JPH04121913A - Forming of insulating coat for metal wire rod - Google Patents

Forming of insulating coat for metal wire rod

Info

Publication number
JPH04121913A
JPH04121913A JP24023690A JP24023690A JPH04121913A JP H04121913 A JPH04121913 A JP H04121913A JP 24023690 A JP24023690 A JP 24023690A JP 24023690 A JP24023690 A JP 24023690A JP H04121913 A JPH04121913 A JP H04121913A
Authority
JP
Japan
Prior art keywords
metal wire
vessel
treatment
electrodeposition coating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24023690A
Other languages
Japanese (ja)
Inventor
Akira Morita
彰 森田
Takashi Kajiyama
梶山 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd filed Critical Nikkei Techno Research Co Ltd
Priority to JP24023690A priority Critical patent/JPH04121913A/en
Publication of JPH04121913A publication Critical patent/JPH04121913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable formation of an excellent coat having no contamination of dissolved ion by performing continuously anode oxidation treatment and cationic electrodeposition coating treatment in neutral or alkaline baths under liquid power feeding. CONSTITUTION:The vessel length L1 of an anode oxidation treatment vessel 20 and the vessel length L2 of an electrodeposition coating treatment vessel 40 are set at 1:5 ratio in order to regulate treatment time in the respective vessels 20 and 40 when the feeding speed of metal wire rod W is constant. A power-supply unit 50 is composed of a pair of DC power supplies 51 and 52, and respective positive electrodes are connected to respective pair of electrodes 41 and 42 of the electrodeposition coating treatment vessel 40, and respective negative electrodes, to respective pair of electrodes 21 and 22 of the anode oxidation treatment vessel 20. When the metal wire rods W are continuously fed in the vessels 20, 30 and 40, each metal wire rod W become a positive electrode in the vessel 20 and becomes a negative electrode in the vessel 40, and is subjected to liquid power feeding. The metal wire rod W being composed of a flat type wire, having corner parts of 0.8mm radius, made of pure aluminum having purity of 99.0 percent by weight, is continuously fed, and the voltage of the power-supply unit 50 is set at 310V for work execution.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属線材の絶縁皮膜形成方法に関し、詳しく
は陽極酸化処理による下地処理に引続き電着塗装処理を
液給電によって連続して行って絶縁皮膜を形成する方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming an insulating film on a metal wire, and more specifically, the present invention relates to a method for forming an insulating film on a metal wire. The present invention relates to a method of forming an insulating film.

[従来の技術] 各種設備、機器に用いられる電気導体としては、アルミ
ニウム、@等の線1条、帯状材料(以下、金属線材と称
する。)か広く用いられている。
[Prior Art] As electric conductors used in various facilities and devices, single wires or strips of aluminum, @, etc. (hereinafter referred to as metal wires) are widely used.

また、実用に際しては、金属線材に電気絶縁層を形成す
る賜金か多い。
In addition, in practical use, it is often necessary to form an electrically insulating layer on the metal wire.

従来、かかる電気絶縁層を形成する方法としては、絶縁
テープを巻回する方法、エナメル塗布方法、陽極酸化皮
膜を形成する方法、電着塗装により絶縁塗膜を形成する
方法のいずれかを採用するのが一般的である。
Conventionally, methods for forming such an electrically insulating layer include winding an insulating tape, applying enamel, forming an anodized film, and forming an insulating film by electrodeposition. is common.

すなわち、絶縁テープ巻回方法は、例えばグラスファイ
バーにポリエステルt11脂等を含浸させた厚さ0.5
mm程度のテープを金属線材に巻回する方法である。ま
た、エナメル塗布方法はエナメルを重ね塗りする方法で
ある。陽極酸化処理方法は金属線材か主にアルミニウム
線材の場合に採用され、酸性洛中で通電しつついわゆる
絶縁性陽極酸化皮膜を形成するものである。さらに、塗
膜形成方法は主に耐光性からアニオン系樹脂塗料を用い
た電着塗装処理によって塗膜を形成するものが汎用され
ている。
That is, the insulating tape winding method is, for example, a 0.5-thick insulating tape made of glass fiber impregnated with polyester T11 resin, etc.
This is a method of winding a tape of approximately 1.0 mm in length around a metal wire. Moreover, the enamel application method is a method of applying enamel in layers. The anodic oxidation treatment method is used for metal wires, mainly aluminum wires, and involves forming a so-called insulating anodic oxide film while energizing the wire in an acidic environment. Further, as a coating film forming method, a coating film is generally formed by electrodeposition coating using an anionic resin paint mainly because of its light resistance.

ここに、例えばトランス用絶縁コイル、リニアモータ・
カー用の絶縁電磁コイル等々に供する場合、高い耐電圧
が要求されるがテープ巻回方法では、巻回作業に多大な
労力と時間を有するばかりか、絶縁層が厚くなってしま
うので、大型化、コスト高となる。特に、浮上体が走行
する区間全域に渡って配設される多数のりニヤモータ・
カー用地上コイル(浮上用と推進用とかある。)を作る
ために供する場合等にあっては、コスト的にもスペース
ファクター的にも実用性に限界かあるといって過言でな
い。また、エナメル塗布方法では鋭角コーナ一部を有す
る上述の地上コイルのような平角線ではコーナ一部に均
一厚さで塗布することか離しく、全体として十分な絶縁
性を得るためには相当回数の重ね塗りが必要となるので
非常に高価となる。しなかって、上記テープ巻回方法と
同様に実用性に劣る。
Here, for example, insulated coils for transformers, linear motors, etc.
When used in insulated electromagnetic coils for cars, etc., a high withstand voltage is required, but with the tape winding method, not only does the winding process take a lot of time and effort, but the insulating layer becomes thicker, resulting in larger sizes. , the cost will be high. In particular, a large number of linear motors are installed throughout the area where the floating object travels.
It is no exaggeration to say that there is a limit to its practicality in terms of cost and space factor when it is used to make ground coils for cars (there are levitation and propulsion types). In addition, with the enamel coating method, for flat wires such as the above-mentioned ground coils that have some acute corners, it is difficult to coat the corners with a uniform thickness, and it is necessary to apply the enamel several times to obtain sufficient insulation as a whole. It is very expensive as it requires multiple coats. Therefore, like the above tape winding method, it is inferior in practicality.

しかしなから、このいずれの方法によっても次のような
問題点かある。
However, both of these methods have the following problems.

■ 陽極酸化処理方法では、金属線材をコイルに巻き上
げ加工するときに、陽極酸化皮膜にクラックか生じるの
で、結果として絶縁性か低下する。
■ In the anodic oxidation treatment method, when the metal wire is wound into a coil, cracks occur in the anodic oxide film, resulting in a decrease in insulation properties.

しかも、この問題は陽極酸化皮膜が厚いほど生じ易いと
いう煩わしさがある。
Moreover, this problem is more likely to occur as the anodic oxide film becomes thicker.

■ 電着塗装方法は、上記の如くアニオン系樹脂塗料を
用いて電着されるが、30μm以上の厚い膜を形成する
ことか雛しく得られる耐電圧特性に限界かあるという欠
点かある。また、使用中に樹脂塗膜を透湿して皮膜が腐
食されることかある。
(2) The electrodeposition coating method uses an anionic resin paint as described above, but it has the disadvantage that a thick film of 30 μm or more can be formed and that there is a limit to the voltage resistance that can be easily obtained. Also, during use, moisture may permeate through the resin coating and the coating may be corroded.

さらに、銅やアルミニウム等金属線材に直接アニオン型
電着塗装を行なうと、金属自体か溶解して塗料中に混入
するので、塗膜形成後の離しい曲げ加工を行う際に塗膜
か剥離し易いという欠陥かある。
Furthermore, when anionic electrodeposition is applied directly to metal wires such as copper or aluminum, the metal itself dissolves and gets mixed into the paint, so the paint film may peel off when bending it apart after the film is formed. The flaw is that it's easy.

■ ここに、陽極酸化処理方法とアニオン系樹脂塗料を
用いる電着塗装方法とを組合せることか考えられる。陽
極酸化処理とアニオン系電着塗装処理とでは、金属線材
への極性か同一であるから都合かよいからである。しか
し、陽極酸化処理浴か例えばVX酸、リン酸等のいわゆ
る酸性浴では、銅線等の場合に銅か溶解して電着塗料液
中に混入するので不都合である。これを防止するなめに
、過大な水洗設備を設けなければならす不利である。
■ Here, it may be possible to combine the anodic oxidation treatment method and the electrodeposition coating method using an anionic resin paint. This is convenient because the anodizing treatment and the anionic electrodeposition coating treatment have the same polarity on the metal wire. However, anodizing baths, such as so-called acid baths such as VX acid or phosphoric acid, are disadvantageous in the case of copper wires because the copper dissolves and mixes into the electrodeposition coating solution. In order to prevent this, an excessively large amount of water washing equipment must be provided, which is disadvantageous.

もとより、線自体の体積か減り結果として電気抵抗を増
大させるという欠点かある。一方、カチオン系樹脂塗料
を用いる;着塗装処理を行なうと、前段で形成された陽
極酸化皮膜の溶解か生じるので密着性の優れた塗膜が得
られない。
Of course, the disadvantage is that the volume of the wire itself is reduced, resulting in an increase in electrical resistance. On the other hand, if a cationic resin paint is used; a coating treatment is performed, the anodic oxide film formed in the previous stage will dissolve, making it impossible to obtain a paint film with excellent adhesion.

かかる事情から、スペースファクターやコストの不利を
受忍した上で上記絶縁テープの巻回方法等依然として採
用せざるを得ないのか実情であった。
Under these circumstances, the reality is that the method of winding the insulating tape as described above has no choice but to be adopted even after accepting the disadvantages of space factor and cost.

[発明か解決しようとする課題] 本発明は、上記事情に鑑みなされたもので、その目的は
皮膜の均一性、耐食性、加工性に優れ、耐電圧の高い確
実な絶縁性を保障てきる低コストで適応性の広い金属材
料の絶縁皮膜形成方法を提供することにある。
[Invention or Problem to be Solved] The present invention was made in view of the above circumstances, and its purpose is to provide a low-temperature film that has excellent film uniformity, corrosion resistance, and workability, and guarantees reliable insulation with a high withstand voltage. It is an object of the present invention to provide a method for forming an insulating film on metal materials that is inexpensive and has wide adaptability.

[課題を解決するための手段」 本発明は、陽極酸化処理と電着塗装処理によって、絶縁
テープ等の補強や重ね塗り等をしなくとも、必要十分な
耐電圧特性、加工性等を得るための皮膜形成方法を案出
すべく行った幾多の試験・研究を通じ創成したもので、
中性浴またはアルカリ浴による陽′I!f!酸化処理と
カチオン系電着樹脂塗料を用いる電着塗装処理(以下、
単に「カチオン系電着塗装処理」という、)とを液給電
により連接して行う方法とし、前記目的を達成するもの
である。
[Means for Solving the Problems] The present invention provides a method for obtaining necessary and sufficient voltage resistance characteristics, workability, etc., without reinforcing insulation tape, etc. or overcoating, etc., by anodizing treatment and electrodeposition coating treatment. It was created through numerous tests and research conducted to devise a method for forming a film.
Positive by neutral bath or alkaline bath! f! Electrodeposition coating treatment using oxidation treatment and cationic electrodeposition resin paint (hereinafter referred to as
This method, simply referred to as "cationic electrodeposition coating treatment"), is carried out in conjunction with liquid power supply, and achieves the above object.

すなわち、陽極酸化処理槽と電着塗装処理槽との電極を
同一の電源に結び、処理金属線材には間接的に給電する
液給電により連接して同時処理するものであって、その
際、中性浴またはアルカリ性浴の陽極酸化浴下で処理す
ることによって、カチオン系電着塗装処理時に陽極酸化
皮膜の劣化を低減させるものである。
In other words, the electrodes of the anodizing treatment tank and the electrodeposition coating treatment tank are connected to the same power source, and the treated metal wire is connected and processed simultaneously using a liquid power supply that supplies power indirectly. The deterioration of the anodic oxide film during cationic electrodeposition coating treatment is reduced by processing under an anodic oxidation bath of a neutral bath or an alkaline bath.

この場合、中性浴としては硼酸アンモニウムや酒石酸ア
ンモニウム等か、また、アルカリ性浴としてはカセイソ
ーダ、メタケイ酸ソータ、リン酸ソーダ等か適用され、
浴のPH値としては、P H6,0〜13,0好ましく
は6.5〜12.5になるような濃度で、浴温20〜4
0℃にて使用される。
In this case, the neutral bath is ammonium borate, ammonium tartrate, etc., and the alkaline bath is caustic soda, metasilicate sorta, sodium phosphate, etc.
The pH value of the bath should be 6.0 to 13.0, preferably 6.5 to 12.5, and the bath temperature should be 20 to 4.
Used at 0°C.

これらの陽極酸化浴を用いて、電流密度としては0.0
5〜4.、OA/drrf’、電圧50〜200Vにて
電解処理されるが、その電解時間は種実に対する金属線
材の給送速度を調整することによって所望のものとする
ことかできる。また、その時の対極としては、中性浴の
場合にはアルミニウム極か、アルカリ浴の場合にはステ
ンレス極か用いられ、300A厚以上の皮膜を形成させ
る。
Using these anodic oxidation baths, the current density was 0.0
5-4. , OA/drrf' and a voltage of 50 to 200 V, and the electrolytic time can be adjusted as desired by adjusting the feeding speed of the metal wire relative to the seeds. In addition, as a counter electrode at this time, an aluminum electrode is used in the case of a neutral bath, or a stainless steel electrode is used in the case of an alkaline bath, and a film with a thickness of 300A or more is formed.

さらに、カチオン系電着塗装処理においては、適宜の常
用されるカチオン系樹脂塗料、例えばエポキシ樹脂、ア
ミノエポキシ樹脂、アミノエポキシイソシアネート樹脂
、エポキシアミノアクリル樹脂等を主成分とする樹脂塗
料か適用され、適宜ペイントメーカーから市販されてい
るものを適用し得る。
Furthermore, in the cationic electrodeposition coating process, an appropriate commonly used cationic resin paint, such as a resin paint whose main component is epoxy resin, aminoepoxy resin, aminoepoxy isocyanate resin, epoxyamino acrylic resin, etc., is applied. Any paint commercially available from a paint manufacturer may be used as appropriate.

この場合、処理すべき金属線材を陰極とし、対極にはス
テンレス極などを用いて、アルミニウム線に対しては2
0〜350V、fjA線に対しては150〜280Vの
電圧を印加し、20〜500mA/ddの電流密度とし
、25〜30°Cの浴温下で10〜50μmの塗膜とす
る。その際、皮膜全体としての耐電圧値が樹脂塗料の塗
膜厚に左右されるので、必要な塗膜厚が確保されるよう
に電着塗装処理槽の種実(H2)を設定し、それを基本
として陽極酸化処理槽の種実(Ll)か決定される。通
常はH2対し1の比は、3〜15:1程度とされる。
In this case, the metal wire to be treated is used as a cathode, the counter electrode is a stainless steel electrode, etc., and the aluminum wire is used as a cathode.
A voltage of 0 to 350 V and 150 to 280 V is applied to the fjA line, a current density of 20 to 500 mA/dd is applied, and a coating film of 10 to 50 μm is formed at a bath temperature of 25 to 30°C. At that time, the withstand voltage value of the entire film depends on the coating thickness of the resin paint, so set the seed (H2) of the electrodeposition coating treatment tank so that the necessary coating thickness is secured, and Basically, the seed (Ll) of the anodizing treatment tank is determined. Usually, the ratio of H2 to 1 is about 3 to 15:1.

電着塗装処理後は、焼付炉にて適用樹脂塗料に応じて1
50〜250°Cで10〜40分間焼付は処理を行なう
After the electrodeposition coating process, 1 color is applied depending on the applied resin paint in a baking oven.
Baking is performed at 50-250°C for 10-40 minutes.

ここにおいて、請求項第1項記載の発明は、金属線材に
液給電によって陽極酸化処理とカチオン系電着塗装処理
とを連接して行うとともに、該陽極酸化処理を中性浴ま
たはアルカリ浴で行うことを特徴とする。
Here, the invention described in claim 1 provides that the metal wire is subjected to an anodizing treatment and a cationic electrodeposition coating treatment in series by supplying liquid power, and the anodizing treatment is performed in a neutral bath or an alkaline bath. It is characterized by

また、請求項第2項記載の発明は、金属線材に液給電に
よって電解脱脂処理と陽極酸化処理とを連接して行うと
ともに、引続き液給電によって陽極酸化処理とカチオン
系電着塗装処理とを連接して行い、かつ該陽極酸化処理
を中性浴またはアルカリ浴で行うことを特徴とする。
In addition, the invention described in claim 2 performs electrolytic degreasing treatment and anodizing treatment in conjunction with the metal wire by supplying liquid power, and also connects anodizing treatment and cationic electrodeposition coating treatment by subsequently supplying liquid power. The anodic oxidation treatment is carried out in a neutral bath or an alkaline bath.

[作 用] 請求項第1項記載の発明では、金属線材は、まず陽極酸
化処理によって絶縁皮膜形成され下地処理される。この
際、浴は中性またはアルカリ性浴であるから、銅線材の
場合にも銅溶解がなく水洗設備等を簡素化できるととも
に電着塗料液中に銅イオンを持込むことかない。また、
次工程での電着塗装処理浴に対して溶解性の低い皮膜か
形成されるとともにアルミニウム線材も銅線材も同−設
備で処理でき汎用性かある。
[Function] In the invention described in claim 1, the metal wire is first subjected to an insulating film formation by anodizing treatment and then subjected to a base treatment. At this time, since the bath is a neutral or alkaline bath, there is no dissolution of copper even in the case of copper wire, and washing equipment etc. can be simplified, and copper ions are not introduced into the electrodeposition coating solution. Also,
A film with low solubility in the electrocoating treatment bath in the next process is formed, and both aluminum wire and copper wire can be treated with the same equipment, making it highly versatile.

引続き、液給電によって電着塗装処理が連接して行われ
る。カチオン系樹脂塗料による陰極電解処理であるから
、アニオン系に比較して陽極酸化皮膜の溶解によるブッ
やピンホールの発生が抑えられ良質で厚膜を形成でき、
耐電圧1表面硬度が大きく密着性の優れた絶縁成膜を形
成できる。
Subsequently, the electrodeposition coating process is performed continuously by liquid power supply. Because it is a cathodic electrolytic treatment using a cationic resin paint, compared to anionic paints, the occurrence of bumps and pinholes due to the dissolution of the anodic oxide film is suppressed, and a high-quality, thick film can be formed.
Withstand voltage 1: An insulating film with high surface hardness and excellent adhesion can be formed.

また、請求項第2項記載の発明では、上記第1項記載の
発明の場合と同様な作用の他、さらに、電解脱脂処理か
行われるので、高品質の下地皮膜を一段と安定して形成
できる、とともに液給電により陽極酸化処理が二重に行
なわれるので、結果として陽極酸化下地膜厚を自在な厚
さにすることができかつ設備簡素化も図れる。
Furthermore, in the invention set forth in claim 2, in addition to the same effect as in the case of the invention set forth in claim 1, electrolytic degreasing treatment is further performed, so that a high-quality base film can be formed more stably. Since the anodic oxidation process is carried out in a double manner by liquid power supply, the thickness of the anodic oxidation base film can be adjusted freely and the equipment can be simplified.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

(第1実施例) ます、第1実施例のために用いた絶縁皮膜形成装置を第
1図を参照して説明する。
(First Example) First, the insulating film forming apparatus used for the first example will be explained with reference to FIG.

図において、20は、陽極酸化処理槽で、一対のステン
レス製対[21,22か配設されているとともに、10
%メタケイ酸ソータ水溶液が建浴されている。浴は30
°Cに保持されている。30は槽35.36からなる2
段シャワー水洗槽て、槽36は純水洗浄である。
In the figure, 20 is an anodizing treatment tank, in which a pair of stainless steel pairs [21, 22] are disposed, and 10
% metasilicate sorta aqueous solution is prepared. Bath is 30
held at °C. 30 consists of tanks 35.36 2
The tank 36 of the tiered shower wash tank is for pure water washing.

また、40は電着塗装処理槽であり、カチオン系塗料(
日本ペイント製・・・パワートップU−100)の10
%水溶液か建浴され、この塗料液は27℃に保持するよ
うにコントロールされている。
In addition, 40 is an electrodeposition coating treatment tank, in which cationic paint (
Made by Nippon Paint...Power Top U-100) 10
% aqueous solution is prepared, and this coating liquid is controlled to be maintained at 27°C.

槽40内にはステンレスからなる対ff141.42か
配設されている。
Inside the tank 40, pairs of stainless steel FF141.42 are arranged.

陽極酸化処理槽20の横長し1と電着塗装処理槽40の
横長L2とは、金属線材Wの送り速度を一定とした場合
の各種20,40での処理時間を規定するために1 :
 5 (Ll :L2)とされている。
The horizontal length 1 of the anodizing treatment tank 20 and the horizontal length L2 of the electrodeposition coating treatment tank 40 are 1 to define the processing time at each type 20 and 40 when the feeding speed of the metal wire W is constant.
5 (Ll:L2).

次に、電源装置50は、一対の直流電源5152からな
り、各正極は電着塗装処理槽40の各対極4.1.42
に、各負極は陽極酸化処理槽20の多対%21.22に
接続されている。
Next, the power supply device 50 consists of a pair of DC power supplies 5152, each positive electrode is connected to each counter electrode 4.1.42 of the electrodeposition coating treatment tank 40.
In addition, each negative electrode is connected to a multiplicity 21.22 of the anodizing tank 20.

ここに、金属線材Wを槽20.30 <35.36)、
40に連続して供給すると、金属線材Wは槓20内で正
極となりかつ槽40内で負極となり、液給電される。液
給電とは、処理液を通して金属線材Wに間接給電するこ
とをいう。
Here, the metal wire W is placed in a tank 20.30 <35.36),
When continuously supplied to the tank 40, the metal wire W becomes a positive electrode in the shell 20 and a negative electrode in the tank 40, and is supplied with liquid power. Liquid power supply refers to indirect power supply to the metal wire W through the processing liquid.

なお、陽極酸化処理槽20の上流側には図示しない脱脂
処理槽等が前置され、を着塗装処理槽40の下流側には
図示しない水洗槽、乾燥焼付炉等が後置されている。
Note that a degreasing tank (not shown) is provided upstream of the anodizing tank 20, and a washing tank, a drying oven (not shown), etc. are located downstream of the coating tank 40.

ここにおいて、純度99,8重量%の純アルミニウム製
のコーナ一部か半径0.8mmとされた平角線(3,8
mmxlOmm)からなる金属線材Wを連続して流し、
電源装置50 (51,52)の電圧を310Vに設定
して実施した。
Here, a part of the corner made of pure aluminum with a purity of 99.8% by weight or a flat wire (3,8
A metal wire W consisting of mmxlOmm) is continuously flowed,
The test was carried out by setting the voltage of the power supply device 50 (51, 52) to 310V.

その結果、陽極酸化処理槽20では、電流密度0.5A
/dゴ、処理時間26秒で、膜厚0.1μmの陽極酸化
皮膜を形成し、電着塗装処理槽40では、処理時間13
0秒で、30μmの塗膜を形成することができた。
As a result, in the anodizing treatment tank 20, the current density was 0.5A.
/d, an anodic oxide film with a film thickness of 0.1 μm was formed in a treatment time of 26 seconds, and in the electrodeposition coating treatment tank 40, a treatment time of 13 seconds was formed.
A coating film of 30 μm could be formed in 0 seconds.

なお、電源装置50の通電電流は0.59Aであった。Note that the current flowing through the power supply device 50 was 0.59A.

また、その後170°C,0,5hrで焼付処理した。After that, a baking treatment was performed at 170°C for 0.5 hours.

すなわち、陽極酸化処理液を10%メタケイ酸ソータ水
溶液の弱アルカリ性(PH12,5〜13.0)とし、
電着塗料浴をカヂオン系として、金属線材Wを連続して
流し、共通電源(50)を用いて液給電することにより
、0.1μmの陽極酸化皮膜下地上に30μの塗膜から
なる絶縁皮膜を形成することかできた。
That is, the anodizing solution is a weakly alkaline (PH12.5-13.0) 10% metasilicate sorter aqueous solution,
By using a cation-based electrodeposition paint bath, continuously flowing the metal wire W, and supplying liquid power using a common power source (50), an insulating film consisting of a 30 μm coating film is formed on a 0.1 μm anodic oxide film base. was able to form.

この絶縁皮膜は、第1表に示す如く、バラツキ(17V
)の小さい13.52Vという高い平均耐電圧を持ち、
鉛筆硬度6 Hの高硬度を持つ良質なものである。また
、半径10mmの曲率の大きな面ば加工を施した後の平
均耐電圧も381vを確保でき、かつ剥離が見られない
(密着性の欄でO印)密着性の優れたものである。厚い
塗膜を形成可能なカチオン系電着塗装でも、0.1μm
という陽極酸化薄膜下地を形成することにより、下地剥
離なくカチオン系電着塗装を円滑に行えかつ曲げ加工性
の優れた絶縁皮膜(塗膜)を形成できることか確認され
た。
As shown in Table 1, this insulating film has variations (17V
) has a high average withstand voltage of 13.52V,
It is of high quality and has a pencil hardness of 6H. In addition, the average withstand voltage after processing a surface with a large curvature of 10 mm in radius was 381 V, and there was no peeling (marked O in the column of adhesion), indicating excellent adhesion. Even with cationic electrodeposition coating that can form a thick coating, the thickness is 0.1 μm.
It was confirmed that by forming an anodized thin film base, it was possible to perform cationic electrodeposition coating smoothly without peeling the base and form an insulating film (coating) with excellent bending workability.

なお、耐電圧測定は、JISC2110およびJISC
3003の測定法に準じ約7mm幅のアルミニウム箔を
直線部分あるいは曲げ部分に巻き付は東洋精機製作断裂
の耐電圧測定装置により測定した。曲げ加工は、J I
 5H8684(変形ひひ割れ抵抗性試験)およびJI
SC3003に準じ線の厚さ方向に沿って半径10mm
の曲げを施した。表面硬度は、JISK5400および
JISC3003の鉛筆硬度試験法に基づき測定した。
In addition, withstand voltage measurement is based on JISC2110 and JISC
According to the measurement method of No. 3003, an aluminum foil having a width of about 7 mm was wrapped around a straight portion or a bent portion and the withstand voltage measurement device manufactured by Toyo Seiki was used to measure the withstand voltage. The bending process is done by JI
5H8684 (deformation cracking resistance test) and JI
10mm radius along the thickness direction of the line according to SC3003
The bending was applied. The surface hardness was measured based on the pencil hardness test method of JIS K5400 and JIS C3003.

また、密着性の評価は、10mrnR曲げ加工後の塗膜
の観察結果を示し、耐食性試験は、下地処理後のサンプ
ルについて、湿潤試@(50℃で湿度98〜100%の
雰囲気下で50時間放置)を行ったものである。
In addition, the adhesion evaluation is based on the observation results of the coating film after 10mrnR bending, and the corrosion resistance test is performed on the sample after surface treatment using a wet test @ (50 hours in an atmosphere of 98 to 100% humidity at 50°C). It was left unattended.

(第2実施例) この実施例は、上記第1実施例において、純度99.9
6重量%銅製のコーナ一部か半径0.8mmとされた平
角線(3mmX 10mm)を用い電源電圧を260v
に設定して実施した。下地陽極酸化皮膜厚は0.1μm
で、17μmの塗膜を形成することができな。銅十角W
 (W)と対極41(42)との間には0.56ALニ
ア)電流か流れた。
(Second Example) This example has a purity of 99.9 in the first example above.
Using a rectangular wire (3 mm x 10 mm) with a radius of 0.8 mm from a part of the corner made of 6% copper, the power supply voltage was set to 260 V.
It was set to . Base anodic oxide film thickness is 0.1μm
Therefore, it is not possible to form a coating film of 17 μm. Copper Decagonal W
(W) and the counter electrode 41 (42) had a current of 0.56 AL (near) flowing.

ここに、陽極酸化処理浴を中性乃至アルカリ浴として処
理すれば、銅の溶解を防止できるとともに良好なカチオ
ン系塗膜を形成することができる。
If the anodic oxidation treatment bath is a neutral or alkaline bath, dissolution of copper can be prevented and a good cationic coating film can be formed.

このようにして形成された絶縁皮膜は、第1表に示す如
く、曲げ加工前の耐電圧は平均値690Vと、塗装厚さ
か小さい分たけ第1実施例の場合(1352V)に比べ
て低いか、曲げ加工後の耐電圧(平均値)は320■と
遜色のない高い値を持つ、また、密着性も良好である。
As shown in Table 1, the insulating film thus formed has an average withstand voltage of 690V before bending, which is lower than that of the first embodiment (1352V) due to the smaller coating thickness. The withstand voltage (average value) after bending is as high as 320■, and the adhesion is also good.

ここに、耐食性は第1実施例の場合と同様にやや劣るが
、例えばリニアモータ・カー用地上コイル等の製品化に
際しては外カバー等で覆われることを考慮すれば実用上
問題はない。
Here, the corrosion resistance is slightly inferior as in the case of the first embodiment, but there is no practical problem if it is considered that it will be covered with an outer cover etc. when commercializing ground coils for linear motors and cars, for example.

なお、金属線材Wffi銅の場合、アルミニウムの場合
と電流密度を同一とすると、アルミニウムの場合と比較
して電tX電圧は低く、塗膜形成率は高くなることがわ
かる。
In addition, in the case of the metal wire Wffi copper, when the current density is the same as that in the case of aluminum, it can be seen that the electric tX voltage is lower and the coating film formation rate is higher than in the case of aluminum.

(第3実施例) 本実施例は、第1実施例の場合と同一の金属線材Hrを
用い、電源電圧を400V[1i材Wと対極41(42
)に0.83Aの電流が流れた。〕に設定し実施した。
(Third Example) In this example, the same metal wire Hr as in the first example was used, and the power supply voltage was set to 400 V [1i material W and counter electrode 41 (42
) A current of 0.83A flowed through the ] was set and implemented.

但し、陽極酸化処理浴は20%リン酸ソータ水溶液、浴
温18℃とし電着塗料浴は同一塗料浴で?6温のみ29
°Cとしな。
However, the anodizing bath should be a 20% phosphoric acid sorter aqueous solution and the bath temperature should be 18°C, and the electrodeposition paint bath should be the same paint bath. 6 temperature only 29
°C.

また、種実L1とL2との比を、1:4とし、陽極酸化
処理時間を32.5秒、電着塗装処理時間を130秒と
なるように金属線材Wを給送した。
Further, the ratio of seeds L1 and L2 was set to 1:4, and the metal wire W was fed so that the anodizing treatment time was 32.5 seconds and the electrodeposition coating treatment time was 130 seconds.

その結果、アニオン系電着塗装では至歎な42μmとい
う厚い塗膜を形成できた。ここに、塗膜厚さか厚いと、
第1表に示すように耐電圧および鉛筆硬度が高くなると
理解される一1tた、薄い陽極酸化皮膜下地か施されて
いるので、曲げ加工後の耐電圧<660V)も高く、密
着性も良好である。
As a result, we were able to form a coating film as thick as 42 μm, which is far superior to anionic electrodeposition coating. Here, if the coating thickness is thick,
As shown in Table 1, it is understood that the withstand voltage and pencil hardness are high.In addition, since a thin anodic oxide film is applied, the withstand voltage after bending is high (<660V) and the adhesion is good. It is.

(第4実施例) 第4実施例では、第2図に示す装置を用いて施した。(Fourth example) The fourth example was carried out using the apparatus shown in FIG.

すなわち、密着性や耐食性を一段と向上させるには、陽
tifl酸化皮薄膜下地の厚さをより厚くしたい場合か
ある。また、陽極酸化皮膜厚さと塗膜厚さとを適宜かつ
任意の厚さに形成したい場合かある。
That is, in order to further improve adhesion and corrosion resistance, it may be necessary to increase the thickness of the positive tifl oxide thin film base. Further, there may be cases where it is desired to form the anodic oxide film thickness and the coating film thickness to appropriate and arbitrary thicknesses.

そこで、これら要請を満すために、液給電という特性を
巧みに利用して、陽極酸化処理槽20に前置される脱脂
槽10を、対極11.12を配設した液給電型の電解脱
脂処理槽として形成している。ここに、電源装置50は
、第2図に示す如く接続された陽極酸化処理槽20と電
着塗装処理槽40との間に液給電する電源51.52と
、陽極酸化処理槽20と電解脱脂処理槽10との間に液
給電する電源53.54とからなる。
Therefore, in order to meet these demands, by skillfully utilizing the characteristic of liquid power supply, the degreasing tank 10 placed in front of the anodizing treatment tank 20 was replaced with a liquid-fed type electrolytic degreasing tank equipped with counter electrodes 11 and 12. It is formed as a processing tank. Here, the power supply device 50 includes power supplies 51 and 52 for supplying liquid power between the anodizing tank 20 and the electrodeposition coating tank 40, which are connected as shown in FIG. It consists of power supplies 53 and 54 that supply liquid power between the processing tank 10 and the processing tank 10.

しなかつて、陽極酸化処理槽20の給電槽(電解脱脂処
理槽10)で充分な脱脂やエツチングを行うことかでき
るので、良質で厚い陽極酸化皮膜下地を形成でき、かつ
金属線材Wを連続送りしても陽極酸化皮膜下地と塗膜と
の膜厚を別個独立してコントロールできる2 なお、各種10.20.40の種実比LO:L1:L2
は1:20:9である。
In the meantime, since sufficient degreasing and etching can be performed in the power supply tank (electrolytic degreasing tank 10) of the anodizing tank 20, a high-quality and thick anodized film base can be formed, and the metal wire W can be continuously fed. The film thickness of the anodic oxide film base and the paint film can be controlled separately and independently even if the anodic oxide film base and paint film are used.
is 1:20:9.

ここに、各槽浴と処理条件は下記の通りである。Here, each bath and treatment conditions are as follows.

なお、金属線材Wは第1実線例の場合と同じである。Note that the metal wire W is the same as in the first solid line example.

(1)電解脱脂槽 5%カセイソーダ水溶液、60°C1処理時間15秒、
70V、55.2A。
(1) Electrolytic degreasing tank 5% caustic soda aqueous solution, 60°C, processing time 15 seconds,
70V, 55.2A.

(2)陽tri酸化処理槽 0.5%カセイソーダ水溶液、15℃、処理時間5分、
陽極電流密度2A/dビ。
(2) Positive tri-oxidation treatment tank 0.5% caustic soda aqueous solution, 15°C, treatment time 5 minutes,
Anode current density 2A/dbi.

(3)電着塗装処理槽 カチオン系電着塗料浴(ニレクロンKG310・・・関
西ペイント製)の浴温27℃中で135秒間処理した。
(3) Electrodeposition treatment tank The treatment was carried out for 135 seconds in a cationic electrodeposition paint bath (Nileclone KG310, manufactured by Kansai Paint) at a bath temperature of 27°C.

(4)を源装置 電源51.52を190Vにセット。(4) The source device Set power supply 51.52 to 190V.

電源53.54を70Vにセット。Set power supply 53.54 to 70V.

この結果、電源51.52の電流値は0.28Aで、電
源53.54の電流値は55Aが流れ、2〜3μmの下
地膜厚、30μmの塗膜を形成できた。
As a result, the current value of the power source 51.52 was 0.28 A, the current value of the power source 53.54 was 55 A, and a base film thickness of 2 to 3 μm and a coating film of 30 μm could be formed.

そして、かかる絶縁皮膜は、塗膜厚さ(30μm)の同
一性から、第1表に示すように、第1実施例とほぼ同様
な良好な特性を有する。
As shown in Table 1, this insulating film has almost the same good characteristics as the first example, based on the same coating thickness (30 μm).

(以下余白) [発明の効果コ 以上の説明から明らかの通り、本発明によれは、中性ま
たはアルカリ性洛中での陽′#1酸化処理とカチオン系
電着塗装処理とを液給電のもとに連続して行う構成であ
るから、次のような効果を奏する。
(The following is a blank space) [Effects of the Invention] As is clear from the above explanation, the present invention achieves a positive #1 oxidation treatment in a neutral or alkaline environment and a cationic electrodeposition coating treatment under liquid power supply. Since the configuration is such that the process is performed continuously, the following effects can be achieved.

(1)請求項第1項記載の発明について、■ アルカリ
性浴等であるから、アルミニウム線材のみならす銅線等
にも良好な陽極酸化皮膜下地を形成することかでき、溶
解イオンの混入がないので良質な塗膜を形成できる。
(1) Regarding the invention described in claim 1, (1) Since it is an alkaline bath, it is possible to form a good anodic oxide film base not only on aluminum wires but also on copper wires, etc., and there is no mixing of dissolved ions. Can form a high-quality coating film.

したかって、各種金属線材に広く適用できる。Therefore, it can be widely applied to various metal wires.

■ カチオン系電着塗装処理であるから、アニオン系に
比較して、−段と厚い塗膜を形成でき、下地と協働して
耐電圧や硬度か高く密着性の優れた低コストの絶縁皮膜
を形成できる。
■ Because it is a cationic electrodeposition coating process, it can form a much thicker coating than anionic coatings, and works in conjunction with the base to create a low-cost insulating coating with high voltage resistance and hardness, and excellent adhesion. can be formed.

よって、絶縁テープ巻回方法やエナメル塗布方法等の高
コスト、大型化という従来欠点を一掃して、コンパクト
なりニアモータ用地上コイル等を容易かつ低コストで製
作することができ、コイル自体のスペースファクターを
小さくできる。
Therefore, the conventional disadvantages of high cost and large size of insulating tape winding methods and enamel coating methods can be eliminated, and compact ground coils for near motors can be manufactured easily and at low cost, and the space factor of the coil itself can be reduced. can be made smaller.

■ 液給電による連続処理であるから、装置小型化か図
れかつ生産能率か高い。また、アニオン系電着塗装処理
の場合に比較して均一厚さの塗膜を形成できる、ととも
にブツやピンホールかなく曲げ加工後の耐電圧を高く保
持できる絶縁皮膜を確立できる。
■ Continuous processing using liquid power supply allows for smaller equipment and higher production efficiency. Furthermore, compared to the case of anionic electrodeposition coating treatment, it is possible to form a coating film with a uniform thickness, and also to establish an insulating film that can maintain a high withstand voltage after bending without bumps or pinholes.

■ 陽極酸化処理とカチオン系電着塗装処理とを連続し
て行いかつ液給電であるから、電源装置は共通にできる
。よって、設備レイアウトが簡素で電源効率の高いもの
となる。
■ Since anodic oxidation treatment and cationic electrodeposition coating treatment are performed consecutively and liquid power is supplied, a common power supply can be used. Therefore, the equipment layout is simple and the power supply efficiency is high.

■ カチオン系樹脂塗料の場合、耐光性が低いが、リニ
アモータ用地上コイルの場合には、最終的にエポキシ樹
脂などによる樹脂封止がなされるので使用上耐光性を必
要としないため、最良の効果を発揮することかできる。
■ Cationic resin paints have low light resistance, but in the case of ground coils for linear motors, they are ultimately sealed with resin such as epoxy resin, so light resistance is not required for use, so it is the best choice. It can be effective.

(2)請求項第2項記載の発明について、・上記第1項
記載の発明の効果と同様の効果を奏する他、さらに次の
ような効果を有する。
(2) Regarding the invention as set forth in claim 2: In addition to the same effects as those of the invention as set forth in claim 1, the invention also has the following effects.

■ 陽[!酸化処理とカチオン系電着塗装処理との設定
電圧、電流密度等を別個独立に調整できるから、陽極酸
化下地膜厚と塗膜厚さとを自由に選択できる。よって、
所望の耐電圧等に応じた絶縁皮膜を適宜形成できる。
■ Yang [! Since the set voltage, current density, etc. of the oxidation treatment and the cationic electrodeposition coating treatment can be adjusted separately and independently, the thickness of the anodic oxidation base film and the coating film thickness can be freely selected. Therefore,
An insulating film can be formed as appropriate depending on the desired withstand voltage and the like.

■ 陽極下地膜厚を一段と厚く形成できるから、耐久性
を一段と向上できる。
■ Since the anode base film can be formed even thicker, durability can be further improved.

■ 液給電による電解脱脂処理が前置されているので、
−段と均一かつ良質な下地皮膜を形成でき、絶縁皮膜の
耐久性、密着性等を大幅に向上できる。
■ Since electrolytic degreasing treatment using liquid power supply is performed beforehand,
- A much more uniform and high-quality base film can be formed, and the durability, adhesion, etc. of the insulating film can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1.第2および第3実施例を実施する絶縁皮
膜形成装置の概略図、および第2図は第4実施例を実施
する絶縁皮膜形成装置の概略図である。 10・・・電解脱脂槽、 20・・・陽極酸化処理槽、 21.22・・・対極、 30・・・2段シャワー水洗槽、 40・・・カチオン系電着塗装処理槽、41.42・・
・対極、 50・・・電源装置、 W・・・金属線材。
Figure 1 is 1. FIG. 2 is a schematic diagram of an insulating film forming apparatus implementing the second and third embodiments, and FIG. 2 is a schematic diagram of an insulating film forming apparatus implementing the fourth embodiment. 10... Electrolytic degreasing tank, 20... Anodizing treatment tank, 21.22... Counter electrode, 30... Two-stage shower washing tank, 40... Cationic electrodeposition coating treatment tank, 41.42・・・
- Counter electrode, 50...Power supply device, W...Metal wire.

Claims (2)

【特許請求の範囲】[Claims] (1)金属線材に液給電によって陽極酸化処理とカチオ
ン系電着塗装処理とを連接して行うとともに、該陽極酸
化処理を中性浴またはアルカリ浴で行うことを特徴とす
る金属線材の絶縁皮膜形成方法。
(1) An insulating coating for a metal wire characterized in that the metal wire is subjected to anodizing treatment and cationic electrodeposition coating treatment in conjunction with each other by supplying liquid power to the metal wire, and the anodizing treatment is performed in a neutral bath or an alkaline bath. Formation method.
(2)金属線材に液給電によって電解脱脂処理と陽極酸
化処理とを連接して行うとともに、引続き液給電によっ
て陽極酸化処理とカチオン系電着塗装処理とを連接して
行い、かつ該陽極酸化処理を中性浴またはアルカリ浴で
行うことを特徴とする金属線材の絶縁皮膜形成方法。
(2) Carrying out electrolytic degreasing and anodizing treatment in tandem by supplying liquid power to the metal wire, and subsequently performing anodizing treatment and cationic electrodeposition coating in tandem by supplying liquid power; and the anodizing treatment. A method for forming an insulating film on a metal wire, the method comprising: performing the steps in a neutral bath or an alkaline bath.
JP24023690A 1990-09-11 1990-09-11 Forming of insulating coat for metal wire rod Pending JPH04121913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24023690A JPH04121913A (en) 1990-09-11 1990-09-11 Forming of insulating coat for metal wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24023690A JPH04121913A (en) 1990-09-11 1990-09-11 Forming of insulating coat for metal wire rod

Publications (1)

Publication Number Publication Date
JPH04121913A true JPH04121913A (en) 1992-04-22

Family

ID=17056479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24023690A Pending JPH04121913A (en) 1990-09-11 1990-09-11 Forming of insulating coat for metal wire rod

Country Status (1)

Country Link
JP (1) JPH04121913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024997A1 (en) * 2002-09-13 2004-03-25 Nippon Paint Co., Ltd. Method of coating an electric wire and insulated wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024997A1 (en) * 2002-09-13 2004-03-25 Nippon Paint Co., Ltd. Method of coating an electric wire and insulated wire

Similar Documents

Publication Publication Date Title
JP2003510466A (en) Electrochemical method for forming an inorganic coating on the surface of copper material
US20180002786A1 (en) Nanostructured aluminum zirconium alloys for improved anodization
US3207679A (en) Method for electroplating on titanium
JPH04121913A (en) Forming of insulating coat for metal wire rod
JP2017001312A (en) Film-forming structure for workpiece and film-forming method for workpiece
EP3764371A1 (en) Insulated flat rectangular conductor, coil and method for producing insulated flat rectangular conductor
JP5671566B2 (en) Manufacturing method of surface-treated steel sheet
CN107170527A (en) A kind of compressor electric motor copper-clad aluminum conductor processing technology
EP3093376B1 (en) Process for continuous electrochemical tinning of an aluminium wire
JPH04121914A (en) Insulated aluminum wire rod and its manufacture
JPS607039B2 (en) Electrodeposition coating method for aluminum or aluminum alloys
JP5520151B2 (en) Electrochemical method for forming an inorganic coating on the surface of a copper material
JP5941525B2 (en) Manufacturing method of surface-treated steel sheet
JPS623240B2 (en)
JP3506826B2 (en) Aluminum material and manufacturing method thereof
JPS62214200A (en) Electrolytic polishing method for inside surface of metallic pipe
JP5074145B2 (en) Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material
US20020096434A1 (en) Continuous anodizing and coloring process
JP3633308B2 (en) Method for electrolytic coloring of aluminum and aluminum alloys
CN103014815B (en) Copper conductor roll-type fast anode oxidation treatment method
US2330608A (en) Preparing stock for coating and electroplating
US1076424A (en) Process of treating large fermentation vessels.
JP3093913B2 (en) Electrocoating equipment
RU2354757C2 (en) Method of electrolyte coating application onto internal surface of small cross-section item, and device for method implementation
JPH04121915A (en) Forming of insulating coat for aluminum wire rod