JPH04131610A - Combustion controller - Google Patents

Combustion controller

Info

Publication number
JPH04131610A
JPH04131610A JP25015890A JP25015890A JPH04131610A JP H04131610 A JPH04131610 A JP H04131610A JP 25015890 A JP25015890 A JP 25015890A JP 25015890 A JP25015890 A JP 25015890A JP H04131610 A JPH04131610 A JP H04131610A
Authority
JP
Japan
Prior art keywords
air
air volume
air amount
correction coefficient
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25015890A
Other languages
Japanese (ja)
Inventor
Noritsune Suyama
陶山 範経
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25015890A priority Critical patent/JPH04131610A/en
Publication of JPH04131610A publication Critical patent/JPH04131610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To improve the combustion efficiency of a burner and prevent the generation of soot by calculating a correction coefficient for air volume accord ing to the number of burners that are ignited and correcting the air volume to the burner based on said correction coefficient. CONSTITUTION:A correction coefficient k is sought by a correction coefficient calculator 21 based on the number m of the burners that are ignited. And, this correction coefficient k is introduced to a corrected air volume calculator 22, and here an air excess ratio mu that is beforehand set theoretical air volume AO in addition to the fuel flow rate FF from a fuel flow rate meter 6 being inputted, it is possible to obtain a target air volume FAO, and this target air volume FAO is sent out to an air volume regulator 9. With this arrangement it is possible to hold the air volume FA at a specified value FAO, if, after this air volume regulator 9 seeks the operational output based on the target air volume FAO, the air volume regulator 9 adjusts an air flow rate regulating valve 11 by using this operational output. Accordingly also when arbitrary number of burners are ignited, it is possible to maintain the combustion at a certain air-fuel ratio lambda based on the set air excess ratio mu and the theoretical air volume AO.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、燃焼負荷量に応じてバーナの点火本数を増減
させて燃焼制御を行う燃焼制御装置に係わり、特に燃料
遮断によるバーナ消火時の空燃比を適正な値に保持する
燃焼制御装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a combustion control device that controls combustion by increasing or decreasing the number of burner ignitions depending on the combustion load, and particularly relates to a combustion control device that controls combustion by increasing or decreasing the number of burner ignitions depending on the combustion load. The present invention relates to a combustion control device that maintains an air-fuel ratio at an appropriate value when a burner is extinguished.

(従来の技術) 一般に、複数のバーナを用いて油、ガスなどの燃料を燃
焼する場合、燃焼効率を高める観点から燃焼用空気量を
適切に供給することが重要である。なぜならば、空気量
が不足すると不完全燃焼による未燃分の大気中への排出
、煤の発生などが生じ、逆に空気量が過剰なときには火
炉の温度が低下して熱損失が大きくなるためである。
(Prior Art) Generally, when burning fuel such as oil or gas using a plurality of burners, it is important to supply an appropriate amount of combustion air from the viewpoint of increasing combustion efficiency. This is because if the amount of air is insufficient, incomplete combustion will cause unburned matter to be discharged into the atmosphere and soot will be generated, whereas if the amount of air is excessive, the temperature of the furnace will drop and heat loss will increase. It is.

そこで、従来、以上のような要望を満たすべく第5図に
示すような燃焼制御装置が開発されている。この装置は
、燃焼炉(図示せず)の適宜な箇所にn本のバーナ11
+12+ ・・・ 1.が設置され、これら各バーナ1
1.12.・・・ 1.には燃籾供給主管2および空気
供給主管3を通して燃料および空気が供給され、さらに
燃料供給主管2かう各バーナ11,1゜、・・・ 1.
に至る分岐配管にはそれぞれ燃料遮断弁4□、42.・
・・、4、が設けられている。なお、空気供給主管3か
ら各バーナ11,1□、・・・ 1fiに至る分岐配管
にはコストおよび操作の面から空気遮断弁が設けられて
いない。
Therefore, a combustion control device as shown in FIG. 5 has been developed to meet the above-mentioned demands. This device has n burners 11 installed at appropriate locations in a combustion furnace (not shown).
+12+... 1. are installed, and each of these burners 1
1.12. ... 1. Fuel and air are supplied to the main fuel supply pipe 2 through the main fuel supply pipe 2 and the main air supply pipe 3, and each burner 11, 1°, . . . 1.
Fuel cutoff valves 4□, 42.・
..., 4, are provided. Note that the branch piping from the main air supply pipe 3 to each burner 11, 1□, . . . 1fi is not provided with an air cutoff valve in terms of cost and operation.

一方、燃料流量および空気量の各制御系は次のように構
成されている。先ず、燃料流量制御系には燃料流量調節
計5が設けられ、燃焼負荷に応じた目標燃料流量F。と
燃料流量検出計6からの燃料流量FFとの偏差を求めた
後、この偏差が零になるような操作信号を送出して燃料
流量調節弁7を操作し、燃料流量F、が目標燃料流量F
。に致するように制御する。
On the other hand, each control system for fuel flow rate and air amount is configured as follows. First, a fuel flow rate controller 5 is provided in the fuel flow control system, and a target fuel flow rate F is set according to the combustion load. After determining the deviation between F and the fuel flow rate FF from the fuel flow rate detector 6, the fuel flow control valve 7 is operated by sending an operation signal that makes this deviation zero, and the fuel flow rate F is set to the target fuel flow rate. F
. control to match.

次に、空気量制御系では、予め空気過剰率μおよび理論
空気量A。が定められ、これら空気過剰率μ、理論空気
量A。および燃料流量F、が空気量演算手段8に導入さ
れ、ここで(1)式の演算式に基づいて演算を行って目
標空気mFAoを求めて空気ffi調節計9に供給する
Next, in the air amount control system, the excess air ratio μ and the theoretical air amount A are determined in advance. are determined, and the excess air ratio μ and the theoretical air amount A. and fuel flow rate F are introduced into the air amount calculation means 8, which calculates the target air mFAo based on the calculation formula (1) and supplies it to the air ffi controller 9.

FAo−11Ao Fp        −(1)この
空気量調節計9は空気量演算手段8で求めた目標空気量
FAOと空気流量検出計10によって測定された空気量
FAとの偏差を求めた後、この偏差か零になるような操
作信号を送出して空気量調節弁11を操作し、バーナバ
ーナ1..1□29.。
FAo-11Ao Fp - (1) This air amount controller 9 determines the deviation between the target air amount FAO obtained by the air amount calculation means 8 and the air amount FA measured by the air flow rate detector 10, and then calculates this deviation. The air amount control valve 11 is operated by sending an operation signal that causes the burner burner 1 to become zero. .. 1□29. .

1、、に供給する空気量FAが目標空気量FAOに一致
するように制御する。
Control is performed so that the air amount FA supplied to the air pumps 1, .

ところで、燃焼中に燃焼用炉の熱量が現状よりも少なく
てよい場合が出てくる。このとき、点火中の全部のバー
ナに対して燃料流量を等分に少なくすることにより、所
望とする熱量を保持することが考えられる。しかし、燃
料流量がバーナの規格で定まる下限値を越えた場合には
バーナの特性上からも良くないので、かかる場合にはあ
る燃料遮断弁を閉じて対応するバーナの消火することが
行われている。
By the way, there are cases where the amount of heat in the combustion furnace during combustion may be smaller than the current amount. At this time, it is conceivable to maintain the desired amount of heat by equally reducing the fuel flow rate for all burners during ignition. However, if the fuel flow rate exceeds the lower limit determined by the burner specifications, it is not good from the viewpoint of the characteristics of the burner, so in such a case, a certain fuel cutoff valve is closed to extinguish the corresponding burner. There is.

(発明が解決しようとする課8) しかしながら、以上のような燃焼制御装置では次のよう
な問題があった。バーナの点火本数に見合う燃料流量F
Pから目標空気量FAOが定められているが、バーナ1
には燃料遮断弁4に相当する空気遮断弁が付設されてい
ないので、消火中のバーナからも空気が供給される。従
って、全バーナが点火されている場合には適切な空気量
であったものが、バーナの間引きがあった場合には消火
中のバーナに無駄に供給される空気量分だけの空気が不
足し、燃焼効率が低下するばかりか、煤の付着による製
品品質への悪影響が問題になっている。
(Problem 8 to be solved by the invention) However, the combustion control device as described above has the following problems. Fuel flow rate F corresponding to the number of ignitions of the burner
The target air amount FAO is determined from P, but burner 1
Since the burner is not provided with an air cutoff valve corresponding to the fuel cutoff valve 4, air is also supplied from the burner during extinguishing. Therefore, when all the burners are ignited, there is an appropriate amount of air, but when burners are thinned out, there is a shortage of air that is wasted to the extinguished burners. Not only does combustion efficiency decline, but the adhesion of soot has an adverse effect on product quality.

本発明は上記実情にかんがみてなされたもので、バーナ
消火の有無に拘らず適量の空気を供給して不完全燃焼を
防ぎ、安定な燃焼を確保する燃焼制御装置を提供するこ
とを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a combustion control device that prevents incomplete combustion and ensures stable combustion by supplying an appropriate amount of air regardless of whether or not the burner is extinguished. .

[発明の構成] (課題を解決するための手段) 本発明は上記課題を解決するために、被燃焼プロセスに
複数本のバーナが設置され、燃焼負荷量に応じて前記バ
ーナの点火本数を増減しながら前記被燃焼プロセスの熱
量を調節する一方、バーナに供給する燃料流量および空
気量を目標値に占わせるように制御する燃焼制御装置に
おいて、バーナ点火本数に応じて空気量の補正係数を演
算出力する補正係数演算手段と、この補正係数演算手段
によって得られた補正係数に基づいて目標空気量を求め
て出力する補正空気量演算手段とを備え、この目標空気
量を受けて空気量調節計が空気量を制御するた構成であ
る。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention includes a plurality of burners installed in the process to be combusted, and increases or decreases the number of ignitions of the burners according to the amount of combustion load. In a combustion control device that adjusts the heat amount of the combustion process while controlling the fuel flow rate and air amount supplied to the burner so as to account for the target value, a correction coefficient for the air amount is adjusted according to the number of burners ignited. It is equipped with a correction coefficient calculation means for calculating and outputting, and a correction air amount calculation means for calculating and outputting a target air amount based on the correction coefficient obtained by the correction coefficient calculation means, and adjusting the air amount in response to the target air amount. The configuration is such that the meter controls the amount of air.

(作 用) 従って、本発明は以上のような手段を講じたことにより
、補正係数演算手段ではバーナ点火本数に合わせて空気
量を補正するための補正係数を求めた後、この補正係数
を補正空気量演算手段に導入する。この補正空気量演算
手段では、その補正係数に基づいてバーナ点火本数に影
響されない一定の空燃比となる目標空気量を算用し、こ
の目標空気量に基づいて空気量を制御することにより、
バーナの燃焼状態を良好に保つことができる。
(Function) Therefore, in the present invention, by taking the above measures, the correction coefficient calculation means calculates a correction coefficient for correcting the air amount according to the number of burner ignitions, and then corrects this correction coefficient. Introduced into the air amount calculation means. This corrected air amount calculation means calculates a target air amount that provides a constant air-fuel ratio that is not affected by the number of burner ignitions based on the correction coefficient, and controls the air amount based on this target air amount.
The combustion state of the burner can be maintained in good condition.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第1図は本発明の燃焼制御装置の一実施例の構成を示
すブロック図である。なお、同図において第5図と同一
部分には同一符号を付してその詳しい説明は省略する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an embodiment of the combustion control device of the present invention. In this figure, the same parts as in FIG. 5 are given the same reference numerals, and detailed explanation thereof will be omitted.

すなわち、本装置は、燃料流量調節計5において燃料流
量検出計6からの燃料流量F、が予め設定された目標燃
料流量F。に一致するように燃料流量調節弁7の開度を
調節して燃料流量FPを制御し、また空気量調節計9に
おいて目標空気量FAOと空気流量検出計10からの空
気量FAとの偏差が零になるように空気量調節弁11の
開度を調節して空気量FAを制御する点はいずれも従来
のものと同じである。
That is, in this device, the fuel flow rate F from the fuel flow rate detector 6 in the fuel flow rate controller 5 is a preset target fuel flow rate F. The fuel flow rate FP is controlled by adjusting the opening degree of the fuel flow rate control valve 7 so that the difference between the target air amount FAO and the air amount FA detected by the air flow rate detector 10 is detected by the air amount controller 9. The point that the air amount FA is controlled by adjusting the opening degree of the air amount adjusting valve 11 so that the air amount FA becomes zero is the same as in the conventional system.

本発明装置において特に異なるところは、バーナの点火
本数に基づいて補正係数kを算出する補正係数演算手段
21と、この補正過剰率演算手段21によって得られた
補正係数に1空気過剰率μ、理論空気量A。および燃料
流量F、とからバーナ点火本数に応じて補正した目標空
気量FAOを求めて空気量調節計9に送出する補正空気
量演算手段22とを設けたことにある。
Particularly different parts of the device of the present invention are a correction coefficient calculation means 21 that calculates a correction coefficient k based on the number of ignitions of the burner, and a correction coefficient obtained by this correction excess ratio calculation means 21 including a 1 excess air ratio μ and a theoretical Air amount A. and fuel flow rate F, and corrected air amount calculation means 22 for calculating a target air amount FAO corrected according to the number of burner ignitions and sending it to the air amount controller 9.

次に、以上のように構成された装置の動作を説明するに
先立ち、補正係数演算手段21において補正係数にの値
をどのようにして決定するかについて説明する。燃焼現
象は燃料成分の元素を酸化させる化学反応であるから、
燃料成分の元素組成が分かれば燃焼に必要な理論空気量
AOを容易に求めることができる。しかし、未燃分が残
らないように完全燃焼させるためには理論空気量へ〇以
上の過剰空気が必要であり、理論空気量へ〇に対する実
際の供給空気量の割合を空気過剰率μという。空気過剰
率μの値は燃料の種類、燃焼方法などによって異なるが
、通常1.1〜1.4程度に最適値があるとされている
。今、燃料流量F、に対して必要な空気量FAは前記(
1)式により与えることができる。
Next, before explaining the operation of the apparatus configured as described above, a description will be given of how the value of the correction coefficient is determined in the correction coefficient calculation means 21. Since the combustion phenomenon is a chemical reaction that oxidizes the elements of the fuel components,
If the elemental composition of the fuel components is known, the theoretical air amount AO required for combustion can be easily determined. However, in order to achieve complete combustion so that no unburned matter remains, an excess air amount of 0 or more is required over the theoretical air amount, and the ratio of the actual supplied air amount to the theoretical air amount 0 is called the excess air ratio μ. The value of the excess air ratio μ varies depending on the type of fuel, combustion method, etc., but it is generally said that the optimum value is around 1.1 to 1.4. Now, the air amount FA required for the fuel flow rate F is (
1) It can be given by Eq.

FA −+CZAo Fp        −(1)’
但し、燃料流I F Fおよび空気41 F Aはそれ
ぞれ燃料供給主管2および空気供給主管3における値と
する。
FA −+CZAo Fp −(1)′
However, the fuel flow I F F and the air 41 F A are set to the values in the main fuel supply pipe 2 and the main air supply pipe 3, respectively.

今、全部でn本の同一特性のバーナ11 ・・・1oか
ら成る燃焼系ではバーナ1本当りの燃料流量FPas空
気量FAaがそれぞれ(2)、(3)式%式% このときの各バーナの燃料流量に対する空気量の割合(
以下、空燃比という)λは前記(1)式、(2)式およ
び(3)式から、 λ−” F A、、/ F P−−u Ao     
−(4)となる。ところが、n本の全バーナ中のm (
m<n)本のみが点火されている場合には、バーナ1本
あたりの空気量をFA、、燃料流量をFP、とすると、 FA、−FA /n−FAt        ”’  
(5)FP−−FF  /m            
 H+・ (6)となる。このことは、燃料供給系では
燃料遮断弁4を閉じることにより、m本の点火バーナの
みに燃料が供給されるのに反し、空気供給系では遮断弁
がないのでn本の全バーナに空気を供給することになり
、(5)式は(3)式に等しくなる。従って、このとき
の各バーナの空燃比λ、は、1m −F hum/ F
 ps −μA o  (m / n )     ・・・(7
)となり、本来の(4)式の空燃比λを得るためには、
次に定義する補正係数kを導入し、k−07m    
      ・・・(8)を求める。そして、次の(9
)式に基づいて目標空気量FAOを決定する。
Now, in a combustion system consisting of a total of n burners 11...1o with the same characteristics, the fuel flow rate FPas and air amount FAa per burner are (2) and (3) formula % formula % Each burner at this time Ratio of air amount to fuel flow rate (
From the above formulas (1), (2), and (3), λ (hereinafter referred to as air-fuel ratio) is: λ-" F A, , / F P--u Ao
-(4). However, m (
m<n) When only one burner is lit, if the air amount per burner is FA, and the fuel flow rate is FP, then FA, -FA /n-FAt "'
(5) FP--FF/m
H+・(6). This means that in the fuel supply system, by closing the fuel cutoff valve 4, fuel is supplied only to m ignition burners, whereas in the air supply system, there is no cutoff valve, so air is supplied to all n burners. Therefore, equation (5) becomes equal to equation (3). Therefore, the air-fuel ratio λ of each burner at this time is 1 m −F hum/F
ps −μA o (m/n) ... (7
), and in order to obtain the original air-fuel ratio λ of equation (4),
Introducing the correction coefficient k defined next, k-07m
...Find (8). Then, the next (9
) The target air amount FAO is determined based on the formula.

FA、−に、gAOFp       ”’ (9)従
って、空気供給主管3での空気量FAを目標空気量FA
Oに置き換えて、 1m ” F Am/ F F@ = (FAG/n)/ (FF /m)= (k μA
o FF /n)/ (FF /m)−μA0    
      ・・・(10)となL5バーナ点火本数m
本のときの空燃比λ。
FA, -, gAOFp '' (9) Therefore, the air amount FA in the main air supply pipe 3 is set to the target air amount FA.
Replaced with
o FF/n)/(FF/m)-μA0
...(10) L5 burner ignition number m
The air-fuel ratio λ at the time of book.

は(4)式の空燃比λと一致する。coincides with the air-fuel ratio λ in equation (4).

因みに、第2図はバーナの全数n−5の場合における補
正係数にの値を、バーナ点火本数mの関数としてグラフ
化した図である。mの値は離散値であるから、同図の点
線は便宜的なものである。
Incidentally, FIG. 2 is a graph showing the value of the correction coefficient in the case where the total number of burners is n-5 as a function of the number m of burners ignited. Since the value of m is a discrete value, the dotted line in the figure is for convenience.

従って、本装置は、補正係数演算手段21にてバーナ点
火本数mに基づいて(8)式で定義した補正係数kを求
めた後、この補正係数kを補正空気量演算手段22に導
入し、ここで予め設定された空気過剰率μ、理論空気量
AOのほか、燃料流量検出計6から燃料流量F、が入力
されているので、(9)式に基づいて目標空気量F^。
Therefore, in this device, after the correction coefficient calculation means 21 calculates the correction coefficient k defined by equation (8) based on the burner ignition number m, this correction coefficient k is introduced into the correction air amount calculation means 22, Here, in addition to the preset excess air ratio μ and theoretical air amount AO, the fuel flow rate F from the fuel flow rate detector 6 is input, so the target air amount F^ is determined based on equation (9).

を求めることができ、この目標空気量FAOを空気量調
節計9に送出する。ゆえに、この空気量調節計9は目標
空気量FAOに基づいて操作出力を求めた後、この操作
出力を用いて空気流量調節弁11を調節すれば空気量F
Aを所定の値FAOに保持することができる。
This target air amount FAO is sent to the air amount controller 9. Therefore, the air amount controller 9 calculates the operation output based on the target air amount FAO, and then adjusts the air flow rate control valve 11 using this operation output to adjust the air amount F.
A can be held at a predetermined value FAO.

従って、以上のような実施例の構成によれば、任意のバ
ーナ点火本数のときにも、常に設定した空気過剰率μ、
および理論空気量A。に基づく一定の空燃比λの燃焼を
維持することができる。
Therefore, according to the configuration of the embodiment as described above, even when the number of burners is ignited, the set excess air ratio μ,
and theoretical air amount A. It is possible to maintain combustion at a constant air-fuel ratio λ based on .

次に、第3図は本発明の他の実施例を示す図である。こ
の実施例は、バーナ点火本数に基づく前記(9)式の補
正係数にと空気過剰率μの積にμを新たにμと定義し、
バーナ点火本数mの関数μ−f (m)の形で出力する
空気過剰率演算手段23を用いた例である。
Next, FIG. 3 is a diagram showing another embodiment of the present invention. In this embodiment, μ is newly defined as the product of the correction coefficient in equation (9) above based on the number of burner ignitions and the excess air ratio μ,
This is an example using the excess air ratio calculating means 23 which outputs the function μ-f (m) of the number m of burner ignitions.

さらに、第4図は本発明の他の実施例を示す図である。Furthermore, FIG. 4 is a diagram showing another embodiment of the present invention.

この実施例は、空気過剰率演算手段23の代わりに予め
演算した空気過剰率μを定数値として空気過剰率記憶手
段24のμ1(L−1、・・・n)に設定し、バーナ点
火本数に応じて切替手段25によって切り替えてμiを
読み出して使用する構成である。
In this embodiment, instead of the excess air ratio calculating means 23, the excess air ratio μ calculated in advance is set as a constant value to μ1 (L-1, . . . n) of the excess air ratio storage means 24, and the number of burner ignitions is The configuration is such that μi is read and used by switching by the switching means 25 according to the change.

なお、前記空気過剰率演算手段23や空気過剰率記憶手
段24と切替手段25はそれぞれ補正係数演算手段とし
ての機能を有する。
The excess air ratio calculating means 23, the excess air ratio storing means 24, and the switching means 25 each have a function as a correction coefficient calculating means.

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果] 以上説明したように本発明によれば、バーナ点火本数に
応じて空気量の補正係数を算出し、この補正係数に基づ
いてバーナへの空気量を補正するようにしたので、バー
ナ点火本数に影響されずに常に一定の空燃比で燃焼制御
することができる。
[Effects of the Invention] As explained above, according to the present invention, the correction coefficient for the amount of air is calculated according to the number of burners ignited, and the amount of air to the burner is corrected based on this correction coefficient. Combustion can always be controlled at a constant air-fuel ratio without being affected by the number of burners ignited.

これによって、バーナの燃焼効率を高く維持できるとと
もに、煤の発生を防止することができ、製品への煤の付
着や大気中への未燃分の排出を防止できる。
As a result, the combustion efficiency of the burner can be maintained at a high level, and the generation of soot can be prevented, and soot can be prevented from adhering to the product and from being discharged into the atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる燃焼制御装置の一実施例を示す
構成図、第2図はバーナ点火本数と補正係数との関係を
示す説゛明図、第3図および第4図はそれぞれ本発明の
燃焼制御装置の他の実施例を示す構成図、第5図は従来
装置の構成図である。 11.1□、・・・、14・・・バーナ、2・・・燃料
供給主管、3・・・空気供給主管、41,4□、・・・
41・・・燃料遮断弁、5・・・燃料流量調節計、6・
・・燃料流量検出計、7・・・燃料流量調節弁、8・・
・空気量演算手段、9・・・空気量調節計、10・・・
空気流量検出計、11・・・空気流量調節弁、21・・
・補正係数演算手段、22・・・補正空気量演算手段、
23・・・空気過剰率演算手段、24・・・空気過剰率
記憶手段、25・・・切替手段。 出願人代理人 弁理士 鈴江武彦 第 図 m:バーナ点火本数 會 FAQ  目標空気量 第 図 ! FAO目標空気量 I4 図
FIG. 1 is a block diagram showing an embodiment of the combustion control device according to the present invention, FIG. 2 is an explanatory diagram showing the relationship between the number of burner ignitions and the correction coefficient, and FIGS. A configuration diagram showing another embodiment of the combustion control device of the invention, and FIG. 5 is a configuration diagram of a conventional device. 11.1□,..., 14...Burner, 2...Main fuel supply pipe, 3...Main air supply pipe, 41,4□,...
41...Fuel cutoff valve, 5...Fuel flow rate controller, 6.
...Fuel flow rate detection meter, 7...Fuel flow rate control valve, 8...
・Air amount calculation means, 9... Air amount controller, 10...
Air flow rate detector, 11...Air flow rate control valve, 21...
・Correction coefficient calculation means, 22...Correction air amount calculation means,
23... Excess air ratio calculation means, 24... Excess air ratio storage means, 25... Switching means. Applicant's representative Patent attorney Takehiko Suzue Diagram m: Burner ignition number FAQ Target air amount diagram! FAO target air amount I4 diagram

Claims (1)

【特許請求の範囲】  被燃焼プラントに複数本のバーナが設置され、燃焼負
荷量に応じて前記バーナの点火本数を増減しながら前記
被燃焼プラントの熱量を調節する一方、バーナに供給す
る燃料流量および空気量を目標値に合わせるように制御
する燃焼制御装置において、 バーナ点火本数に応じて空気量の補正係数を演算出力す
る補正係数演算手段と、この補正係数演算手段によって
得られた補正係数に基づいて目標空気量を求めて出力す
る補正空気量演算手段とを備え、 この補正空気量演算手段で求めた目標空気量を受けて空
気量調節計が空気量を制御することを特徴とする燃焼制
御装置。
[Claims] A plurality of burners are installed in the combustion plant, and the amount of heat in the combustion plant is adjusted by increasing or decreasing the number of burners ignited according to the combustion load, while the fuel flow rate supplied to the burners is adjusted. and a combustion control device that controls the air amount to match a target value, a correction coefficient calculating means for calculating and outputting a correction coefficient for the air amount according to the number of burner ignitions, and a correction coefficient calculating means obtained by the correction coefficient calculating means. a corrected air amount calculating means for calculating and outputting a target air amount based on the corrected air amount calculating means, and an air amount controller controls the air amount in response to the target air amount calculated by the corrected air amount calculating means. Control device.
JP25015890A 1990-09-21 1990-09-21 Combustion controller Pending JPH04131610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25015890A JPH04131610A (en) 1990-09-21 1990-09-21 Combustion controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25015890A JPH04131610A (en) 1990-09-21 1990-09-21 Combustion controller

Publications (1)

Publication Number Publication Date
JPH04131610A true JPH04131610A (en) 1992-05-06

Family

ID=17203688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25015890A Pending JPH04131610A (en) 1990-09-21 1990-09-21 Combustion controller

Country Status (1)

Country Link
JP (1) JPH04131610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080318172A1 (en) * 2004-06-23 2008-12-25 Ebm-Papst Landshut Gmbh Method for Regulating and Controlling a Firing Device and a Firing Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080318172A1 (en) * 2004-06-23 2008-12-25 Ebm-Papst Landshut Gmbh Method for Regulating and Controlling a Firing Device and a Firing Device
US8500441B2 (en) * 2004-06-23 2013-08-06 Ebm-Papst Landshut Gmbh Method for regulating and controlling a firing device and a firing device

Similar Documents

Publication Publication Date Title
KR101520240B1 (en) Valve control device, gas turbine, and valve control method
EP0322132A1 (en) Fuel burner apparatus and a method of control
US20120100493A1 (en) Assured compliance mode of operating a combustion system
JP2008232501A (en) Air-fuel ratio control system for combustion heating furnace
JP2011099608A (en) Boiler combustion control device
US6752093B2 (en) Method for operating a refuse incineration plant
JPH05288325A (en) Method for operating incinerator with simultaneous control of temperature and product of incomplete combustion
US4531905A (en) Optimizing combustion air flow
JPH04131610A (en) Combustion controller
JPS63286614A (en) Combustion control of boller
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JPS6113531B2 (en)
JPS6029515A (en) Combustion controller
JP7220971B2 (en) Combustion control method for combustion equipment
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JP2020118357A (en) Oxygen ratio control system
JP7210125B2 (en) Combustion equipment
JPS60263014A (en) Combustion controlling method
JPH1047609A (en) Steam temperature control method of boiler
JP7110803B2 (en) By-product gas utilization system
SU1719796A1 (en) Method of combustion automatic control
JPH056088B2 (en)
JP2021011954A (en) Oxygen ratio control system
JP3003165B2 (en) Burner thinning control method for combustion furnace
JPH10176829A (en) Automatic regulating method of set value for controlling concentration of oxygen in boiler waste gas