pressurized air as air C, 2
Perform the next combustion. The combustion gas is further increased in amount by dilution air d flowing in from the ventilation gap 3 through the dilution air port 15 provided in the outflow pipe 14, and becomes a large flow of turbine working gas g.
This generates power by driving a turbine rotor (not shown).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のガスタービンの燃焼器においては、1次空気通路
11は副燃焼室4を形成する筒壁のうち、比較的上流側
の部分から開口するように設けられ、第4図及び第6図
に示したものでも、燃料噴射弁8の噴口16から1次空
気通路11の前方端までの距離Yは、副燃焼室4の直径
りのおよそ10分の1程度にすぎない。
In a conventional gas turbine combustor, the primary air passage 11 is provided so as to open from a relatively upstream portion of the cylindrical wall forming the auxiliary combustion chamber 4, as shown in FIGS. 4 and 6. Even in the case shown, the distance Y from the nozzle 16 of the fuel injection valve 8 to the front end of the primary air passage 11 is only about one-tenth of the diameter of the sub-combustion chamber 4.

そのたt1燃料は燃料噴射弁8から噴射されると同時に
1次空気が混合されることになり、燃料噴霧が蒸発して
気化する前の粗粒の状態で空気の中に浮遊するものと考
えられる。もちろん、その状態でも燃料は蒸発・気化す
るが、完全に蒸発が終らないうちに燃焼域に流入するの
で、比較的燃料粒子が大きいうちに燃焼が始まることに
なる。
In addition, the t1 fuel is injected from the fuel injection valve 8 and mixed with primary air at the same time, and it is assumed that the fuel spray evaporates and floats in the air in the form of coarse particles before being vaporized. It will be done. Of course, even in this state, the fuel evaporates and vaporizes, but it flows into the combustion zone before evaporation is complete, so combustion begins while the fuel particles are relatively large.

したがって、着火性・始動性が必ずしも良くなく、着火
しても不完全燃焼になり易いから、燃焼安定性が高いと
は言えない。
Therefore, the ignitability and startability are not necessarily good, and even if ignited, incomplete combustion tends to occur, so it cannot be said that the combustion stability is high.

また、燃料が十分蒸発・気化していない粗粒のままで空
気と共に旋回するので、遠心力によって外方へ飛ばされ
た燃料粒が1次燃焼室4の筒壁などに付着しやすく、そ
れが輻射熱等により分解して煤状のカーボン(遊離炭素
)を生じ、壁面に堆積して流体の通路や燃焼室容積を狭
めるばかりでなく、時には大きな塊になって剥れ落ちて
、下流にあるタービン翼等を損傷させることもある。本
発明は、従来の副燃焼室式渦巻燃焼器のこのような問題
を解決し、着火性を改善し、完全燃焼が行なわれるよう
にして、燃焼安定性とタービンの熱効率を高めると共に
、カーボンの発生を抑制することを発明の目的としてい
る。
In addition, since the fuel swirls with the air as coarse particles that have not been sufficiently evaporated or vaporized, the fuel particles blown outward by centrifugal force tend to adhere to the cylindrical wall of the primary combustion chamber 4. It decomposes due to radiant heat, etc., producing soot-like carbon (free carbon), which not only accumulates on walls and narrows the fluid passage and combustion chamber volume, but also sometimes flakes off in large chunks, damaging downstream turbines. It may also damage the wings. The present invention solves these problems of the conventional auxiliary combustion chamber type swirl combustor, improves ignitability, enables complete combustion, increases combustion stability and turbine thermal efficiency, and reduces carbon emissions. The purpose of the invention is to suppress the occurrence.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、従来の副燃焼室式渦巻燃焼器における前
述のような問題点は、燃料噴射弁の噴口と1次空気通路
の開口との距離Yが小さかったために生じたものである
との原因解明のもとに、距離Yを大きくとり、燃料噴射
弁から噴出した燃料噴霧が、1次空気通路から接線方向
に流入する空気と出会う前に噴霧の蒸発空間を通過する
ようにし、ここで燃料粒が輻射熱を受け、また減圧され
ることによって蒸発・気化するように構成することを考
えついた。
The present inventors believe that the above-mentioned problems in the conventional auxiliary combustion chamber type swirl combustor are caused by the short distance Y between the nozzle of the fuel injector and the opening of the primary air passage. Based on elucidation of the cause of They came up with a structure in which the fuel particles receive radiant heat and are evaporated by being depressurized.

そこで、色々な形状の燃焼器を試作して実験を繰返した
ところ、前証のように距離Yを大きくとって、そこに燃
料噴霧の蒸発空間を形成すると、たしかに好ましい結果
が得られることが確認されたが、距離Yをあまりに大き
くすると、1次空気の混合が遅れるために、逆に空気不
足となって、やはりカーボンの発生をみることも判明し
た。この事実から、適正な距離Yの値には下限と共に上
限のあることを知り、その限界を追究した結果として本
発明の解決手段に到達したも、のである。
Therefore, after repeatedly experimenting with combustor prototypes of various shapes, it was confirmed that by increasing the distance Y and forming an evaporation space for the fuel spray there as shown in the previous proof, favorable results could indeed be obtained. However, it has also been found that if the distance Y is made too large, the mixing of the primary air is delayed, resulting in a lack of air and the formation of carbon. From this fact, we learned that there is both a lower limit and an upper limit to the appropriate value of distance Y, and as a result of pursuing these limits, we arrived at the solution of the present invention.

したがって、本発明は、前記の課題の解決手段として、
上流側に設けられた燃料噴射弁と1次空気を接線方向に
流入させる1次空気通路とを備え内部に燃焼ガスの渦流
を発生させる副燃焼室と、前8己副燃焼室の下流側に接
続する主燃焼室からなリ、前記1次空気通路の前記副燃
焼室の壁面における開口の上流端は、前記燃料噴射弁の
噴口との間に所定の距離Yを有し、前記距離Yの値は前
記副燃焼室の直径をDとして、 D/4≦Y≦D の範囲から選定されており、それによって前記副燃焼室
の上流側に所定の大きさの燃料の噴霧蒸発空間が形成さ
れていることを特徴とする副燃焼室式渦巻燃焼器を提供
する。
Therefore, the present invention, as a means for solving the above problems,
A sub-combustion chamber is provided with a fuel injection valve provided on the upstream side and a primary air passage through which primary air flows in in a tangential direction, and generates a vortex flow of combustion gas inside; The upstream end of the opening in the wall surface of the auxiliary combustion chamber of the primary air passage has a predetermined distance Y between it and the nozzle of the fuel injection valve, and The value is selected from the range of D/4≦Y≦D, where D is the diameter of the auxiliary combustion chamber, thereby forming a fuel spray evaporation space of a predetermined size on the upstream side of the auxiliary combustion chamber. A sub-combustion chamber type swirl combustor is provided.

〔作 用〕[For production]

副燃焼室の上流側に設けられた燃料噴射弁の噴口から燃
料が噴射されると、燃料噴霧は円錐形に十分に拡開して
減圧されると共に、噴射された副燃焼室の上流側の部分
は、噴霧蒸発空間となっていて、そこに1次空気が直接
流入することがないので、空気が混入する前の燃料噴霧
は壁面や燃焼ガスからの輻射熱を受けて加熱され、液状
の燃料粒は蒸発して気化し、すみやかに気体状の燃料と
なる。
When fuel is injected from the nozzle of the fuel injection valve installed on the upstream side of the auxiliary combustion chamber, the fuel spray expands into a conical shape and is depressurized. This part is a spray evaporation space, and primary air does not directly flow into it, so the fuel spray before air is mixed in is heated by radiant heat from the wall and combustion gas, and becomes liquid fuel. The grains evaporate and become vaporized, quickly turning into gaseous fuel.

気化した燃料は副燃焼室の下流側の壁面に開口している
1次空気通路から渦巻状に噴火する1次空気と混合する
と共に着火して燃焼するが、燃料の気化が進んでいるの
で着火しやすく、また燃焼効率も高く、カーボンを発生
することがない。
The vaporized fuel mixes with the primary air that erupts in a spiral form from the primary air passage that opens on the downstream wall of the sub-combustion chamber, ignites and burns, but as the fuel vaporization progresses, ignition does not occur. It is easy to burn, has high combustion efficiency, and does not generate carbon.

1次空気が流入する位置が適正であるから、燃料蒸発の
気化が十分に進んだ後であり、しかも1次空気の混入が
遅すぎて逆に燃料と空気の混合状態が悪化し、空気不足
の部分を生じて燃焼効率が低下するという問題も生じな
い。
Because the position where the primary air flows in is appropriate, it occurs after the fuel evaporation has sufficiently progressed, and the mixing of the primary air is too slow, resulting in a worsening of the mixture of fuel and air, resulting in air shortage. There is also no problem that the combustion efficiency decreases due to the occurrence of the part shown in FIG.

〔実施例〕〔Example〕

第1図〜第3図に本発明の第1実施例を示す。 A first embodiment of the present invention is shown in FIGS. 1-3.

第2図は第1図の一部の横断面を拡大して示す側面図で
あり、第3図は第1図の要部を拡大して示すものである
。これらの図において、既に説明した第4図〜第6図に
示す従来のガスタービンの燃焼器と実質的に同じ構造部
分については、同じ参照符号を付けることによって重複
する説明は省略することとする。
2 is an enlarged side view of a cross section of a part of FIG. 1, and FIG. 3 is an enlarged view of the main part of FIG. 1. In these figures, structural parts that are substantially the same as those of the conventional gas turbine combustor shown in FIGS. 4 to 6, which have already been explained, are designated by the same reference numerals and redundant explanation will be omitted. .

この実施例の特徴は、副燃焼室4′を形成する筒壁にお
いて、1次空気通路11′の開口と、それに伴なう案内
羽根10′をできるだけ主燃焼室5に接近させて設け、
それによって1次空気通路11′の開口前端と燃料噴射
弁8の噴口16との間に、副燃焼室4′の直径りの2分
の1程度の距離Yを取り、副燃焼室4′の前方部分に空
気の吹き込まない噴霧蒸発空間17を形成したことであ
る。第1実施例の場合、副燃焼室4′の前方部分はフラ
ンジ部7の外周に溶接された室壁が、燃料噴霧角θ(約
45°)と略同程度の開き角θ′によりラッパ状に拡開
する部分18によって形成され、その拡開部分18の周
辺が滑らかなR面によって副燃焼室4′の円筒部分19
に接続している。
The feature of this embodiment is that the opening of the primary air passage 11' and the accompanying guide vane 10' are provided as close to the main combustion chamber 5 as possible in the cylindrical wall forming the sub-combustion chamber 4'.
As a result, a distance Y of approximately 1/2 of the diameter of the auxiliary combustion chamber 4' is provided between the opening front end of the primary air passage 11' and the nozzle 16 of the fuel injection valve 8. This is because a spray evaporation space 17 into which no air is blown is formed in the front part. In the case of the first embodiment, the front part of the auxiliary combustion chamber 4' has a chamber wall welded to the outer periphery of the flange portion 7, which has a trumpet-like opening angle θ' that is approximately the same as the fuel spray angle θ (approximately 45°). The cylindrical portion 19 of the sub-combustion chamber 4' is formed by a portion 18 which expands into
is connected to.

加圧された燃料が燃料噴射弁8の噴口16から噴射され
ると、噴霧蒸発空間17の中へ噴射角θを有する円錐状
に拡散し、減圧されると共に燃焼ガスや燃焼室壁からの
輻射熱を受けて液体の粒である燃料粒が蒸発し、すみや
かに気体状の燃料になる。
When the pressurized fuel is injected from the nozzle 16 of the fuel injection valve 8, it diffuses into the spray evaporation space 17 in a conical shape with an injection angle θ, and is depressurized and radiated heat from the combustion gas and the combustion chamber wall. As a result, the liquid fuel particles evaporate and quickly become gaseous fuel.

そして気化が進んだ状態で円筒部分19に入り、1次空
気通路11′から接線方向に流入する1次空気と出会い
、渦流を形成しながら燃料分子と空気がよく混合して着
火・燃焼する。
The vaporized state then enters the cylindrical portion 19, where it encounters the primary air flowing tangentially from the primary air passage 11', where the fuel molecules and air mix well while forming a vortex, resulting in ignition and combustion.

したがって燃焼効率が高く、燃焼が安定し、可燃限界が
高くて着火性・始動性も良くなる。拡開部分18の開き
角θ′は燃料の噴霧角θと略同じ大きさにとっであるか
ら、噴霧蒸発空間17は最小の容積で燃料に対し十分な
蒸発・気化作用をもたらし、デッドスペースがないから
2次的な渦流の停滞によるカーボンの堆積も起こらない
Therefore, combustion efficiency is high, combustion is stable, flammability limit is high, and ignitability and startability are improved. Since the opening angle θ' of the expanding portion 18 is set to approximately the same size as the fuel spray angle θ, the spray evaporation space 17 provides sufficient evaporation and vaporization action for the fuel with the minimum volume, and no dead space is created. Since there is no such thing, carbon deposition due to secondary vortex stagnation does not occur.

燃焼効率の点では第1図〜第3図に示した第1実施例に
対して若干劣るが、同様に可燃限界が高く、燃焼安定性
に優れている第2実施例を第7図に示す。参照符号は既
に述べたものと共通であるが、この実施例は、第1実施
例にぐらべて副燃焼室4″の形が相違する。燃料噴射弁
8の先端と1次空気通路11′の前端との距離Yは、や
はり副燃焼室4′の直径りの172程度と大きくとり、
燃料のための十分な大きさの噴霧蒸発空間17′を形成
しているが、その形状はラッパ形でなく略円筒形である
The second embodiment is shown in FIG. 7, which is slightly inferior to the first embodiment shown in FIGS. 1 to 3 in terms of combustion efficiency, but has a similarly high flammability limit and excellent combustion stability. . Although the reference numerals are the same as those already described, this embodiment differs from the first embodiment in the shape of the auxiliary combustion chamber 4''.The tip of the fuel injection valve 8 and the primary air passage 11' The distance Y from the front end of the auxiliary combustion chamber 4' is set as large as 172 mm, which is the diameter of the auxiliary combustion chamber 4'.
A sufficiently large spray evaporation space 17' for fuel is formed, but its shape is not a trumpet shape but a substantially cylindrical shape.

これらの例について空気流量(Ga)と燃料流量(Gf
)の比を変化させた場合の可燃限界を調べて線図として
示したものが第8図である。燃料が希薄となる領域では
、空燃比がそれ以上大きくなると安定燃焼を続けること
ができなくなる可燃限界が存在するが、可燃限界は前記
の距離Yの大きさによって著しく変化することが判明し
た。試作実験に使用した第1実施例(第1図〜第3図に
示したもの。第8図における曲線A)、第2実施例(第
7図に示したもの。第8図の曲線B)のほかに、比較例
として第9図に示したもの(曲線C)、及び第10図に
示したもの(曲線D)の特性も調べて同じ第8図に表示
した。
For these examples, the air flow rate (Ga) and fuel flow rate (Gf
Fig. 8 is a diagram showing the flammability limit when the ratio of ) is changed. In a region where the fuel is lean, there is a flammability limit beyond which stable combustion cannot continue if the air-fuel ratio increases, but it has been found that the flammability limit changes significantly depending on the size of the distance Y mentioned above. The first example (shown in Figures 1 to 3; curve A in Figure 8) and the second example (shown in Figure 7; curve B in Figure 8) used in the prototype experiment. In addition, the characteristics of the comparative examples shown in FIG. 9 (curve C) and those shown in FIG. 10 (curve D) were also investigated and are shown in FIG.

第9図及び第10図に示した比較例は、いずれも噴口1
6の位置と1次空気通路11″及び11 ’の開口の前
方端位置とが一致していて、前述の距離Yが零の場合で
あり、燃料は燃料噴射弁8から噴射されると同時に1次
空気すの旋回流に巻き込まれ、直ちに着火される。した
がって燃料の液粒は蒸発・気化のいとまを与えられるこ
となく燃焼域に送り込まれるため燃焼が完全に行なわれ
ない。また、遠心力により副燃焼室4″及び4″′の室
壁に振りとばされて付着する燃料の量も多く、それが熱
分解してカーボンの堆積を生じやすい。さらに第9図の
ように、1次空気通路11″の後端と絞り開口12との
間に大きな距離lがあると、絞り開口12が1次空気す
の一部によって被覆されるとか冷却されるということが
ないから、絞り開口12が燃焼ガスの接触によって溶損
しやすいという別の問題もある。
In both the comparative examples shown in FIGS. 9 and 10, the nozzle 1
6 and the front end positions of the openings of the primary air passages 11'' and 11' coincide, the aforementioned distance Y is zero, and fuel is injected from the fuel injection valve 8 at the same time as 1. The fuel droplets are then caught up in the swirling flow of air and immediately ignited.Therefore, the fuel droplets are sent into the combustion zone without being given time to evaporate or vaporize, so combustion does not occur completely.Also, centrifugal force As a result, a large amount of fuel is blown off and adhered to the walls of the auxiliary combustion chambers 4'' and 4'', which tends to thermally decompose and cause carbon deposits.Furthermore, as shown in Figure 9, If there is a large distance l between the rear end of the air passage 11'' and the diaphragm opening 12, the diaphragm opening 12 will not be covered or cooled by a part of the primary air chamber. Another problem is that it is susceptible to erosion due to contact with combustion gases.

本発明の2つの実施例(第1図A1第7面B)と2つの
比較例(第9図C・第10図D)の可燃限界を比較して
示す第8図から判るように、各曲線の右下の領域である
燃焼安定範囲の広さは、A>B>C>D のように副燃焼室の構造によって著しい違いを示した。
As can be seen from FIG. 8, which shows a comparison of the flammability limits of two embodiments of the present invention (FIG. 1 A1, seventh surface B) and two comparative examples (FIGS. 9 C and 10 D), each The breadth of the stable combustion range, which is the area on the lower right of the curve, showed significant differences depending on the structure of the sub-combustion chamber, such as A>B>C>D.

本発明の2つの実施例は副燃焼室の上流側に噴霧蒸発空
間17.17’を備えているために共に高い可燃限界を
有し、非常に希薄な燃料空気の混合物でも着火し、安定
に燃焼するから、燃焼効率もアイドル時でAが98%、
Bが95%と高い。これに反して、2つの比較例の場合
はYの距離が零であって、燃料が噴射されると直ちに1
次空気すの旋回流に巻き込まれるから吹き消えも多(、
燃料が十分に濃くないと着火することができない。また
、燃焼効率も低く、カーボンの発生・堆積も多くなる。
Both embodiments of the present invention have a high flammability limit because they are equipped with a spray evaporation space 17,17' upstream of the sub-combustion chamber, and even a very lean fuel-air mixture can be ignited stably. Since it burns, the combustion efficiency is 98% for A at idle.
B is high at 95%. On the other hand, in the two comparative examples, the distance Y is zero, and the distance Y is 1 immediately after the fuel is injected.
It often gets blown out because it gets caught up in the swirling flow of air.
If the fuel is not rich enough, it will not be possible to ignite. Furthermore, combustion efficiency is low, and carbon generation and deposition increases.

第8図に記入した直線はYの値が副燃焼室4の直径りの
1/4とした場合であって、Yの値がこれより小さくな
ると比較例C,Dのように可燃限界が低下し、燃焼効率
が悪化する。しかしながら、Yの値があまりに大きい場
合も、前述のように1次空気の混合が遅れて不完全燃焼
となり、カーボンを発生するが、実験の結果、良好な燃
焼状態をもたらすYの値の最大値は、副燃焼室の直径り
と同程度の値であることが確認されている。なお、第8
図における点aはアイドル時を示すものである。
The straight line drawn in Figure 8 is when the value of Y is set to 1/4 of the diameter of the auxiliary combustion chamber 4, and when the value of Y is smaller than this, the flammability limit decreases as in Comparative Examples C and D. However, combustion efficiency deteriorates. However, if the value of Y is too large, as mentioned above, the mixing of the primary air will be delayed resulting in incomplete combustion and carbon will be generated.However, as a result of experiments, the maximum value of Y that produces good combustion conditions It has been confirmed that the value is approximately the same as the diameter of the auxiliary combustion chamber. In addition, the 8th
Point a in the figure indicates the idle time.

〔発明の効果〕〔Effect of the invention〕

本発明により可燃限界が高くなり、燃焼効率が向上して
安定燃焼の範囲が著しく広くなるので、低負荷時にも燃
焼が停止するようなおそれがなく、またカーボンの発生
・堆積も少なくなるので、堆積したカーボンによるトラ
ブルも避けることができる。また、燃焼状態が良好とな
るために、HCや白煙、または黒煙の発生も少なくなる
The present invention increases the flammability limit, improves combustion efficiency, and significantly widens the range of stable combustion, so there is no risk of combustion stopping even at low loads, and the generation and deposition of carbon is reduced. Trouble caused by deposited carbon can also be avoided. Furthermore, since the combustion condition is improved, the generation of HC, white smoke, or black smoke is also reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の全体構成を示す縦断面図
、第2図は第1図の■−■断面図、第3図は第1図の要
部を拡大して示す縦断面図、第4図は従来例の全体構成
を示す縦断面図、第5図は第4図の■−■断面図、第6
図は第4図の要部を拡大して示す縦断面図、第7図は本
発明の第2実施例の全体構成を示す縦断面図、第8図は
可燃限界の特性を比較して示す線図、第9図及び第10
図はそれぞれ比較例の全体構成を示す縦断面図である。 1・・・燃焼器外筒、  2・・・燃焼器内筒、3・・
・通気間隙、 4′ ・4” 、4”’・・・副燃焼室、5・・・主燃
焼室、   6・・・端部壁、7・・・フランジ部、 
 訃・・燃料噴射弁、9・・・点火プラグ、  10.
10’・・・案内羽根、11・11’  、 11” 
、 11”’・・・1次空気通路、12・・・絞り開口
、   13.13’・・・空気孔、14・・・流出筒
、    15・・・希釈空気口、16・・・噴口、 
    17.17’・・・噴霧蒸発空間、18・・・
拡開部分、   19・・・円筒部分、a・・・加圧空
気、   b・・・1次空気、C,C’・・・2次空気
及び冷却空気、d・・・希釈空気、   f・・・軽油
、g・・・タービン作動ガス、 l・・・距離、 Y・・・噴口と1次空気通路との距離、θ・・・噴霧角
、    θ′・・・開き角。 第3図 第1 4′・・・副燃焼室 訃・・燃料噴射弁 11’・・・1次空気通路 図 】7・・・噴霧蒸発空間 b・・・1次空気 Y・・・距 離 第 国 第 4・・・副燃焼室 5・・・主燃焼室 11・・・1次空気通路 図 16・・・噴 口 b・・・1次空気 第 図 第 図 燃料流量Gf
FIG. 1 is a vertical sectional view showing the overall configuration of the first embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIG. 4 is a vertical cross-sectional view showing the overall configuration of the conventional example, FIG. 5 is a sectional view taken along ■--■ of FIG.
The figure is a longitudinal sectional view showing an enlarged view of the main part of Fig. 4, Fig. 7 is a longitudinal sectional view showing the overall configuration of the second embodiment of the present invention, and Fig. 8 shows a comparison of the characteristics of the flammability limit. Diagrams, Figures 9 and 10
Each figure is a longitudinal sectional view showing the overall structure of a comparative example. 1... Combustor outer cylinder, 2... Combustor inner cylinder, 3...
・Vent gap, 4'・4",4"'... Sub-combustion chamber, 5... Main combustion chamber, 6... End wall, 7... Flange part,
Death...Fuel injection valve, 9...Spark plug, 10.
10'...Guide vane, 11.11', 11"
, 11'''...Primary air passage, 12...Aperture opening, 13.13'...Air hole, 14...Outflow tube, 15...Dilution air port, 16...Nozzle port,
17.17'...Spray evaporation space, 18...
Expanding part, 19... Cylindrical part, a... Pressurized air, b... Primary air, C, C'... Secondary air and cooling air, d... Dilution air, f. ...Light oil, g...Turbine working gas, l...Distance, Y...Distance between nozzle and primary air passage, θ...Spray angle, θ'...Opening angle. Fig. 3 1 4'...Sub-combustion chamber...Fuel injection valve 11'...Primary air passage diagram]7...Spray evaporation space b...Primary air Y...Distance Country No. 4...Sub-combustion chamber 5...Main combustion chamber 11...Primary air passage diagram 16...Nozzle b...Primary air diagram Diagram Fuel flow rate Gf

Claims (1)

【特許請求の範囲】  上流側に設けられた燃料噴射弁と1次空気を接線方向
に流入させる1次空気通路とを備え内部に燃焼ガスの渦
流を発生させる副燃焼室と、前記副燃焼室の下流側に接
続する主燃焼室からなり、前記1次空気通路の前記副燃
焼室の壁面における開口の上流端は、前記燃料噴射弁の
噴口との間に所定の距離Yを有し、前記距離Yの値は前
記副燃焼室の直径をDとして、 D/4≦Y≦D の範囲から選定されており、それによって前記副燃焼室
の上流側に所定の大きさの燃料の噴霧蒸発空間が形成さ
れていることを特徴とする副燃焼室式渦巻燃焼器。
[Scope of Claims] A sub-combustion chamber that includes a fuel injection valve provided on the upstream side and a primary air passage through which primary air flows tangentially, and generates a vortex flow of combustion gas therein; and the sub-combustion chamber. The upstream end of the opening in the wall surface of the auxiliary combustion chamber of the primary air passage has a predetermined distance Y from the nozzle of the fuel injection valve, and The value of the distance Y is selected from the range of D/4≦Y≦D, where D is the diameter of the sub-combustion chamber, thereby creating a fuel spray evaporation space of a predetermined size on the upstream side of the sub-combustion chamber. A sub-combustion chamber type swirl combustor characterized by the following:
JP25303390A 1990-09-22 1990-09-22 Sub-combustion chamber type swirling combustion device Pending JPH04131620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25303390A JPH04131620A (en) 1990-09-22 1990-09-22 Sub-combustion chamber type swirling combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25303390A JPH04131620A (en) 1990-09-22 1990-09-22 Sub-combustion chamber type swirling combustion device

Publications (1)

Publication Number Publication Date
JPH04131620A true JPH04131620A (en) 1992-05-06

Family

ID=17245548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25303390A Pending JPH04131620A (en) 1990-09-22 1990-09-22 Sub-combustion chamber type swirling combustion device

Country Status (1)

Country Link
JP (1) JPH04131620A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047825A1 (en) * 2006-10-20 2008-04-24 Ihi Corporation Gas turbine combustor
JP2009287888A (en) * 2008-05-30 2009-12-10 Ihi Corp Burner
JP2011007430A (en) * 2009-06-26 2011-01-13 Ihi Corp Combustor for micro gas turbine
CN106594801A (en) * 2015-10-16 2017-04-26 中航商用航空发动机有限责任公司 Low-pollution combustion chamber adopting forced diversion at main-combustion-stage outlet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047825A1 (en) * 2006-10-20 2008-04-24 Ihi Corporation Gas turbine combustor
JPWO2008047825A1 (en) * 2006-10-20 2010-02-25 株式会社Ihi Gas turbine combustor
US9038392B2 (en) 2006-10-20 2015-05-26 Ihi Corporation Gas turbine combustor
JP2009287888A (en) * 2008-05-30 2009-12-10 Ihi Corp Burner
JP2011007430A (en) * 2009-06-26 2011-01-13 Ihi Corp Combustor for micro gas turbine
CN106594801A (en) * 2015-10-16 2017-04-26 中航商用航空发动机有限责任公司 Low-pollution combustion chamber adopting forced diversion at main-combustion-stage outlet

Similar Documents

Publication Publication Date Title
RU2145402C1 (en) System of aerodynamic injection of fuel-and-air mixture
US3866413A (en) Air blast fuel atomizer
US5410884A (en) Combustor for gas turbines with diverging pilot nozzle cone
US4215535A (en) Method and apparatus for reducing nitrous oxide emissions from combustors
JP3901371B2 (en) Apparatus for gas turbine supplying fuel and air to gas turbine combustor, vaporizer for injecting fuel and air into gas turbine engine combustor, and method for injecting fuel and air into gas turbine engine combustor
CN108561897B (en) Partial premixing and pre-evaporating ultralow emission combustion chamber for enhancing oil-gas mixing
JPH07507862A (en) Combustion chamber device and combustion method
GB2458022A (en) Air-Blast Fuel Injection Nozzle With Diverging Exit Region
RU2439435C1 (en) Gte combustion chamber front device fuel-air module
US3834159A (en) Combustion apparatus
JP2002195563A (en) Method and device for reducing burner emission
JPS6131775B2 (en)
US7090205B2 (en) Premixed air-fuel mixture supply device
US5473882A (en) Combustion apparatus for a gas turbine having separate combustion and vaporization zones
US2548087A (en) Vaporizer system for combustion chambers
RU2456510C1 (en) Continuous-action combustion chamber
JPH04131620A (en) Sub-combustion chamber type swirling combustion device
JPH07332671A (en) Pre-evaporizing premixing combustor
RU2361147C2 (en) Heater injector with updated reflector plate
JPS6038518A (en) Fuel burner for gas turbine engine
RU2749434C1 (en) Air-fuel burner and frontal device of combustion chamber
RU2359171C2 (en) Burner for heater with improved heat-shielding cover
US5092128A (en) Stored energy combustor
JP2017524889A (en) Thin film evaporator burner device
RU2361107C2 (en) Nozzle for heating device with improved fuel supply