JPS62214200A - Electrolytic polishing method for inside surface of metallic pipe - Google Patents

Electrolytic polishing method for inside surface of metallic pipe

Info

Publication number
JPS62214200A
JPS62214200A JP5645186A JP5645186A JPS62214200A JP S62214200 A JPS62214200 A JP S62214200A JP 5645186 A JP5645186 A JP 5645186A JP 5645186 A JP5645186 A JP 5645186A JP S62214200 A JPS62214200 A JP S62214200A
Authority
JP
Japan
Prior art keywords
current
metallic pipe
metal tube
current density
electrode rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5645186A
Other languages
Japanese (ja)
Other versions
JPH0548319B2 (en
Inventor
Kazutoshi Shimobe
下部 一利
Kazuo Fujiwara
藤原 和雄
Haruo Tomari
泊里 治夫
Akihiro Fukuda
福田 秋広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5645186A priority Critical patent/JPS62214200A/en
Publication of JPS62214200A publication Critical patent/JPS62214200A/en
Publication of JPH0548319B2 publication Critical patent/JPH0548319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To obtain high surface roughness with a good polishing rate by inserting an electrode rod which is freely movable in the longitudinal direction of a metallic pipe and is applied with an insulating film except in the energizing part into the metallic pipe, moving said rod, feeding an electrolyte into the pipe and conducting electric current of a square wave of specific conditions between the metallic pipe and the electrode rod. CONSTITUTION:The electrode rod 2 which is freely movable in the longitudinal direction of the metallic pipe 1 and is applied with the insulating film 3 except in the energizing part is inserted into the metallic pipe 1. The electrolyte 7 is fed into the metallic pipe 1 and while the electrode rod 2 is moved in the metallic pipe 1, the electric current of the square wave is conducted between the metallic pipe 1 and the electrode rod 2 to electrolytically polish the inside surface of the metallic pipe 1. The average anodic current density is specified to >=60A/dm<2> in this stage and the ratio between the current density of the high current and the current density of the low current with respect to the average current density in this stage is kept within a 10-80% range.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は金属管内面の電解研磨方法に関するものであり
、前記管内に対極と電解液を押入し、管に陽極電流を流
して管内面を電解研磨する際に、前記陽極電流を特定の
範囲内でパルス化し、光沢のある平滑表面を効率よく迅
速に得ることに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for electropolishing the inner surface of a metal tube, in which a counter electrode and an electrolyte are forced into the tube, and an anodic current is passed through the tube to polish the inner surface of the tube. The present invention relates to pulsing the anodic current within a specific range during electrolytic polishing to efficiently and quickly obtain a glossy and smooth surface.

〈従来の技術〉 食品プラント、薬品プラント、化学プラントあるいは半
導体製造プラントなどに用いられる長尺細径ステンレス
鋼管においてはその内面に雑菌、ゴミ等が付着残存する
と、プラントによって製造しようとする製品の品質を悪
化させたり、場合によっては全くの不良品にしてしまう
と言われている。そこで、付着抑制あるいは洗浄の容易
化のために、それら管内面は0.5pm Rm a x
 、以下の表面粗度に仕上げることが要求され始めてい
る。
<Conventional technology> If bacteria, dirt, etc. remain on the inside of long, small-diameter stainless steel pipes used in food plants, pharmaceutical plants, chemical plants, or semiconductor manufacturing plants, the quality of the products being manufactured by the plant will be affected. It is said that this can make the product worse, or in some cases even make the product completely defective. Therefore, in order to suppress adhesion or facilitate cleaning, the inner surface of these pipes should be 0.5 pm Rmax
, it is beginning to be required to finish the surface to the following surface roughness.

ところで、金属の表面仕上げ方法としては、研削やパフ
などの機械研磨による方法が知られている。
By the way, methods using mechanical polishing such as grinding and puffing are known as methods for finishing the surface of metal.

しかしながら、研削やパフなどの機械研磨方法により長
尺細径管内面にそのような平滑表面を付与することは、
生産性、コス) itどを考慮すると工業的には不可能
に近い。
However, it is difficult to impart such a smooth surface to the inner surface of a long narrow diameter tube by mechanical polishing methods such as grinding or puffing.
Considering productivity, cost, IT, etc., it is almost impossible from an industrial perspective.

そこで最近では電解研磨が適用され始めている。Therefore, electrolytic polishing has recently begun to be applied.

長尺管の内面に対する電解研磨法としては、■特開昭5
4−48399号に記載の方法が知られている。すなわ
ち、この方法は、第8図に示すように、金属管lの内径
より小なる外径を有する円筒状の電極4の両端面を、絶
縁物で被覆し、電極4を管1内に移動自在に設け、管1
を陽極性に、電極4を陰極性にそれぞれ接続し、管l内
に電解液を圧送するとともに、電極4を移動し、かつ、
金属管1と電極4間に、第2図に示すような不動態領域
と過不動態領域を交互に繰り返す脈流電圧あるいはパル
ス電圧を印加し、電解溶出により、金属管lの内面を研
磨する方法(脈流電流電解法)である。
As an electrolytic polishing method for the inner surface of a long tube,
The method described in No. 4-48399 is known. That is, as shown in FIG. 8, in this method, both end surfaces of a cylindrical electrode 4 having an outer diameter smaller than the inner diameter of a metal tube 1 are covered with an insulator, and the electrode 4 is moved into the tube 1. Freely install pipe 1
is connected to the positive polarity, and the electrode 4 is connected to the negative polarity, and while the electrolytic solution is pumped into the tube l, the electrode 4 is moved, and
A pulsating voltage or pulse voltage that alternately repeats a passive region and a hyperpassive region as shown in Fig. 2 is applied between the metal tube 1 and the electrode 4, and the inner surface of the metal tube 1 is polished by electrolytic elution. method (pulsating current electrolysis method).

■また、特開昭54−48399号における脈流電流に
代え、第3図に示すようなく形波電流を陽極と陰極を反
転させつつ通電する反転電流電解法も知られている(特
開昭6O−159200)。
■Also known is a reversal current electrolysis method in which a waveform current is applied while reversing the anode and cathode as shown in Figure 3, instead of the pulsating current disclosed in JP-A No. 54-48399. 6O-159200).

■さらに、特開昭54−48399号における脈流電流
に代え第4図に示すような直流電流を通電させる直流定
電流電解法も知られている。
(2) Furthermore, there is also known a DC constant current electrolysis method as shown in FIG. 4, in which a DC current is applied instead of the pulsating current as disclosed in Japanese Patent Application Laid-Open No. 54-48399.

く゛発明が解決しようとする問題点〉 ところで、金属管内面を電解研磨する場合には、管内に
押入する電極の表面積が管内面の表面積よりも本質的に
必ず小さくならざるを得ないため、流し得る電解電流が
限定される。そのため、電流密度を高くして電解研磨効
率を上げようとすれば、管内に押入した対極の通電部分
の面積、すなわち通電部分長さを短かくせねばならず、
従って長尺管内面を全長に渡って平滑表面にするために
は長時間を要するし、逆に、電極の通電部分長さを長く
して、長尺管の移動距離を相対的に短かくすることによ
って1時間の短縮をしようとすると、電流密度が高く出
来ず、電解□研磨効率が下り、結局長時間を要する。
[Problems to be Solved by the Invention] By the way, when electrolytically polishing the inner surface of a metal tube, the surface area of the electrode pushed into the tube must essentially be smaller than the surface area of the inner surface of the tube. The electrolytic current that can be obtained is limited. Therefore, in order to increase the current density and improve the electrolytic polishing efficiency, the area of the current-carrying part of the counter electrode inserted into the tube, that is, the length of the current-carrying part, must be shortened.
Therefore, it takes a long time to make the inner surface of the long tube smooth over its entire length, and conversely, it is necessary to increase the length of the energized part of the electrode to relatively shorten the distance the long tube moves. If an attempt is made to shorten the polishing time by one hour, the current density cannot be increased, the electrolytic polishing efficiency decreases, and a long time is required.

しかるに、従来の研磨方法では、0.5JLmRwax
の表面粗度に達するまでの時間が長いという問題という
問題点があった。
However, in the conventional polishing method, 0.5JLmRwax
There is a problem in that it takes a long time to reach a surface roughness of .

なお、従来の方法では、高い表面粗度を良好な研磨効率
をもって得ることは困難であった。
Note that with conventional methods, it has been difficult to obtain high surface roughness with good polishing efficiency.

く問題点を解決するための手段〉 発明者らは、金属管管内に、通電部以外は絶縁被覆を施
した、金属管の内径より径の小さい電極を押入し、電解
液を循環させながら種々のパルス電流等により電解研磨
を行った結果、特定条件下での短形波による電解研磨に
より、著しく短時間で一定の平滑鏡面が得られることを
発見した。この発見に基づいて、更に種々検討を重ね、
本発明を構成するに至った。
Means for Solving Problems〉 The inventors inserted into a metal tube an electrode whose diameter was smaller than the inner diameter of the metal tube and which had an insulating coating except for the current-carrying part, and conducted various tests while circulating an electrolyte. As a result of performing electrolytic polishing using a pulsed current, etc., it was discovered that electrolytic polishing using a rectangular wave under specific conditions can produce a uniformly smooth mirror surface in a very short time. Based on this discovery, various studies were conducted,
The present invention has now been constructed.

すなわち、本発明は、金属管内に、該金属管内を長手方
向に移動自在であり通電部以外は絶縁皮膜を施した電極
棒を押入し、該金属管内に電解液を送り込み、かつ、該
金属管内を該電極棒を移動させつつ、該金属管と該電極
棒との間に短形波の電流を通電することにより前記金属
管内面を電解研磨する方法において、平均陽極電流密度
を60A/dm2以上とし、その時の平均電流密度に対
する高電流の電流密度および低電流の電流密度の比が1
0〜80%の範囲内とすることを特徴とする電解研磨方
法である。
That is, in the present invention, an electrode rod that is movable in the longitudinal direction inside the metal tube and is coated with an insulating film except for the current-carrying part is inserted into the metal tube, an electrolytic solution is sent into the metal tube, and the electrode rod is moved inside the metal tube in the longitudinal direction. A method of electrolytically polishing the inner surface of the metal tube by passing a rectangular wave current between the metal tube and the electrode rod while moving the electrode rod, wherein the average anode current density is 60 A/dm2 or more. The ratio of the current density of high current and the current density of low current to the average current density at that time is 1.
This is an electrolytic polishing method characterized in that the polishing ratio is within a range of 0 to 80%.

本発明め対象となる金属管管の材質は導電性のものなら
ば特に問わない、ただ、ステンレス鋼管、アルミ管等の
不動態化しやすい金属管に対してより好適である。また
その形状にも限定されないが、陰極面積に制限を受けて
流し得る電流密度に制限を受けるような金属管、たとえ
ば長尺細径金属管等、に対して特に好適である。
The material of the metal pipe to be used in the present invention is not particularly limited as long as it is electrically conductive, but it is more suitable for metal pipes that are easily passivated, such as stainless steel pipes and aluminum pipes. Although the shape is not limited, it is particularly suitable for metal tubes in which the current density that can be passed is limited by the area of the cathode, such as long thin metal tubes.

電極棒は導電性材料よりなるものならばその種類は問わ
ない、電極棒は電流密度を高めるために通電部以外は絶
縁されている。そして、電極棒を長手方向に移動させつ
つ電極棒と金属管との間に通電する。
The electrode rod may be of any type as long as it is made of a conductive material, and the electrode rod is insulated except for the current-carrying part in order to increase the current density. Then, electricity is applied between the electrode rod and the metal tube while moving the electrode rod in the longitudinal direction.

電解液は電解研磨しようとする金KB管の種類に応じて
適宜選択すればよい。
The electrolytic solution may be appropriately selected depending on the type of gold KB tube to be electrolytically polished.

通電する電流は短形波の電流である。The current flowing is a rectangular wave current.

本発明においては、この電流の平均陽極電流密度i―は
60A/drn’以上とする。また、平均電流密度i、
に対する高電流の電流密度fhおよび低電流の電流密度
11の比は10〜80%の範囲内とすることを特徴とす
る。
In the present invention, the average anode current density i- of this current is 60 A/drn' or more. Also, the average current density i,
The ratio of the high current current density fh to the low current current density 11 is within the range of 10 to 80%.

なお、lパルスあたりの高電流の通電時間(TI )お
よび低電流の通電時間(T2)をそれぞれ0.1〜30
秒とすることが好ましい。この場合には、研磨効率が高
くなるばかりでなく得られる金属管の内面の表面粗度は
0 、2 gmR、a、以下であり、極めて高い平滑表
面が得られる。
Note that the high current conduction time (TI) and low current conduction time (T2) per l pulse are each 0.1 to 30.
Preferably, it is seconds. In this case, not only is the polishing efficiency high, but the surface roughness of the inner surface of the resulting metal tube is 0.2 gmR,a or less, and an extremely smooth surface can be obtained.

〈実施例〉 以下、本発明を一実施例によってより詳細に説明する。<Example> Hereinafter, the present invention will be explained in more detail by way of an example.

外径6.4φmm、内径4.4φmm、長さ4.000
mmの5US316Lステンレス鋼管で、管内面粗度が
2〜3 g m Rm a xの鋼管内に、60℃に保
持した燐酸、硫酸および水の混合した電解液をポンプに
より循環させた状態で、通電部分長さを300 m m
にし、他の部分を絶縁被覆処理した外径3φmmの銅線
を、そめ通電部分に対応する管内面への通電時間の合計
が、それぞれの試験において所定の時間となる速度で管
内を移動させながら、第1表に示す種々の電解条件で電
解研磨を行った。
Outer diameter 6.4φmm, inner diameter 4.4φmm, length 4.000
A 5US316L stainless steel tube with an inner surface roughness of 2 to 3 gm Rmax was heated while an electrolytic solution containing a mixture of phosphoric acid, sulfuric acid, and water kept at 60°C was circulated by a pump. Part length 300mm
A copper wire with an outer diameter of 3φmm with other parts treated with insulation coating was moved inside the pipe at a speed such that the total time for energizing the inner surface of the tube corresponding to the energized parts was the predetermined time in each test. , electrolytic polishing was performed under various electrolytic conditions shown in Table 1.

それぞれの電解条件下での、上記の通電時間は30秒間
隔で、5分間まで実施した。すなわち、第1表に示す各
電解条件NO0のそれぞれにおいて、9条件の電解研磨
を実施した。
The above-mentioned energization time under each electrolysis condition was carried out at 30 second intervals for up to 5 minutes. That is, electrolytic polishing was performed under nine conditions under each electrolytic condition NO0 shown in Table 1.

電解研磨後、管内面の表面粗度を粗さ測定器で測定した
After electrolytic polishing, the surface roughness of the inner surface of the tube was measured using a roughness meter.

それぞれの試験において、得られた表面粗度が0.3 
JJ、mRmaxを達成する時間で整理したものを第5
図に示す、これらの試験におけるTIおよびT2は全て
5秒とした。
In each test, the obtained surface roughness was 0.3
JJ, organized by the time to achieve mRmax, is the fifth
The TI and T2 in these tests shown in the figure were all 5 seconds.

第5図より明らかなように1本発明による電解研磨方法
である電解条件NO,16〜23は、  0 、3 g
mRsaxの表面粗度を得るまでの電解時間が3分以内
であり、従来法の直流定電流電解、陽極と陰極の反転電
流電解あるいは脈流電流電解法に比べて、著しい電解時
間の短縮となっている。
As is clear from FIG. 5, the electrolytic conditions Nos. 16 to 23 of the electrolytic polishing method according to the present invention are as follows: 0.3 g
The electrolysis time required to obtain mRsax surface roughness is within 3 minutes, which is a significant reduction in electrolysis time compared to conventional DC constant current electrolysis, anode and cathode reversal current electrolysis, or pulsating current electrolysis. ing.

第6図に従来法である第1の電解条件No。FIG. 6 shows the first electrolytic condition No. which is a conventional method.

2および本発明法である同じく第1表の電解条件NO,
22における電解時間と電解後表面粗度の関係を示す、
従来法では、5分間電解にも□ 到達表面粗度は約0 
、31LmRsaxであるが、本発明法においては、わ
ずか2分間の電解によりO、l 5 gmRaax と
なり、更に、3分間以上で0 、10 gmRaaxm
5aX以下られ。
2 and the electrolytic conditions No. 2 in Table 1, which is the method of the present invention,
22 shows the relationship between electrolysis time and surface roughness after electrolysis,
With the conventional method, even after 5 minutes of electrolysis, the achieved surface roughness is approximately 0.
, 31LmRsax, but in the method of the present invention, O,l 5 gmRaax is obtained by electrolysis for only 2 minutes, and further, 0,10 gmRaaxm is obtained by electrolysis for 3 minutes or more.
Less than 5aX.

本発明による電解法の著しい研磨効率が明らかである。The remarkable polishing efficiency of the electrolytic method according to the invention is evident.

更に、第7図に、第1表に示した本発明法である電解条
件NO,22において、電解時間が4分間の場合におけ
る、TIおよびT2のパルス電流間隔時間に対する電解
研磨後の表面粗度を示す。第7図より明らかなように、
矩形波電流間隔時間が0.1秒未満では、到達表面粗i
がQ 、3 ’g m5aX以下となり、また30秒を
超えると0 、31Lm@4.以上と、研磨効果が劣化
してくる。従って、望ましくは、本発明法における電解
研磨法において、その矩形波電流の間隔時間は、0.1
〜30秒の範囲である。
Furthermore, FIG. 7 shows the surface roughness after electrolytic polishing with respect to the pulse current interval time of TI and T2 when the electrolytic time is 4 minutes under electrolytic conditions No. 22, which is the method of the present invention shown in Table 1. shows. As is clear from Figure 7,
When the square wave current interval time is less than 0.1 seconds, the final surface roughness i
becomes less than Q, 3'g m5aX, and if it exceeds 30 seconds, it becomes 0, 31Lm@4. As the polishing effect increases, the polishing effect deteriorates. Therefore, in the electrolytic polishing method according to the present invention, the interval time of the rectangular wave current is preferably 0.1
~30 seconds.

以上の実施例が示すように、本発明による電解研磨法の
効果は長尺側径の内面電解研磨のように、陰極面積に制
限を受けて、流し得る電流密度に制限を受ける場合にお
いて極めて有効である。なお、本発明は長尺細径以外の
形状のもの、あるいは、材質が異っても、同様の効果が
あることは言うまでもない。
As shown in the above examples, the effect of the electropolishing method according to the present invention is extremely effective in cases where the cathode area is limited and the current density that can be passed is limited, such as in internal electropolishing of long side diameters. It is. It goes without saying that the present invention can have similar effects even if the shape is other than long and narrow, or if the material is different.

〈発明の効果〉 本発明によれば長尺細径ステンレス鋼管内面を所定の表
面粗度を有する表面に仕上げる電解時間が大幅に短縮さ
れること、従って生産性が著しく向上すると共に使用電
力も大幅に減少すること等による工業的価値は極めて大
きい。
<Effects of the Invention> According to the present invention, the electrolysis time for finishing the inner surface of a long, small-diameter stainless steel pipe to a surface with a predetermined surface roughness is significantly shortened, and therefore productivity is significantly improved and power consumption is also significantly reduced. The industrial value of this reduction is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における電流波形を示すグラ
フである。第2図から第4図までは従来例における電流
波形を示すグラフである。 第5図は0 、3 #Lm R*axまでの到達電解時
間を示すグラフである。第6図は電解時間と電解研磨後
の表面粗度との関係を示すグラフである。第7図はパル
ス電流間隔と電解研磨後の表面粗度との関係を示すグラ
フである。第8図は電解研磨方法例を示すための金属管
内の断面図である。 1・・金属管、4・・電極、7・・電解液。 l 3 第1図 第3図 一う時間 第2図 第4図 第6図 電解研磨後表面粗度Rmax、、(pm)電解時間(分
) 第7図 パルス電流間隔(see) 第8図 手続補正書 1、事件の表示 特許願昭和61年056451号 2、発明の名称 金属管内面の電解研磨方法 3、補正をする者 事件との関係 特許出願人 住  所 兵庫県神戸市中央区脇浜町 1丁目3番18号 名  称 (119)株式会社神戸製鋼所代表者  牧
  冬 彦 4、代 理 人 〒160電話03(35B)8840
住  所 東京都新宿区本塩町 12 5、補正により増加する発明の数     06、補正
の対象 明細書の特許請求の範囲及び発明の詳細な説明の欄7、
補正の内容 (1)特許請求の範囲を別紙のとおり補正する。 (2)明細書第5頁第6行目の「問題という問題点」を
r問題点」と補正する。 (3)明細書第5頁第15行目、第7頁第6行目、第1
O頁第4行目及び第10頁第9行目の「短形波」を「矩
形波」と補正する。 (4)明細書第6頁第11行目の「金属管管」を「金属
管」と補正する。 8、前記以外の代理人 (1)代理人 〒1130電話03(358)8840
住所  東京都新宿区本塩町 12 、 特許請求の範囲 (1)金属管内に、該金属管内を長手方向に移動自在で
あり通電部以外は絶縁皮膜を施した電極棒を押入し、該
金属管内に電解液を送り込み、かつ、該金属管内を該電
極棒を移動させつつ、該金属管と該電極棒との間に粗形
波の電流を通電することにより前記金属管内面を電解研
磨する方法において、平均陽極電流密度を60A/dr
n’  以上とし、その時の平均電流密度に対する高電
流の電流密度および低電流の電流密度の比が10〜80
%の範囲内とすることを特徴とする電解研磨方法。 (2)高電流および低電流の通電時間がそれぞれlパル
スあたり0.1〜30秒である特許請求の範囲第1項記
載の電解研磨方法。
FIG. 1 is a graph showing a current waveform in an embodiment of the present invention. 2 to 4 are graphs showing current waveforms in the conventional example. FIG. 5 is a graph showing the electrolysis time required to reach 0,3 #Lm R*ax. FIG. 6 is a graph showing the relationship between electrolysis time and surface roughness after electropolishing. FIG. 7 is a graph showing the relationship between the pulse current interval and the surface roughness after electrolytic polishing. FIG. 8 is a cross-sectional view of the inside of a metal tube to show an example of an electrolytic polishing method. 1. Metal tube, 4. Electrode, 7. Electrolyte. l 3 Figure 1 Figure 3 Time Figure 2 Figure 4 Figure 6 Surface roughness after electrolytic polishing Rmax,, (pm) Electrolysis time (minutes) Figure 7 Pulse current interval (see) Figure 8 Procedure Written amendment 1, Indication of the case Patent Application No. 056451/1988 2, Name of the invention Method for electrolytic polishing of the inner surface of a metal tube 3, Person making the amendment Relationship to the case Patent applicant address 1, Wakihama-cho, Chuo-ku, Kobe, Hyogo Prefecture No. 3-18 Chome Name (119) Kobe Steel, Ltd. Representative Fuyuhiko Maki 4, Agent Address: 160 Telephone 03 (35B) 8840
Address: 12-5 Motoshio-cho, Shinjuku-ku, Tokyo; Number of inventions increased by amendment: 06; Column 7: Claims of the specification subject to amendment and detailed description of the invention;
Contents of amendment (1) The scope of claims is amended as shown in the attached sheet. (2) "Problem called problem" on page 5, line 6 of the specification is corrected to "r problem". (3) Page 5, line 15 of the specification, page 7, line 6, 1
The "rectangular wave" on the 4th line of page O and the 9th line of page 10 is corrected to "rectangular wave." (4) "Metal tube" on page 6, line 11 of the specification is corrected to "metal tube." 8. Agents other than those listed above (1) Agent 1130 Phone: 03 (358) 8840
Address: 12 Honshio-cho, Shinjuku-ku, Tokyo, Claims: (1) An electrode rod that is movable longitudinally within the metal tube and is coated with an insulating film except for the current-carrying part is inserted into the metal tube. In a method of electrolytically polishing the inner surface of the metal tube by feeding an electrolytic solution and passing a coarse wave current between the metal tube and the electrode rod while moving the electrode rod within the metal tube. , the average anode current density is 60A/dr
n' or more, and the ratio of the current density of the high current and the current density of the low current to the average current density at that time is 10 to 80.
An electropolishing method characterized by polishing within a range of %. (2) The electrolytic polishing method according to claim 1, wherein the high current and low current application times are each 0.1 to 30 seconds per 1 pulse.

Claims (2)

【特許請求の範囲】[Claims] (1)金属管内に、該金属管内を長手方向に移動自在で
あり通電部以外は絶縁皮膜を施した電極棒を押入し、該
金属管内に電解液を送り込み、かつ、該金属管内を該電
極棒を移動させつつ、該金属管と該電極棒との間に短形
波の電流を通電することにより前記金属管内面を電解研
磨する方法において、平均陽極電流密度を60A/dm
^2以上とし、その時の平均電流密度に対する高電流の
電流密度および低電流の電流密度の比が10〜80%の
範囲内とすることを特徴とする電解研磨方法。
(1) Inserting an electrode rod that is movable longitudinally within the metal tube and coated with an insulating film except for the current-carrying part into the metal tube, feeding an electrolyte into the metal tube, and passing the electrode into the metal tube. A method of electrolytically polishing the inner surface of the metal tube by passing a rectangular wave current between the metal tube and the electrode rod while moving the rod, the average anode current density being 60 A/dm.
^2 or more, and the ratio of the current density of the high current and the current density of the low current to the average current density at that time is within the range of 10 to 80%.
(2)高電流および低電流の通電時間がそれぞれ1パル
スあたり0.1〜30秒である特許請求の範囲第(1)
項記載の電解研磨方法。
(2) Claim No. 1, wherein the high current and low current energization times are each 0.1 to 30 seconds per pulse.
The electrolytic polishing method described in section.
JP5645186A 1986-03-14 1986-03-14 Electrolytic polishing method for inside surface of metallic pipe Granted JPS62214200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5645186A JPS62214200A (en) 1986-03-14 1986-03-14 Electrolytic polishing method for inside surface of metallic pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5645186A JPS62214200A (en) 1986-03-14 1986-03-14 Electrolytic polishing method for inside surface of metallic pipe

Publications (2)

Publication Number Publication Date
JPS62214200A true JPS62214200A (en) 1987-09-19
JPH0548319B2 JPH0548319B2 (en) 1993-07-21

Family

ID=13027464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5645186A Granted JPS62214200A (en) 1986-03-14 1986-03-14 Electrolytic polishing method for inside surface of metallic pipe

Country Status (1)

Country Link
JP (1) JPS62214200A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201619B2 (en) 2005-12-21 2012-06-19 Exxonmobil Research & Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
US8286695B2 (en) 2005-12-21 2012-10-16 Exxonmobil Research & Engineering Company Insert and method for reducing fouling in a process stream
JP2023070216A (en) * 2021-11-09 2023-05-19 株式会社アサヒメッキ Electrolytic polishing solution, method of electrolytically polishing stainless steel using the same, and method of producing stainless steel excellent in corrosion resistance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415494B (en) 2011-03-09 2015-09-30 三菱化学株式会社 The manufacture method of conjugated diolefine
JP5842689B2 (en) * 2011-03-22 2016-01-13 三菱化学株式会社 Method for producing conjugated diene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201619B2 (en) 2005-12-21 2012-06-19 Exxonmobil Research & Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
US8286695B2 (en) 2005-12-21 2012-10-16 Exxonmobil Research & Engineering Company Insert and method for reducing fouling in a process stream
US8469081B2 (en) 2005-12-21 2013-06-25 Exxonmobil Research And Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
JP2023070216A (en) * 2021-11-09 2023-05-19 株式会社アサヒメッキ Electrolytic polishing solution, method of electrolytically polishing stainless steel using the same, and method of producing stainless steel excellent in corrosion resistance

Also Published As

Publication number Publication date
JPH0548319B2 (en) 1993-07-21

Similar Documents

Publication Publication Date Title
EP3684966B1 (en) Method of producing an electrocatalyst
JP2835287B2 (en) Plating method for nickel titanium alloy members
JPS62214200A (en) Electrolytic polishing method for inside surface of metallic pipe
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
JPS58193392A (en) Method and device for cladding elongated metal member with metal layer
JP2004035930A (en) Aluminum alloy material and anodization treatment method therefor
US3920525A (en) Process for continuously anodizing aluminum
JP4177626B2 (en) Electroplating method of wire, electroplating apparatus, and electroplated wire
JPS623240B2 (en)
JPH0240751B2 (en)
US4808280A (en) Method for electrolytic coloring of aluminim or aluminum alloys
JP3633308B2 (en) Method for electrolytic coloring of aluminum and aluminum alloys
JP2000508711A (en) Descaling of metal surface
CN118087000B (en) Micro-arc oxidation/thermoelectric chemical oxidation method of non-valve metal
JP2567970B2 (en) Electropolishing method for inner surface of long small diameter pipe
US3829367A (en) Electrolytic polishing of metals
RU2719050C1 (en) Method of applying galvanic coatings in bath with additional electrodes
RU2229543C2 (en) Process of electrochemical polishing
JP3463772B2 (en) Electropolishing method and method for manufacturing lead frame using the same
JPS5922795B2 (en) Surface treatment method for aluminum or its alloy
JPH10140395A (en) Production of aluminum material having primary color based or gray based colored anodic oxidation film
Cooke et al. Electroplating aluminum stock
JPS63258674A (en) Surface treatment of aluminum sheet
JPH0826475B2 (en) Copper plating method for wire material
JPH0573839B2 (en)