JPH04127125A - Optical element - Google Patents

Optical element

Info

Publication number
JPH04127125A
JPH04127125A JP2247328A JP24732890A JPH04127125A JP H04127125 A JPH04127125 A JP H04127125A JP 2247328 A JP2247328 A JP 2247328A JP 24732890 A JP24732890 A JP 24732890A JP H04127125 A JPH04127125 A JP H04127125A
Authority
JP
Japan
Prior art keywords
polymer
optical element
layers
molecule
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2247328A
Other languages
Japanese (ja)
Inventor
Tetsushi Yoshida
哲志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2247328A priority Critical patent/JPH04127125A/en
Publication of JPH04127125A publication Critical patent/JPH04127125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the transmissivity and to enable optimum optical compensation by forming plural high molecule layers of films which are arrayed having molecule length axes in constant directions and laminated shifting in the array direction of the molecule length axes. CONSTITUTION:In the figure of the optical element, 1 is a high molecule multi- layered film, which is formed by laminating plural high molecule layers 2 - 6. The respective high molecule layers 2 - 6 are thin layers with refractive index anisotropy where high molecules 7 ... such as a liquid crystal polymer have their long axes arreyed in constant directions n1 - n5, and laminated in order the angles of the array directions n1 - n5 of the high molecules 7... vary, bit by bit. The optical element 1 which is the high molecule multi-layered film has the high molecules 7 ... arrayed in the constant directions n1 - n5 by every high molecule layers 2 - 6 in the surface direction, but has the high molecules 7 ... twisted and oriented in the thickness direction. Consequently, the transmissivity is increased and the optimum optical compensation of a phase difference, etc., becomes possible.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は液晶表示装置等に用いられる光学補償用の光
学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical element for optical compensation used in liquid crystal display devices and the like.

[従来技術とその問題点] 従来、TN型や5TNy!Jの液晶表示装置においては
、液晶セルの屈折率の波長依存性による旋光分散、また
は、各波長光ごとの位相差の違いによって、表示画面が
着色する。このことは、特に液晶のねじれ角が大きいS
TN型の液晶セルの場合に著しく発生する。このような
問題を解消するために、最近では、液晶セルと偏光板の
間に位相差を補償する位相板を設けている。
[Prior art and its problems] Conventionally, TN type and 5TNy! In the liquid crystal display device of J, the display screen is colored due to optical rotational dispersion due to the wavelength dependence of the refractive index of the liquid crystal cell or due to the difference in phase difference for each wavelength of light. This is especially true for S where the twist angle of the liquid crystal is large.
This phenomenon occurs significantly in the case of TN type liquid crystal cells. In order to solve this problem, recently, a phase plate is provided between the liquid crystal cell and the polarizing plate to compensate for the phase difference.

しかしながら、位相板を用いた場合には、透過率が低下
するので、2〜3枚程度しか設けることができないため
、十分な光学的補償することができず、表示品質の良い
ものが得られないという問題がある。
However, when using a phase plate, the transmittance decreases, so only about 2 to 3 plates can be provided, so sufficient optical compensation cannot be achieved and a good display quality cannot be obtained. There is a problem.

[発明の目的] この発明は上述した事情に鑑みてなされたもので、その
目的とするところは、透過率が高く、位相差等の最適な
光学補償が可能な光学素子を提供することである。
[Object of the Invention] This invention was made in view of the above-mentioned circumstances, and its purpose is to provide an optical element that has high transmittance and is capable of optimal optical compensation for phase difference, etc. .

[発明の要点] この発明は上述した目的を達成するために、分子長軸を
一定方向に整列させた複数の高分子層が、前記分子長軸
の整列方向を順次ずらして積層された膜からなることを
要点とする。
[Summary of the Invention] In order to achieve the above-mentioned object, the present invention is based on a film in which a plurality of polymer layers with their long molecular axes aligned in a certain direction are laminated with the directions of the long molecular axes sequentially shifted. The main point is to become.

[実施fll 以下、N41図〜第3図を参照して、この発明の詳細な
説明する。
[Implementation full] Hereinafter, the present invention will be described in detail with reference to Figures N41 to 3.

第1図は光学素子の分解斜視図である。この光学素子1
は高分子多層膜であり、複数の高分子層2〜6(図では
5層であるが、これに限られない)を積層した構成とな
っている。各高分子層2〜6は、それぞれ液晶ポリマ等
の高分子7・・・の長軸が一定方向nl”n5に整列さ
れた屈折率異方性を有する薄い層であり、高分子7・・
・の整列方向n1〜n5の角度が少しづつずれた状態で
順次積層され、これにより高分子多層膜を構成する。し
たがって、この高分子多層膜である光学素子1は1面方
向においては各高分子層2〜6ごとに高分子7・・・が
一定方向n1〜n5に整列されているが、厚み方向にお
いては高分子7・・・がねじれ配向とされている。
FIG. 1 is an exploded perspective view of the optical element. This optical element 1
is a polymer multilayer film, and has a structure in which a plurality of polymer layers 2 to 6 (5 layers in the figure, but not limited to this) are laminated. Each of the polymer layers 2 to 6 is a thin layer having refractive index anisotropy in which the long axes of the polymers 7 such as liquid crystal polymers are aligned in a certain direction nl"n5, and the polymers 7...
* are sequentially laminated with the angles of the alignment directions n1 to n5 being slightly shifted, thereby forming a polymer multilayer film. Therefore, in the optical element 1, which is a polymer multilayer film, in the one-plane direction, the polymers 7 are aligned in a certain direction n1 to n5 for each polymer layer 2 to 6, but in the thickness direction, The polymers 7... are twisted in orientation.

次に、上述した光学素子1を製造する場合について、第
1図および第2図を参照しながら説明する。
Next, the case of manufacturing the above-mentioned optical element 1 will be described with reference to FIGS. 1 and 2.

まず、ガラスあるいは光学的に等方性を有する合成樹脂
等の基板を用意し、この基板を液晶ポリマ等の高分子7
・・・を溶解した溶媒中に浸漬して引き上げる。すると
、基板の表面に高分子7・・・が付着するとともに、第
2図に示すように高分子7・・・は、その長袖が基板の
引き上げ方向nに泊って整列される。これにより、屈折
率異方性を有する薄層としての第1の高分子層2が形成
される。なお、高分子7・・・の整列状態の規則性が低
い場合には、第1の高分子層2の表面を布等で一定方向
つまり基板の引き上げ方向nに沿って擦ることにより、
高分子7・・・を規則的に整列させることができる。特
に、高分子7が液晶ポリマの場合には、予め、基板の表
面にラビング処理を施すか、あるいは基板の表面にポリ
イミド等の樹脂を塗布して乾燥させ、その表面にラビン
グ処理を施し、このラビング方向に沿って溶媒中から基
板を引き上げれば、高分子7・・・がラビング処理の配
向規制力によってラビング方向に沿って整列され、より
一層、高分子7・・・を一定方向nl に規則的に整列
させることができる。
First, a substrate made of glass or an optically isotropic synthetic resin is prepared, and this substrate is used as a substrate made of a polymer such as a liquid crystal polymer.
Immerse it in a solvent containing ... and pull it out. Then, the polymers 7 adhere to the surface of the substrate, and as shown in FIG. 2, the polymers 7 are aligned with their long sleeves perpendicular to the substrate pulling direction n. As a result, the first polymer layer 2 as a thin layer having refractive index anisotropy is formed. Note that if the regularity of the alignment of the polymers 7 is low, by rubbing the surface of the first polymer layer 2 with a cloth or the like in a certain direction, that is, along the substrate lifting direction n,
The polymers 7... can be regularly arranged. In particular, when the polymer 7 is a liquid crystal polymer, the surface of the substrate is rubbed in advance, or a resin such as polyimide is applied to the surface of the substrate and dried, and the surface is rubbed. When the substrate is pulled up from the solvent along the rubbing direction, the polymers 7 are aligned along the rubbing direction by the alignment regulating force of the rubbing process, and the polymers 7 are further aligned in a certain direction nl. They can be arranged regularly.

この後、第1の高分子層2が設けられた基板を再び溶媒
中に浸漬し、第1の高分子J!F2の高分子7・・・の
整列方向n1に対して少し角度をずらして基板を引き上
げる。すると、第1の高分子層2の表面に高分子7・・
・が付着するとともに、高分子7・・・が基板の引き上
げ方向に沿って整列される。
After this, the substrate provided with the first polymer layer 2 is immersed in the solvent again, and the first polymer layer J! The substrate is pulled up at a slight angle with respect to the alignment direction n1 of the polymers 7 . . . of F2. Then, the polymer 7... is formed on the surface of the first polymer layer 2.
. is attached, and the polymers 7 are aligned along the direction in which the substrate is pulled up.

この整列方向n2は第1の高分子層2の整列方向11 
に対して少し角度がずれている。これにより、屈折率異
方性を有する薄層としての第2の高分子層3が形成され
る。このときにも、高分子7・・・の整列状態の規則性
が低い場合は、第2の高分子層3の表面を布等で擦って
高分子7・・・を規則的に整列させればよく、また高分
子7が液晶ポリマの場合には、第1の高分子層2の表面
に直接、その高分子7・・・の整列方向n1に対して少
し角度をずらした方向にラビング処理を施し、このラビ
ング方向に沿って基板を引き上げればよい。
This alignment direction n2 is the alignment direction 11 of the first polymer layer 2.
The angle is slightly off. As a result, the second polymer layer 3 as a thin layer having refractive index anisotropy is formed. At this time, if the regularity of the alignment of the polymers 7 is low, rub the surface of the second polymer layer 3 with a cloth or the like to align the polymers 7 regularly. If the polymer 7 is a liquid crystal polymer, rubbing treatment is applied directly to the surface of the first polymer layer 2 in a direction slightly shifted from the alignment direction n1 of the polymer 7. , and then pull up the substrate along this rubbing direction.

このような工程を繰り返すことにより、第3〜第5の各
高分子層4〜6を順次積層することができる。この結果
、各高分子層2〜6ごとに屈折率異方性を有し、かつ厚
み方向に高分子7・・・の長軸がねじれ配向された高分
子多層M(光学素子l)が形成される。
By repeating such steps, the third to fifth polymer layers 4 to 6 can be sequentially laminated. As a result, a polymer multilayer M (optical element l) is formed in which each of the polymer layers 2 to 6 has refractive index anisotropy and the long axes of the polymers 7 are twisted and oriented in the thickness direction. be done.

このような光学素子1は、高分子7・・・の整列方向n
1〜n5の相互のずれ角と各高分子層2〜6のiiM数
を適宜変えることにより、自由に位相差を設定すること
ができ、最適な光学補償を行なうことが可能である。ま
た、この光学素子1は、浸漬法により各高分子1i)2
〜6を順次積層させるので、簡単かつ安価に製作するこ
とができるとともに、膜厚を均一に形成することができ
、透過率の高いものを得ることができ、しかも高分子多
層膜であるから、薄型化および軽量化が可能となる。
Such an optical element 1 is arranged in the alignment direction n of the polymers 7...
By appropriately changing the mutual shift angles of 1 to n5 and the iiM number of each polymer layer 2 to 6, the phase difference can be freely set, and optimal optical compensation can be performed. In addition, this optical element 1 can be prepared by each polymer 1i)2 by the dipping method.
~6 are sequentially laminated, so it can be manufactured easily and inexpensively, and the film thickness can be formed uniformly, and a film with high transmittance can be obtained.Moreover, since it is a polymer multilayer film, It becomes possible to reduce the thickness and weight.

なお、上述した実施例では浸漬法により各高分子層2〜
6を順次積層させたが、これに限らず、ラングミュア・
プロジェット法により積層することもできる。
In addition, in the above-mentioned embodiment, each polymer layer 2 to
6 were sequentially laminated, but this is not limited to Langmuir.
Lamination can also be performed by the Projet method.

次に、第3図を参照して、上述した光学素子を液晶表示
装置に適用した場合について説明する。
Next, with reference to FIG. 3, a case will be described in which the above-described optical element is applied to a liquid crystal display device.

なお、ここで言う光学素子10は高分子多層膜を複数組
み合わせたものである0図中、11は上側の透明基板、
12は下側の透明基板である。各透明基板11.12は
ガラスあるいは光学的に等方性を有する合成樹脂等から
なり、上下に対向して配置されている。各透明基板11
.12の対向面には、ITO(酸化インジウムと酸化ス
ズの混合物)等からなる透明電極13.14がマトリク
ス状に設けられているとともに、高分子多層膜15.1
6が各透明電極13.14を覆って設けられている。こ
の場合、高分子多層膜15.16はそれぞれ前述した高
分子多層膜と同じ構成であり、配向膜としての機能を有
し、その各表面(対向面)にラビング処理が施されてい
る。また、透明基板11.12は枠状のシール材17に
より所定間隔(ギャップd)離れて接合され、その間隙
に液晶18が封入されている。この液晶18は上下の高
分子多層Ws15.16により厚み方向にねじれた状態
で配向されている。さらに、各透明基板11.12の外
面には高分子多層膜19.2゜がそれぞれ設けられてい
る。各高分子多層膜19.20は前述した高分子多層膜
と全く同じものであり、その外面には偏光板21.22
がそれぞれ設けられている。したがって、この液晶表示
装置では、高分子層MIlj15.16.19.20に
より光学素子10が構成され、その総厚および厚み方向
の高分子7・・・のねじれ配向状態は液晶18の複屈折
性によって生じる位相差によって決定され、この位相差
を補償するように光学素子10が形成されている。
The optical element 10 referred to here is a combination of multiple polymer multilayer films. In Figure 0, 11 is an upper transparent substrate;
12 is a lower transparent substrate. Each of the transparent substrates 11 and 12 is made of glass or optically isotropic synthetic resin, and is arranged vertically to face each other. Each transparent substrate 11
.. Transparent electrodes 13.14 made of ITO (a mixture of indium oxide and tin oxide) or the like are provided in a matrix on the opposite surface of 12, and a polymer multilayer film 15.1
6 is provided over each transparent electrode 13,14. In this case, the polymer multilayer films 15 and 16 each have the same structure as the above-described polymer multilayer film, have a function as an alignment film, and have each surface (opposing surface) subjected to a rubbing treatment. Further, the transparent substrates 11 and 12 are joined together at a predetermined interval (gap d) using a frame-shaped sealing material 17, and a liquid crystal 18 is sealed in the gap. This liquid crystal 18 is oriented in a twisted state in the thickness direction by upper and lower polymer multilayers Ws15.16. Furthermore, a polymer multilayer film 19.2° is provided on the outer surface of each transparent substrate 11.12. Each of the polymer multilayer films 19 and 20 is exactly the same as the polymer multilayer film described above, and has polarizing plates 21 and 22 on its outer surface.
are provided for each. Therefore, in this liquid crystal display device, the optical element 10 is constituted by the polymer layers MIlj15, 16, 19, 20, and the total thickness and the twisted orientation state of the polymers 7 in the thickness direction are determined by the birefringence of the liquid crystal 18. The optical element 10 is formed to compensate for this phase difference.

このような液晶表示装置においては、液晶18の複屈折
性によって生じる位相差に応じて、各高分子多層膜15
.16.19.20よりなる光学素子lOの膜厚および
高分子7・・・のねじれ配向状態を設定することができ
るので、最適な光学補償を行なうことができ、表示画面
に表示色が現われるのを確実に防ぐことができ、しかも
光学素子lOは従来の位相板等よりも透過率が高いので
表示が明るく、装置全体の薄型化および軽量化をも図る
ことができる。特に、この液晶表示装置では、浸漬法に
より透明基板11の両面に高分子多層1115.16.
または透明基板12の両面に高分子多層膜19.20を
同時に設けることができるので、能率的に高分子多層膜
15.16.19.20を設けることができ、生産性が
極めて良い。
In such a liquid crystal display device, each polymer multilayer film 15 is
.. 16.19.20 The film thickness of the optical element 10 and the twisted orientation state of the polymer 7... can be set, so optimal optical compensation can be performed and the displayed color will appear on the display screen. Moreover, since the optical element IO has a higher transmittance than a conventional phase plate or the like, the display is brighter, and the entire device can be made thinner and lighter. In particular, in this liquid crystal display device, polymer multilayers 1115, 16.
Alternatively, since the polymer multilayer films 19, 20 can be provided on both sides of the transparent substrate 12 at the same time, the polymer multilayer films 15, 16, 19, 20 can be provided efficiently, resulting in extremely high productivity.

なお、上述した実施例では、上下の各透明基板11.1
2の両者に各高分子多層膜15.16.19.20を設
けて光学素子lOを構成したが、透明基板11.12の
片方のみに高分子多層膜を設けただけでもよい。
In addition, in the embodiment described above, each of the upper and lower transparent substrates 11.1
Although the optical element 10 was constructed by providing each of the polymer multilayer films 15, 16, 19, and 20 on both of the transparent substrates 11 and 12, the polymer multilayer film may be provided on only one of the transparent substrates 11 and 12.

また、この発明は液晶表示装置に限らず、ビデオカメラ
等の映像装置や、その他の光学装M等に広く適用するこ
とができる。
Further, the present invention is not limited to liquid crystal display devices, but can be widely applied to imaging devices such as video cameras, other optical devices M, and the like.

[発明の効果J 以上詳細に説明したように、この発明によれば、分子長
軸を一定方向に整列させた複数の高分子層が、前記分子
長軸の整列方向を順次ずらして積層された膜からなるか
ら、従来の位相板よりも透過率が高く、高分子層の積層
数および高分子のねじれ配向状態を適宜変えることによ
り、最適な光学補償ができる。
[Effects of the Invention J As explained in detail above, according to the present invention, a plurality of polymer layers in which the long axes of molecules are aligned in a certain direction are laminated with the direction in which the long axes of the molecules are aligned sequentially shifted. Since it is made of a film, it has higher transmittance than conventional phase plates, and optimal optical compensation can be achieved by appropriately changing the number of polymer layers and the twisted orientation of the polymers.

【図面の簡単な説明】[Brief explanation of the drawing]

第11iiiffはこの発明の光学素子の分解斜視図、
第2図はその1つの高分子層の高分子の配列状態を示す
平面図、第3図はこの発明の光学素子を適用した液晶表
示装置の断面図である。 1.10・・・・・・光学素子、2〜6・・・・・・高
分子層、7・・・・・・高分子、n!〜n5・・・・・
・高分子の整列方向。 特 許 出 願 人 カシオ計算機株式会社
No. 11iiiff is an exploded perspective view of the optical element of the present invention,
FIG. 2 is a plan view showing the arrangement of polymers in one polymer layer, and FIG. 3 is a cross-sectional view of a liquid crystal display device to which the optical element of the present invention is applied. 1.10...Optical element, 2-6...Polymer layer, 7...Polymer, n! ~n5...
- Direction of polymer alignment. Patent applicant Casio Computer Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 分子長軸を一定方向に整列させた複数の高分子層が、前
記分子長軸の整列方向を順次ずらして積層された膜から
なる光学素子。
An optical element consisting of a film in which a plurality of polymer layers each having their long molecular axes aligned in a certain direction are laminated with the directions of the long molecular axes being sequentially shifted.
JP2247328A 1990-09-19 1990-09-19 Optical element Pending JPH04127125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2247328A JPH04127125A (en) 1990-09-19 1990-09-19 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2247328A JPH04127125A (en) 1990-09-19 1990-09-19 Optical element

Publications (1)

Publication Number Publication Date
JPH04127125A true JPH04127125A (en) 1992-04-28

Family

ID=17161768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2247328A Pending JPH04127125A (en) 1990-09-19 1990-09-19 Optical element

Country Status (1)

Country Link
JP (1) JPH04127125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576931A2 (en) * 1992-06-18 1994-01-05 Casio Computer Company Limited Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576931A2 (en) * 1992-06-18 1994-01-05 Casio Computer Company Limited Liquid crystal display device
EP0576931A3 (en) * 1992-06-18 1994-08-10 Casio Computer Co Ltd Liquid crystal display device
US5548426A (en) * 1992-06-18 1996-08-20 Casio Computer Co., Ltd. Liquid crystal display device

Similar Documents

Publication Publication Date Title
US5399390A (en) Liquid crystal display with polymeric substrate
CN100370340C (en) Compensation film, manufacturing method thereof and liquid crystal display using the same
US5134507A (en) Liquid crystal display apparatus having a particular optical compensating member
US6300990B1 (en) Reflective LCD device with low visual angle dependency and high contrast
JP2551932B2 (en) Liquid crystal display
JPH11258584A (en) Plastic liquid crystal display elements
JP2008502006A (en) Multilayer optical compensation film
JPH09105958A (en) Visual angle varying element and visual angle variable liquid crystal display device using the same
JPH02245725A (en) Liquid crystal display device and phase plate for this display device
US6081311A (en) Liquid crystal display apparatus having high wide visual angle and high contrast
JPH07191313A (en) Liquid crystal display device
CN101114083B (en) Liquid crystal display element, electronic device, and manufacturing method of liquid crystal display element
JPH04127125A (en) Optical element
US20110109822A1 (en) Liquid crystal display element, method of manufacturing the same, and liquid crystal display device
JPH07159805A (en) Liquid crystal display device and its production
WO2023016401A1 (en) Display panel and display apparatus
JP2002323699A (en) Liquid crystal display device and method for manufacturing the same
JPH03175417A (en) Liquid crystal device
JP3074805B2 (en) Display element
JPH01147433A (en) Liquid crystal display element
JP2847192B2 (en) Liquid crystal display device
JP3006155B2 (en) Liquid crystal display
JPH10161096A (en) Liquid crystal display device
JP2893204B2 (en) Liquid crystal display device
JPH02308225A (en) Liquid crystal display element