JPH04119125A - Production of pitch-based carbon fiber and graphite fiber - Google Patents

Production of pitch-based carbon fiber and graphite fiber

Info

Publication number
JPH04119125A
JPH04119125A JP23300390A JP23300390A JPH04119125A JP H04119125 A JPH04119125 A JP H04119125A JP 23300390 A JP23300390 A JP 23300390A JP 23300390 A JP23300390 A JP 23300390A JP H04119125 A JPH04119125 A JP H04119125A
Authority
JP
Japan
Prior art keywords
fibers
pitch
fiber
infusible
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23300390A
Other languages
Japanese (ja)
Inventor
Kikuji Komine
小峰 喜久治
Kiyotoshi Mase
間瀬 清年
Takashi Hino
日野 隆
Masaharu Yamamoto
雅晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP23300390A priority Critical patent/JPH04119125A/en
Publication of JPH04119125A publication Critical patent/JPH04119125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To improve the threading yield of precarbonized fiber, reduce the fusing and sticking degree, shorten the precarbonization time and efficiently obtain the subject fiber of high quality by subjecting an infusibilized fiber bundle to precarbonization treatment according to a specific method. CONSTITUTION:A spun and collected pitch fiber bundle is initially infusibilized. The resultant infusibilized fiber bundle is then heat-treated in an oxidizing gas-containing atmosphere at 500-700 deg.C, preferably 550-650 deg.C maximum temperature in a short time, preferably 50-200sec, precarbonized and subsequently carbonized. The aforementioned carbonized fiber, as necessary, is further graphitized. Furthermore, oxygen or air is preferred as the oxidizing gas used for the precarbonization and the oxygen content in the oxidizing gas-containing atmosphere is preferably 0.05-10%.

Description

【発明の詳細な説明】 の1 本発明は、一般には炭素繊維(本明細書にて「炭素繊維
」とは特に明記しない場合には炭素繊維のみならず黒鉛
繊維をも含めて使用する。)の製造方法に関するもので
あり、特に種々の炭素質ピッチから炭素繊維を極めて効
率よく且つ多量に製造する方法に関するものである。
[Detailed Description of the Invention] No. 1 The present invention generally refers to carbon fibers (in this specification, unless otherwise specified, "carbon fibers" is used to include not only carbon fibers but also graphite fibers). The present invention relates to a method for producing carbon fibers from various carbonaceous pitches, and particularly to a method for producing carbon fibers from various carbonaceous pitches extremely efficiently and in large quantities.

L未立皿1 石油系ピッチ、石炭系ピッチ等の炭素質ピッチから製造
されるピッチ系炭素繊維は、現在量も多量に製造されて
いるレーヨン系やPAN系の炭素繊維に比較して炭化収
率が高く、弾性率等の物理的特性も優れており、更に低
コストにて製造し得るという利点を有しているために近
年注目を浴びている。
Pitch-based carbon fiber manufactured from carbonaceous pitch such as petroleum-based pitch and coal-based pitch has a lower carbonization yield than rayon-based and PAN-based carbon fibers, which are currently produced in large quantities. It has attracted attention in recent years because it has a high modulus, excellent physical properties such as elastic modulus, and can be manufactured at low cost.

現在、ピッチ系炭素繊維は、 (1)石油系ピッチ、石炭系ピッチ等がら炭素繊維に適
した炭素質ピッチを調製し、該炭素質ピッチを加熱溶融
して紡糸機にて紡糸し、集束してピッチ繊維を製造し、 (2)前記ピッチ繊維を不融化炉にて酸化性雰囲気下に
て150〜350℃までに加熱して不融化し、 (3)次いで、不融化された繊維を炭化炉にて不活性雰
囲気下にて3000℃以下にまで加熱して炭化或は黒鉛
化すること、 により製造されている。
Currently, pitch-based carbon fibers are produced by: (1) preparing carbonaceous pitch suitable for carbon fiber from petroleum-based pitch, coal-based pitch, etc., heating and melting the carbonaceous pitch, spinning it in a spinning machine, and converging it; (2) The pitch fibers are heated to 150 to 350°C in an oxidizing atmosphere in an infusible furnace to make them infusible. (3) The infusible fibers are then carbonized. It is manufactured by heating to 3000°C or less in a furnace under an inert atmosphere to carbonize or graphitize it.

しかしながら、従来の技術によっては、ピッチ繊維、不
融化繊維の引張強度が約0.0IGPaと小さい上、脆
いためにその取扱いが難しく、高性能製品を得るのに必
要なロングフィラメント状の繊維を安定して多量に得る
ことが極めて困難であった。
However, depending on the conventional technology, pitch fibers and infusible fibers have a low tensile strength of about 0.0 IGPa, and are brittle, making them difficult to handle. It was extremely difficult to obtain it in large quantities.

これらの問題解決方法の一つとして、本発明者らは、炭
素質ピッチを紡糸して得たピッチ繊維を合糸してストレ
ート系油剤を付与することによって繊維束の強さを強(
した上で、酸素濃度が30%以上の富酸素ガス中で、繊
維束な連続的に線状で通して不融化する方法を提案した
(特開昭63−264917号を参照せよ)。
As one method for solving these problems, the present inventors have proposed increasing the strength of fiber bundles by doubling pitch fibers obtained by spinning carbonaceous pitch and applying a straight oil.
Then, they proposed a method of infusible fiber bundles by passing them continuously in a line in an oxygen-rich gas with an oxygen concentration of 30% or more (see JP-A No. 63-264917).

が ′しよ と る しかしながら、不融化繊維を、化学的に不活性なアルゴ
ン又は窒素ガスなどの雰囲気中で500〜1000℃ま
で昇温しで初期の炭化を行なう予備炭化工程に、線状で
通した場合には、特開昭59−15517号に開示され
るように、繊維束の温度が700〜800℃の温度に達
するまでに、繊維束の強さが室温下の強さより大幅に減
少し、予備炭化処理中に炉内で繊維束が切断し、毛羽立
ち易いという大きな欠点があった。
However, in the preliminary carbonization process in which the temperature of the infusible fibers is raised to 500 to 1000°C in an atmosphere of chemically inert argon or nitrogen gas, the initial carbonization is carried out in a linear manner. When passing through the fiber bundle, as disclosed in JP-A-59-15517, by the time the temperature of the fiber bundle reaches 700 to 800°C, the strength of the fiber bundle is significantly reduced from the strength at room temperature. However, there was a major drawback in that the fiber bundles were easily cut in the furnace during the preliminary carbonization process and became fluffy.

上記特開昭63−264917号に記載の発明も、この
問題点を根本的に解決し得るものではなく、予備炭化炉
において不融化繊維の炉内断糸が頻繁に発生し、通糸歩
留りが低下し、毛羽立ち易いという問題があった。
The invention described in JP-A No. 63-264917 cannot fundamentally solve this problem, and in the pre-carbonizing furnace, the infusible fibers frequently break in the furnace, and the yarn threading yield decreases. There was a problem in that it deteriorated and fuzzed easily.

更に、1本の不融化繊維は、100−100000本の
フィラメントが集束されて構成された繊維束の形態とさ
れており、従って、予備炭化に際して、各フィラメント
が融着したり、膠着したりする度合いが大となり、製品
である焼成処理後の炭素繊維の品質に問題を生じるとい
う大きな欠点が発生した。
Furthermore, one infusible fiber is in the form of a fiber bundle composed of 100 to 100,000 filaments, and therefore, each filament may fuse or stick together during preliminary carbonization. This resulted in a major drawback in that the quality of the carbon fiber product after firing treatment was affected.

このような、予備炭化炉における炉内断糸の改善を行な
う一つの手段として、不融化炉内における不融化繊維の
不融化度を上げることが考えられるが、本発明者らの研
究実験の結果によると、この方法では、炭素繊維の物性
が低下することとなり、この方法は適当でないことが分
かった。
One way to improve the yarn breakage in the pre-carbonization furnace is to increase the degree of infusibility of the infusible fibers in the infusibility furnace, but as a result of research experiments conducted by the present inventors, According to this method, the physical properties of the carbon fiber deteriorated, and it was found that this method was not suitable.

本発明者らは、連続焼成プロセスにて炭素繊維を製造す
る方法を研究する過程において、通常通りに不融化した
不融化繊維を高温の酸化性ガス含有雰囲気中に短詩間通
して熱処理し、予備炭化することにより、不融化繊維の
予備炭化炉内での断糸が防止され、通糸歩留りが向上す
ること、更には、予備炭化繊維の融膠着度が減少し、高
品質の炭素繊維を製造し得ることを見出した。
In the process of researching a method for producing carbon fibers using a continuous firing process, the present inventors heat-treated normally infusible infusible fibers in a high-temperature oxidizing gas-containing atmosphere for a short period of time. Carbonization prevents the infusible fibers from breaking in the pre-carbonization furnace, improving threading yield, and also reduces the degree of fusion and stickiness of the pre-carbonized fibers, producing high-quality carbon fibers. I found out what can be done.

本発明は、斯る新規な知見に基づきなされたものである
The present invention has been made based on this new knowledge.

従って、本発明の目的は、不融化繊維の予備炭化炉内で
の断糸を防止し、通糸歩留りを向上せしめ、更には、予
備炭化繊維の融膠着度を低減させ、高品質の炭素繊維を
製造するためのピッチ系炭素繊維の製造方法を提供する
ことである。
Therefore, an object of the present invention is to prevent yarn breakage of infusible fibers in a pre-carbonization furnace, improve yarn threading yield, and further reduce the degree of fusing and agglutination of pre-carbonized fibers, thereby producing high-quality carbon fibers. An object of the present invention is to provide a method for manufacturing pitch-based carbon fiber for manufacturing.

本発明の他の目的は、予備炭化時間を、従来の1/2〜
1/10程度にまで短縮し、効率よ(炭素繊維を製造す
ることのできるピッチ系炭素繊維の製造方法を提供する
ことである。
Another object of the present invention is to reduce the preliminary carbonization time to 1/2 to 1/2 of the conventional carbonization time.
It is an object of the present invention to provide a method for producing pitch-based carbon fibers that can be shortened to about 1/10 and efficiently produce carbon fibers.

・ を ′ るための 上記目的は本発明に係るピッチ系炭素繊維及び黒鉛繊維
の製造方法にて達成される。要約すれば本発明は、紡糸
、集束されたピッチ繊維束を不融化し、前記不融化され
た不融化繊維束な予備炭化し、然る後に炭化し、必要に
応じて更に黒鉛化することからなるピッチ系炭素繊維及
び黒鉛繊維の製造方法において、前記不融化繊維束の予
備炭化を、最高温度が500〜700℃の酸化性ガス含
有雰囲気中で短時間熱処理することにより行なうことを
特徴とするピッチ系炭素繊維及び黒鉛繊維の製造方法で
ある。
The above objectives for achieving the following are achieved by the method for producing pitch-based carbon fibers and graphite fibers according to the present invention. In summary, the present invention involves infusibleizing a spun and bundled pitch fiber bundle, pre-carbonizing the infusible infusible fiber bundle, then carbonizing it, and further graphitizing it if necessary. The method for producing pitch-based carbon fibers and graphite fibers is characterized in that preliminary carbonization of the infusible fiber bundle is performed by heat treatment for a short time in an oxidizing gas-containing atmosphere with a maximum temperature of 500 to 700°C. This is a method for producing pitch-based carbon fiber and graphite fiber.

つまり、本発明に従えば、連続焼成プロセスにて炭素繊
維を製造する方法において、通常通りに不融化した不融
化繊維を最高温度が500〜700℃の、好ましくは5
50〜650℃の酸化性ガス含有雰囲気中に短時間、即
ち、20〜300秒間、好ましくは50〜200秒間通
して、予備炭化(熱処理)が行なわれ、それによって不
融化繊維の予備炭化炉内での断糸が防止され、通糸歩留
りが向上する。更には、本発明によれば、予備炭化処理
後の予備炭化繊維の融膠着度が減少し、従って、引続き
行なわれる炭化或は黒鉛化処理された後の炭素繊維に融
膠着は見受けられず、極めて高品質の炭素繊維を得るこ
とができる。
In other words, according to the present invention, in a method for manufacturing carbon fibers by a continuous firing process, infusible fibers that are normally infusible are heated to a maximum temperature of 500 to 700°C, preferably 5
Pre-carbonization (heat treatment) is carried out in an oxidizing gas-containing atmosphere at 50-650° C. for a short period of time, i.e. 20-300 seconds, preferably 50-200 seconds, whereby the infusible fibers are heated in a pre-carbonization furnace. This prevents yarn breakage and improves yarn threading yield. Further, according to the present invention, the degree of fusion and agglutination of the pre-carbonized fibers after the preliminary carbonization treatment is reduced, and therefore, no fusion and agglutination is observed in the carbon fibers that have been subsequently subjected to the carbonization or graphitization treatment. Extremely high quality carbon fibers can be obtained.

更に、予備炭化時間を従来の1/2〜1/I Oまで短
縮し、効率よく炭素繊維を製造できる。
Furthermore, the preliminary carbonization time can be shortened to 1/2 to 1/2 of the conventional time, allowing efficient production of carbon fibers.

支上皇 以下、本発明の実施例について詳細に説明する。Retired Emperor Examples of the present invention will be described in detail below.

本発明者等は、ピッチ繊維束を不融化した不融化繊維束
を、予備炭化炉内で繊維の切断を生じることな(且つ繊
維間の融膠着を低減して予備炭化することができるピッ
チ系炭素繊維の製造方法を得るべく、鋭意研究を重ねた
The present inventors have developed a pitch-based fiber bundle that can be pre-carbonized by infusible pitch fiber bundles without causing fiber cutting in a pre-carbonization furnace (and by reducing fusion agglutination between fibers). Intensive research was conducted to find a method for producing carbon fiber.

その結果、ピッチ繊維束を不融化した不融化繊維束の予
備炭化を、低濃度の酸化性ガス含有雰囲気下で短時間で
行なえば、繊維の表層を選択的に酸化して表層を強固に
しながら、繊維内部の炭化を進めて繊維を予備炭化する
ことができ、このため予備炭化炉内で不融化繊維束に繊
維の切断が生じることがな(、又繊維の表層の選択酸化
によって融膠着物質が除去されるので、繊維間の融膠着
を低減でき、更に予備炭化時間を従来の1/2〜1/1
0に短縮できること見出した。
As a result, if preliminary carbonization of the infusible pitch fiber bundle is carried out in an atmosphere containing low concentration of oxidizing gas in a short time, the surface layer of the fibers will be selectively oxidized and the surface layer will be strengthened. , it is possible to pre-carbonize the fibers by proceeding with carbonization inside the fibers, thus preventing fibers from being cut in the infusible fiber bundle in the pre-carbonization furnace (also, by selective oxidation of the surface layer of the fibers, the fibers can be pre-carbonized). is removed, it is possible to reduce fusion and agglutination between fibers, and further reduce the preliminary carbonization time to 1/2 to 1/1 of the conventional
I found that it can be shortened to 0.

本発明は、上記知見に基づきなされたものである。The present invention has been made based on the above findings.

第1図は、本発明の炭素繊維の製造方法の一実施例を示
す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of the method for producing carbon fibers of the present invention.

第1図において、30は予備炭化炉で、ピッチ繊維を紡
糸し、合糸して得られたピッチ繊維束が、図示しない不
融化炉で不融化され、連続して予備炭化炉30で予備炭
化され、その後図示しない炭化炉で炭化され必要に応じ
て黒鉛化されて、炭素繊維とされる。
In FIG. 1, reference numeral 30 denotes a pre-carbonization furnace, in which the pitch fiber bundle obtained by spinning and doubling pitch fibers is infusible in an infusibility furnace (not shown), and then pre-carbonized in the pre-carbonization furnace 30. Thereafter, it is carbonized in a carbonization furnace (not shown) and graphitized as necessary to obtain carbon fiber.

先ず、炭素質ピッチは当業者には周知の方法によって紡
糸される。例えば、石油系ピッチ、石炭系ピッチ、芳香
族炭化水素類を原料とするピッチ等の炭素繊維の製造に
適した炭素質ピッチを加熱溶融して1〜2000本、好
ましくは5o〜1000本のフィラメントを紡糸し、各
フィラメントには通常使用されているオイリングローラ
を使用して集束剤を付与して、これら多数のフィラメン
トを集束し、1本の糸条としてボビンに巻取られる。
First, carbonaceous pitch is spun by methods well known to those skilled in the art. For example, 1 to 2,000, preferably 5 to 1,000 filaments are produced by heating and melting carbonaceous pitch suitable for manufacturing carbon fiber, such as petroleum-based pitch, coal-based pitch, and pitch made from aromatic hydrocarbons. A sizing agent is applied to each filament using a commonly used oiling roller, and the large number of filaments are bundled and wound around a bobbin as a single thread.

集束剤としては、例えば水、エチルアルコール、イソプ
ロピルアルコール、n−プロピルアルコール、ブチルア
ルコール、等のアルコール類又は粘度5〜1000 c
 s t (25℃)のジメチルポリシロキサン、アル
キルフェニルポリシロキサン等を、低沸点のシリコーン
油(ポリシロキサン)又はパラフィン油等の溶剤で稀釈
したもの、又は乳化剤を入れて水に分散させたもの;同
様にグラファイト又はポリエチレングリコールやヒンダ
ードエステル類を分散させたもの;界面活性剤を水で稀
釈したもの;その他通常の繊維、例えばポリエステル繊
維に使用される各種油剤の内ピッチ繊維を犯さないもの
を使用することができる。
Examples of the sizing agent include water, alcohols such as ethyl alcohol, isopropyl alcohol, n-propyl alcohol, and butyl alcohol, or alcohols with a viscosity of 5 to 1000 c.
dimethylpolysiloxane, alkylphenylpolysiloxane, etc. of s t (25°C) diluted with a solvent such as low-boiling silicone oil (polysiloxane) or paraffin oil, or dispersed in water with an emulsifier added; Similarly, those in which graphite or polyethylene glycol or hindered esters are dispersed; those in which surfactants are diluted with water; and those that do not harm pitch fibers among the various oils used for ordinary fibers, such as polyester fibers. can be used.

集束剤のピッチ繊維への付与量は、通常0.01〜1重
量%とされるが、特に0.05〜5重量%が好ましい。
The amount of the sizing agent applied to the pitch fibers is usually 0.01 to 1% by weight, particularly preferably 0.05 to 5% by weight.

上述のようにして一旦ボビンに巻取られた多数のフィラ
メントから成る糸条は、複数個の、例えば2〜50個の
ボビンを同時に解舒することによって、又は複数回に分
けて、例えば1回目は2〜10本を1次いで残余分をと
いったように、解舒合糸を繰返し行なうことによって、
2〜50本の糸条を合束(合糸)し、100〜1000
00本、好ましくは500〜10000本のフィラメン
トからピッチ繊維束(以後単に「ピッチ繊維」という。
The yarn consisting of a large number of filaments once wound onto bobbins as described above can be unwound by simultaneously unwinding a plurality of bobbins, for example, 2 to 50 bobbins, or by dividing it into multiple times, for example, the first time. By repeatedly unwinding and doubling 2 to 10 yarns, then the remaining yarn,
2 to 50 yarns are bundled (paired) and 100 to 1000
00, preferably 500 to 10,000 filaments to form a pitch fiber bundle (hereinafter simply referred to as "pitch fiber").

)が製造され、他のボビンに巻取られる。) is produced and wound onto another bobbin.

斯る合糸時に、不融化時及び予備炭化時の処理を考慮し
てピッチ繊維に耐熱性の油剤が付与される。耐熱性の油
剤としては、アルキルフェニルポリシロキサンが好まし
く、フェニル基を5〜80%、好ましくは10〜50%
含み、又、アルキル基としてはメチル基、エチル基、プ
ロピル基が好ましく、同一分子に2種以上のアルキル基
を有していても良い、又、粘度は25℃にて10〜10
00cstのものが使用される。更に後述するような酸
化防止剤を添加することもできる。
During such doubling, a heat-resistant oil agent is applied to the pitch fibers in consideration of treatments during infusibility and preliminary carbonization. As the heat-resistant oil agent, alkylphenylpolysiloxane is preferable, and the phenyl group content is 5 to 80%, preferably 10 to 50%.
In addition, the alkyl group is preferably a methyl group, ethyl group, or propyl group, and the same molecule may contain two or more types of alkyl groups, and the viscosity is 10 to 10 at 25°C.
00cst is used. Furthermore, an antioxidant as described later can also be added.

他の好ましい油剤としては、ジメチルポリシロキサンに
酸化防止剤を入れたものが使用可能であり、粘度として
は25℃で5〜1000cstのものが好ましい。酸化
防止剤としては、アミン類、有機セレン化合物、フェノ
ール類等、例えばフェニル−a−ナフチルアミン、ジラ
ウリルセレナイド、フェノチアジン、鉄オクトレート等
を挙げることができる。これらの酸化防止剤は、上述し
たように、更に耐熱性を高める目的で上記アルキルフェ
ニルポリシロキサンに添加することも可能である。
Another preferred oil agent that can be used is dimethylpolysiloxane containing an antioxidant, and preferably has a viscosity of 5 to 1000 cst at 25°C. Examples of the antioxidant include amines, organic selenium compounds, phenols, and the like, such as phenyl-a-naphthylamine, dilaurylselenide, phenothiazine, and iron octolate. As mentioned above, these antioxidants can also be added to the alkylphenylpolysiloxane for the purpose of further increasing heat resistance.

更に、好ましい油剤としては、上記各油剤を沸点が60
0℃以下の界面活性剤を用いて、乳化したものを使用す
ることもできる。このとき界面活性剤としては、ポリオ
キシエチレンアルキルエーテル、ポリオキシエチレンア
ルキルエステル、ポリオキシエチレン変性シリコーン、
ポリオキシアルキレン変性シリコーン等を使用し得る。
Further, as preferred oils, each of the above oils has a boiling point of 60.
It is also possible to use an emulsified product using a surfactant having a temperature of 0° C. or lower. At this time, as the surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene modified silicone,
Polyoxyalkylene-modified silicones and the like may be used.

これら油剤は、ローラ接触、スプレー塗布、泡沫塗布等
により、ピッチ繊維に0.01〜10重量%、好ましく
は0.05〜5重量%が付与される。
These oil agents are applied to the pitch fibers in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, by roller contact, spray coating, foam coating, or the like.

上述のように、合糸されたピッチ繊維に耐熱性油剤を付
与することにより、該ピッチ繊維は強度が著しく強くな
り糸扱い性が極めて向上する。
As mentioned above, by applying a heat-resistant oil agent to the pitch fibers that have been doubled, the strength of the pitch fibers becomes significantly stronger and the yarn handling properties are greatly improved.

以上の如(にして製造されたピッチ繊維をボビンより解
舒して、不融化炉へと送給する。
The pitch fibers produced as described above are unwound from a bobbin and sent to an infusibility furnace.

不融化炉内の温度は150〜350℃の範囲内の成る一
定温度とすることもできるが、炉入口より炉出口にかけ
て150℃から350”Cへと次第に増大する温度勾配
を有するように設定することもできる。
The temperature inside the infusibility furnace can be set to a constant temperature within the range of 150 to 350°C, but it is set to have a temperature gradient that gradually increases from 150°C to 350"C from the furnace entrance to the furnace exit. You can also do that.

又、不融化炉内は酸化性雰囲気とされ、不融化炉内には
空気、酸素、空気と酸素又は空気と窒素の混合ガス等の
酸化性ガスが供給されるが、好ましいガスとして酸素濃
度30〜90%の富酸素ガスが使用される。
In addition, the inside of the infusibility furnace is made into an oxidizing atmosphere, and oxidizing gas such as air, oxygen, a mixed gas of air and oxygen, or air and nitrogen is supplied into the infusibility furnace, and a preferable gas is an oxygen concentration of 30 ~90% oxygen rich gas is used.

本発明に従えば、不融化処理時に、繊維束には張力をか
けずに行なうこともできるが、不融化炉内での繊維束の
たるみによる炉底、炉壁をこすることにより生じる引き
ずり傷の発生防止、及び外観が良く且つ引張強度、引張
弾性率などの炭素繊維の物性の向上のために、1フイラ
メント当たり0.001〜0.2gの張力をかけながら
不融化を行なうことが好ましい。
According to the present invention, the infusibility treatment can be carried out without applying any tension to the fiber bundle, but the slackness of the fiber bundle in the infusibility furnace causes drag scratches caused by rubbing against the furnace bottom and furnace wall. In order to prevent the occurrence of carbon fibers, improve appearance, and improve the physical properties of the carbon fibers such as tensile strength and tensile modulus, it is preferable to carry out infusibility while applying a tension of 0.001 to 0.2 g per filament.

このようにして、不融化繊維の酸素濃度は7〜12重量
%になるように不融化される。
In this way, the infusible fibers are infusible so that the oxygen concentration is 7 to 12% by weight.

不融化炉で不融化された不融化繊維束Fは、上述したよ
うに、連続的に予備炭化炉3o内に導入され、予備炭化
される。
The infusible fiber bundle F that has been infusible in the infusible furnace is continuously introduced into the pre-carbonization furnace 3o and pre-carbonized, as described above.

予備炭化炉30は、最高温度が500〜7゜0℃になる
ように設定される。例えば入り口部から出口部にかけて
400℃、500’C0600”Cというように、最高
温度が500〜700”Cの間で段階的に上昇するよう
に加熱保持される。
The pre-carbonization furnace 30 is set to have a maximum temperature of 500 to 70°C. For example, heating is maintained such that the maximum temperature increases stepwise between 500 and 700''C, such as 400°C and 500'C0600''C from the inlet to the outlet.

本発明よれば、最高温度が500〜700℃での短時間
の加熱により繊維の表層を選択的に酸化させながら不融
化繊維束Fの予備炭化を行なわせるために、予備炭化炉
30は、これに不活性ガスに少量の酸化性ガスを混合し
て供給することにより、低濃度の酸化性ガス含有雰囲気
に維持されている。
According to the present invention, in order to pre-carbonize the infusible fiber bundle F while selectively oxidizing the surface layer of the fibers by short-time heating at a maximum temperature of 500 to 700°C, the pre-carbonization furnace 30 By supplying an inert gas mixed with a small amount of oxidizing gas, an atmosphere containing a low concentration of oxidizing gas is maintained.

不活性ガスとしては窒素ガス又はアルゴンガスが使用さ
れる。
Nitrogen gas or argon gas is used as the inert gas.

不活性ガス中に含有される酸化性ガスとしては、酸素、
空気、空気と酸素を混合したもの、NOx、SOx、水
蒸気、炭酸ガス、ハロゲンガス、強酸の蒸気など酸化性
のあるガス或いはこれのらのガスの2種以上の混合物が
使用されるが、好ましくは酸素又は空気が使用される。
Oxidizing gases contained in inert gas include oxygen,
Oxidizing gases such as air, a mixture of air and oxygen, NOx, SOx, water vapor, carbon dioxide gas, halogen gas, strong acid vapor, or a mixture of two or more of these gases are used, but preferably. oxygen or air is used.

上記の低濃度の酸素含有雰囲気の場合の酸素含有量は、
0.01〜30%とされる。低濃度の酵素含有雰囲気の
酸素含有量が0.01%未満であると少なすぎて、予備
炭化時の短時間加熱では不融化繊維の表層を有効に酸化
させることができず、逆に30%を超えると多すぎて、
短時間の熱処理であっても不融化繊維の表層のみを選択
的に酸化することができず、酸化が繊維の内部まで進む
不都合を生じる。従って低濃度の酸素含有雰囲気の酸素
含有量は0.01〜30%とされ、より好ましくは0.
05〜10%とされる 低濃度の酸化性ガス含有雰囲気下での不融化繊維の予備
炭化時の加熱時間は、20秒未満であると短すぎて、雰
囲気の酸化性ガス含有量を多(しても不融化繊維の表層
を有効に酸化することができず、逆に300秒を超える
と長すぎて、雰囲気の酸化性ガス含有量を少なくしても
不融化繊維の内部まで酸化が起こるのを免れない。従っ
て予備炭化時の加熱時間は20〜300秒とされ、より
好ましくは50〜200秒とされる。
The oxygen content in the above low concentration oxygen-containing atmosphere is
It is set at 0.01 to 30%. If the oxygen content of the low-concentration enzyme-containing atmosphere is less than 0.01%, it is too low and the surface layer of the infusible fiber cannot be effectively oxidized by short-time heating during preliminary carbonization, and on the contrary, the oxygen content is less than 30%. It's too much if it exceeds
Even with short-time heat treatment, only the surface layer of the infusible fiber cannot be selectively oxidized, causing the disadvantage that oxidation progresses to the inside of the fiber. Therefore, the oxygen content of the low concentration oxygen-containing atmosphere is set to 0.01 to 30%, more preferably 0.01% to 30%.
If the heating time during pre-carbonization of the infusible fibers in an atmosphere containing a low concentration of oxidizing gas of 0.05 to 10% is less than 20 seconds, it is too short and may increase the oxidizing gas content of the atmosphere ( Even if the oxidizing gas content of the atmosphere is reduced, the surface layer of the infusible fibers cannot be effectively oxidized; on the other hand, if it exceeds 300 seconds, oxidation will occur to the inside of the infusible fibers even if the oxidizing gas content of the atmosphere is reduced. Therefore, the heating time during preliminary carbonization is set to 20 to 300 seconds, more preferably 50 to 200 seconds.

本発明では、不融化繊維束Fに対して予備炭化炉30内
で以上のような条件で予備炭化が行なわれる。これによ
れば、不融化繊維束Fの予備炭化を所定の温度で低濃度
の酸化性ガス含有雰囲気で短時間熱処理することにより
行なっているので、繊維の表層を選択的に酸化して表層
を固(すると共に、繊維内部の炭化を進めて繊維を予備
炭化することができ、このため予備炭化炉内で不融化繊
維束に繊維の切断が生じることがない。又繊維の表層の
選択酸化によって融膠着物質が除去されるので、繊維間
の融膠着を低減できる。
In the present invention, preliminary carbonization is performed on the infusible fiber bundle F in the preliminary carbonization furnace 30 under the above conditions. According to this, preliminary carbonization of the infusible fiber bundle F is carried out by heat treatment for a short time at a predetermined temperature in an atmosphere containing a low concentration of oxidizing gas, so that the surface layer of the fibers is selectively oxidized and the surface layer is At the same time, the fibers can be pre-carbonized by advancing the carbonization inside the fibers, so that the fibers will not be cut in the infusible fiber bundle in the pre-carbonization furnace.Also, by selective oxidation of the surface layer of the fibers, the fibers will not be cut. Since the fusing and agglutinating substance is removed, fusing and agglutinating between fibers can be reduced.

本発明によれば、上述したように、予備炭化時間が、従
来の製造方法による予備炭化時間に比較し、1/2〜1
/10程度にまで短縮し得ることが分かった。
According to the present invention, as described above, the preliminary carbonization time is 1/2 to 1/2 compared to the preliminary carbonization time according to the conventional manufacturing method.
It was found that the time can be shortened to about /10.

以上のようにして不融化繊維束Fの予備炭化を行なった
ら、得られた予備炭化繊維束Fを続いて図示しない炭化
炉で不活性ガス雰囲気下にて温度1000〜2000℃
まで加熱して炭化し、必要に応じて3000℃まで加熱
して黒鉛化すればよい。これにより融膠着のない炭素繊
維を繊維の切断を生じることなく得ることができる。
After pre-carbonizing the infusible fiber bundle F as described above, the obtained pre-carbonized fiber bundle F is then heated in a carbonization furnace (not shown) at a temperature of 1000 to 2000°C under an inert gas atmosphere.
What is necessary is just to heat it to 3000 degreeC and carbonize it, and to graphitize it by heating it to 3000 degreeC as needed. This makes it possible to obtain carbon fibers free from fusion and agglutination without cutting the fibers.

本発明で用いる原料炭素質ピッチは、公知の原料、例え
ば石油系の各種重質油、熱分解タール、接触分解タール
、石炭の乾留によって得られる重質油、タールなどを出
発原料として、その熱分解重縮合によって得られるメソ
フェースピッチ(光学的異方性ピッチ)、芳香族炭化水
素類を原料とするメンフェースピッチ、光学的異方性相
と光学的等方性相を含有するピッチ或いは光学的等方性
ピッチであってもよい。例えば、超高強度の高性能炭素
繊維を、熱分解重縮合によって得られたメソフェースピ
ッチから製造する場合、メンフェース含有量70〜10
0%のメソフェースピッチが好ましく、特に実質的に1
00%のメンフェースを含有するメンフェースピッチが
最も好ましい。
The raw material carbonaceous pitch used in the present invention is made from known raw materials such as various petroleum-based heavy oils, pyrolysis tar, catalytic cracking tar, heavy oil and tar obtained by carbonization of coal, etc. Mesophase pitch (optically anisotropic pitch) obtained by decomposition polycondensation, mesophase pitch made from aromatic hydrocarbons, pitch or optical pitch containing an optically anisotropic phase and an optically isotropic phase It may be an isotropic pitch. For example, when producing ultra-high-strength, high-performance carbon fiber from mesoface pitch obtained by pyrolysis polycondensation, the mesoface content is 70 to 10
A mesoface pitch of 0% is preferred, especially substantially 1
Most preferred is a membrane pitch containing 0.00% membrane.

尚、不融化繊維は、ピッチ繊維を綿状で連続的に不融化
するものとして説明したが、ケンス状(ピッチ繊維を金
網の容器の中に入れて堆積したもの、及びこれに類似の
もの)で不融化したもの、メツシュベルト上にピッチ繊
維を載せて不融化したもの、或はボビン巻のまま不融化
したものなどについても、本発明は同様に実施でき、且
つ同様の効果を奏し得る。
Incidentally, the infusible fibers have been explained as pitch fibers that are continuously infusible in the form of fluff, but they can also be in the form of cans (pitch fibers deposited in a wire mesh container, or similar). The present invention can be carried out in the same manner, and the same effects can be achieved with the following methods: those made infusible by placing pitch fibers on a mesh belt, or made infusible while still being wound on a bobbin.

次に、本発明に係る炭素繊維の製造方法を具体的な実施
例に即して更に説明する。
Next, the method for manufacturing carbon fiber according to the present invention will be further explained based on specific examples.

実施例1 ピッチ繊維を製造するに当り、光学的異方性相を約55
%含有し、軟化点が232℃である炭素質ピッチを前駆
体ピッチとして使用した。この前駆体ピッチを遠心分離
により光学的異方性相の多いピッチと光学的等方性相の
多いピッチとを連続的に分離し、それぞれ抜き出した。
Example 1 In producing pitch fiber, an optically anisotropic phase of about 55%
% and a softening point of 232° C. was used as the precursor pitch. This precursor pitch was centrifuged to successively separate pitches containing many optically anisotropic phases and pitches containing many optically isotropic phases, and each was extracted.

得られた光学的異方性相を多く含むピッチは、光学的異
方性相を98%含み、軟化点は270℃、キノリンネ溶
分は30.0%であった。該炭素繊維用ピッチを500
孔の紡糸口金を有する溶融紡糸機(ノズル孔径:直径0
.3mm)に通し、355℃で200mmHgの窒素ガ
ス圧で押し出して紡糸した。
The obtained pitch containing a large amount of optically anisotropic phase contained 98% of optically anisotropic phase, had a softening point of 270° C., and had a quinoline solubility of 30.0%. The pitch for carbon fiber is 500
Melt spinning machine with hole spinneret (nozzle hole diameter: diameter 0
.. 3 mm) and extruded and spun at 355°C under a nitrogen gas pressure of 200 mmHg.

紡糸した500本のフィラメントはエアーサッカーで略
集束してオイリングローラに導き、糸に対して約0.2
重量%の割合で集束用油剤を供給し、500フイラメン
トから成るピッチ繊維を形成した。油剤としては、25
℃における粘度が14cstのメチルフェニルポリシロ
キサンを使用した。
The 500 spun filaments are roughly converged by an air sucker and guided to an oiling roller, with a ratio of about 0.2 to the yarn.
A focusing oil was supplied in a proportion of 500% by weight to form a pitch fiber consisting of 500 filaments. As an oil agent, 25
A methylphenylpolysiloxane having a viscosity of 14 cst at °C was used.

該ピッチ繊維は、ノズル下部に設けた高速で回転する直
径210mm、幅200mmのステンレス鋼製のボビン
に巻き取り、約500m/分の巻き取り速度で10分間
紡糸した。ボビン1回転当たりのトラバースのピッチは
10mm/1回転であった。紡糸の間に糸切れは発生し
なかった。
The pitch fibers were wound onto a stainless steel bobbin with a diameter of 210 mm and a width of 200 mm that was provided at the bottom of the nozzle and rotated at high speed, and spun for 10 minutes at a winding speed of about 500 m/min. The pitch of the traverse per revolution of the bobbin was 10 mm/rotation. No yarn breakage occurred during spinning.

次いで、ピッチ繊維を巻いた前記ボビン6個を解舒し、
そしてオイリングローラを使用して耐熱性油剤を付与し
ながら合糸し、3000フイラメントから成るピッチ繊
維(束)を形成し、他のステンレス製ボビンに巻取った
Next, the six bobbins wound with pitch fibers were unwound,
Then, the fibers were combined using an oiling roller while applying a heat-resistant oil to form a pitch fiber (bundle) consisting of 3,000 filaments, which was wound onto another stainless steel bobbin.

合糸時に油剤としては25℃で40cstのメチルフェ
ニルポリシロキサン(フェニル基含有量45モル%)を
使用した。付与量は糸に対し0゜5%であった。
Methylphenylpolysiloxane (phenyl group content: 45 mol %) of 40 cst at 25° C. was used as an oil agent during yarn doubling. The amount applied was 0.5% to the yarn.

このようにして得た、ボビン巻のピッチ繊維をボビンか
ら解舒しつつ、炉入口温度180℃、最高温度295℃
の温度勾配を持つ富酸素雰囲気(酸素/窒素=60/4
0)の連続不融化炉に線状で連続的に導入した。昇温速
度は6℃/分であり、不融化時間は19分であった。繊
維束にかけた張力は1フイラメント当たり0.007g
 (3000フイラメントの繊維束に対して20g)で
あった。不融化後の不融化繊維の酸素濃度は9゜5重量
%であった。
While unwinding the bobbin-wound pitch fiber thus obtained from the bobbin, the furnace inlet temperature was 180°C, and the maximum temperature was 295°C.
Oxygen-rich atmosphere with a temperature gradient of (oxygen/nitrogen = 60/4
0) was continuously introduced in a linear manner into the continuous infusibility furnace. The temperature increase rate was 6° C./min, and the infusibility time was 19 minutes. The tension applied to the fiber bundle is 0.007g per filament.
(20 g for a fiber bundle of 3000 filaments). The oxygen concentration of the infusible fiber after infusibility was 9.5% by weight.

不融化中、ボビンからのピッチ繊維の解舒は円滑に行な
われ、不融化炉内での繊維束の断糸もなく円滑に不融化
処理ができた。
During the infusibility process, the pitch fibers were unraveled from the bobbin smoothly, and the infusibility treatment was carried out smoothly without any breakage of the fiber bundle in the infusibility furnace.

このようにして不融化された不融化繊維束Fは、連続し
て予備炭化炉30へ送給した。
The infusible fiber bundle F thus infusible was continuously fed to the preliminary carbonization furnace 30.

本実施例によれば、予備炭化炉30は内部が入り口部か
ら出口部に向けて温度が400℃、500℃、600℃
に段階的に上昇するように加熱保持された。
According to this embodiment, the temperature inside the preliminary carbonization furnace 30 is 400°C, 500°C, and 600°C from the inlet to the outlet.
Heating was maintained so that the temperature rose in stages.

本発明に従い、予備炭化炉30内に窒素ガスと少量の酸
素ガスを供給して、予備炭化炉内30を酸素濃度5%の
酸化性ガス含有雰囲気として、不融化繊維束Fを短時間
熱処理することにより予備炭化した。
According to the present invention, nitrogen gas and a small amount of oxygen gas are supplied into the pre-carbonization furnace 30 to create an oxidizing gas-containing atmosphere with an oxygen concentration of 5%, and the infusible fiber bundle F is heat-treated for a short time. Preliminary carbonization was carried out.

繊維束には、1フイラメント当たり0.003gの張力
が付与された。予備炭化時間は100秒であった。24
時間連続に処理したが、この間、炉30内での断糸、糸
切れは全く生じなかった。
A tension of 0.003 g per filament was applied to the fiber bundle. Preliminary carbonization time was 100 seconds. 24
Although the treatment was carried out continuously for hours, no yarn breakage or breakage occurred in the furnace 30 during this time.

この予備炭化繊維束を窒素ガス雰囲気中で1500℃ま
で昇温しで炭素繊維を得た。炭素繊維の糸径は9.8μ
mであり、引張強度は2.8GPa1引張弾性率は27
5GPaであった。又、この炭素繊維の融膠着度は5%
であった。
This pre-carbonized fiber bundle was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fibers. Carbon fiber thread diameter is 9.8μ
m, tensile strength is 2.8GPa1 tensile modulus is 27
It was 5 GPa. Also, the degree of fusion and adhesion of this carbon fiber is 5%.
Met.

又、炭素繊維をアルゴンガス雰囲気中で2500℃まで
昇温して得た黒鉛炭素繊維は、糸径が9.7umであり
、引張強度は3.3GPa、引張弾性率は700GPa
であった。又、この黒鉛繊維の融膠着度は8%であった
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 9.7 um, a tensile strength of 3.3 GPa, and a tensile modulus of 700 GPa.
Met. Further, the degree of fusion and adhesion of this graphite fiber was 8%.

本明細書にて、融膠着度(%)は、3000フイラメン
トからなる繊維束を3mm幅に切り取り、これをエタノ
ールに浸漬し、30秒間エアーを吹込み、その後顕微鏡
下で20倍の倍率で融膠着しているフィラメントの総本
数(N)を数えることにより次の式にて求められる。
In this specification, the degree of fusion adhesion (%) is determined by cutting a fiber bundle consisting of 3000 filaments to a width of 3 mm, immersing it in ethanol, blowing air for 30 seconds, and then melting it under a microscope at 20x magnification. It is determined by the following formula by counting the total number (N) of stuck filaments.

融膠着度= (N/3000)X100 (%)上記の
ように、予備炭化時の雰囲気を本発明の条件の酸化性ガ
ス含有雰囲気とし、不融化繊維の予備炭化を行なったの
で、予備炭化炉30内で不融化繊維の切断を生じること
なく且つ繊維間の融膠着を低減して予備炭化することが
でき、その結果、得られた黒鉛繊維は、融膠着がほとん
どなく又繊維の切断もわずかであった。又予備炭化時間
も、後述する比較例2に比べ215に短縮された。
Fusion degree = (N/3000)X100 (%) As mentioned above, the atmosphere during preliminary carbonization was an oxidizing gas-containing atmosphere according to the conditions of the present invention, and the infusible fibers were preliminary carbonized, so the preliminary carbonization furnace The graphite fibers obtained can be pre-carbonized without cutting the infusible fibers and reducing the fusion and agglutination between the fibers.As a result, the obtained graphite fibers have almost no fusion and agglutination and only a small amount of fiber cutting. Met. Moreover, the preliminary carbonization time was also shortened to 215 times compared to Comparative Example 2, which will be described later.

比較例1 実施例1にて、5%の酸素濃度酸化性ガス含有雰囲気と
せずに、不活性ガス(窒素ガス)雰囲気中で予備炭化し
た以外は、実施例1と同様に処理した。
Comparative Example 1 The same process as in Example 1 was carried out, except that preliminary carbonization was performed in an inert gas (nitrogen gas) atmosphere instead of in an atmosphere containing an oxidizing gas with an oxygen concentration of 5%.

この場合には、予備炭化炉30内で繊維束が切断し、予
備炭化繊維を得ることができなかった。
In this case, the fiber bundle was cut in the pre-carbonization furnace 30, making it impossible to obtain pre-carbonized fibers.

比較例2 比較例1と同様に、不融化繊維Fを直接予備炭化炉30
内へと導入し、ただ、焼成時間が250秒(実施例1の
2.5倍の時間)となるようにして除々に焼成を行なっ
たところ、予備炭化炉内で断糸することはなく、1.5
時間の連続運転ができた。しかし、得られた予備炭化繊
維は毛羽立ちの多いものであった。
Comparative Example 2 In the same manner as Comparative Example 1, the infusible fibers F were directly passed through the preliminary carbonization furnace 30.
However, when the yarn was gradually fired for 250 seconds (2.5 times the time of Example 1), there was no yarn breakage in the preliminary carbonization furnace. 1.5
Able to run continuously for hours. However, the obtained pre-carbonized fiber had a lot of fuzz.

この予備炭化繊維を窒素ガス雰囲気中で1500℃まで
昇温して炭素繊維を得た。炭素繊維の糸径は9.8μm
であり、引張強度は2.6GPa、引張弾性率は270
GPaであった。又、この炭素繊維の融膠着度は18%
であった。
This pre-carbonized fiber was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fiber. Carbon fiber thread diameter is 9.8μm
The tensile strength is 2.6 GPa and the tensile modulus is 270.
It was GPa. In addition, the degree of fusion and adhesion of this carbon fiber is 18%.
Met.

更に、炭素繊維をアルゴンガス雰囲気中で2500℃ま
で昇温して得た黒鉛炭素繊維は、糸径が9.7μmであ
り、引張強度は3.2GPa、弓張弾性率は690GP
aであった。又、この黒鉛繊維の融膠着度は40%であ
った。
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 9.7 μm, a tensile strength of 3.2 GPa, and a bowing modulus of 690 GPa.
It was a. Further, the degree of fusion and adhesion of this graphite fiber was 40%.

比較例3 予備炭化時の最高温度を900”Cとした以外は、実施
例1と同様に処理した。
Comparative Example 3 The same process as in Example 1 was carried out except that the maximum temperature during preliminary carbonization was 900''C.

この場合には、1500℃まで焼成して得られた炭素繊
維は、融膠着度が2%と少なかったが、引張強度が1.
7GPa、引張弾性率が1806Paと大きく低下した
In this case, the carbon fiber obtained by firing to 1500°C had a low degree of fusion adhesion of 2%, but a tensile strength of 1.
7 GPa, and the tensile modulus decreased significantly to 1806 Pa.

以上のように、予備炭化時の雰囲気又は加熱時間の少な
くとも一方を本発明の範囲外として予備炭化を行なった
比較例1〜3では、予備炭化炉30内で不融化繊維の切
断が多発し、又繊維間の融膠着も多く、そして得られた
黒鉛繊維は、融膠着が多く又繊維の切断も多いものにな
った。
As described above, in Comparative Examples 1 to 3 in which preliminary carbonization was performed with at least one of the atmosphere or heating time during preliminary carbonization outside the range of the present invention, infusible fibers were frequently cut in the preliminary carbonization furnace 30, Furthermore, there was a lot of fusion sticking between the fibers, and the obtained graphite fibers had a lot of fusion sticking and many fibers were cut.

4吋二激1 以上説明したように、本発明の製造方法では、ピッチ繊
維束を不融化した不融化繊維束の予備炭化を、最高温度
が500〜700℃の酸化性ガス含有雰囲気中で短時間
加熱することにより行なうので、予備炭化炉内で不融化
繊維の切断を生じることなく且つ繊維間の融膠着を低減
して予備炭化することができ、従って融膠着がない炭素
繊維を繊維の切断を生じることなく得ることができる。
4.2 Geki 1 As explained above, in the production method of the present invention, the preliminary carbonization of the infusible pitch fiber bundle is carried out for a short period of time in an oxidizing gas-containing atmosphere with a maximum temperature of 500 to 700°C. Since the process is performed by heating for a period of time, pre-carbonization can be performed without cutting the infusible fibers in the pre-carbonization furnace and by reducing the fusion and agglutination between the fibers. can be obtained without causing

更に予備炭化時間を従来の1/2〜1/10の程度まで
短縮することができ、効率よく炭素繊維を製造すること
ができる。
Further, the preliminary carbonization time can be shortened to 1/2 to 1/10 of the conventional time, and carbon fibers can be efficiently produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造方法の一実施例を示す説明図で
ある。 0:予備炭化炉 F:繊維束 復代理人
FIG. 1 is an explanatory diagram showing an embodiment of the manufacturing method of the present invention. 0: Preliminary carbonization furnace F: Fiber bundle subagent

Claims (1)

【特許請求の範囲】 1)紡糸、集束されたピッチ繊維束を不融化し、前記不
融化された不融化繊維束を予備炭化し、然る後に炭化し
、必要に応じて更に黒鉛化することからなるピッチ系炭
素繊維及び黒鉛繊維の製造方法において、前記不融化繊
維束の予備炭化を、最高温度が500〜700℃の酸化
性ガス含有雰囲気中で短時間熱処理することにより行な
うことを特徴とするピッチ系炭素繊維及び黒鉛繊維の製
造方法。 2)前記雰囲気中の酸化性ガスが酸素であり、該雰囲気
中の酸素含有量が0.01〜30%である請求項1記載
の方法。 3)前記加熱時間が20〜300秒である請求項1又は
2記載の方法。
[Claims] 1) Making the spun and bundled pitch fiber bundle infusible, pre-carbonizing the infusible infusible fiber bundle, then carbonizing it, and further graphitizing it if necessary. A method for producing pitch-based carbon fibers and graphite fibers, characterized in that the preliminary carbonization of the infusible fiber bundle is performed by heat treatment for a short time in an oxidizing gas-containing atmosphere with a maximum temperature of 500 to 700 ° C. A method for producing pitch-based carbon fiber and graphite fiber. 2) The method according to claim 1, wherein the oxidizing gas in the atmosphere is oxygen, and the oxygen content in the atmosphere is 0.01 to 30%. 3) The method according to claim 1 or 2, wherein the heating time is 20 to 300 seconds.
JP23300390A 1990-09-03 1990-09-03 Production of pitch-based carbon fiber and graphite fiber Pending JPH04119125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23300390A JPH04119125A (en) 1990-09-03 1990-09-03 Production of pitch-based carbon fiber and graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23300390A JPH04119125A (en) 1990-09-03 1990-09-03 Production of pitch-based carbon fiber and graphite fiber

Publications (1)

Publication Number Publication Date
JPH04119125A true JPH04119125A (en) 1992-04-20

Family

ID=16948294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23300390A Pending JPH04119125A (en) 1990-09-03 1990-09-03 Production of pitch-based carbon fiber and graphite fiber

Country Status (1)

Country Link
JP (1) JPH04119125A (en)

Similar Documents

Publication Publication Date Title
JPH0737689B2 (en) Method for producing carbon fiber and graphite fiber
JPH04119125A (en) Production of pitch-based carbon fiber and graphite fiber
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPH0491229A (en) Production of pitch-based carbon fiber
JPS62289617A (en) Production of carbon and graphite fiber
JPH04119126A (en) Production of pitch-based carbon fiber and graphite fiber
JPH038808A (en) Production of pitch-based carbon fiber
JPH0491228A (en) Production of pitch-based carbon fiber
JPS6257932A (en) Production of carbon fiber and graphite fiber
JPH04272234A (en) Production of pitch-base carbon fiber and graphite fiber
JPH0674528B2 (en) Method for producing carbon fiber and graphite fiber
JPH026619A (en) Production of carbon fiber and graphite fiber
JPH04272235A (en) Production of pitch-base carbon fiber and graphite fiber
JPH0291223A (en) Production of carbon fiber yarn and graphite yarn
JPH04272233A (en) Production of pitch-base carbon fiber and graphite fiber
JPS62191518A (en) Production of carbon fiber and graphite fiber
JPH043453B2 (en)
JPH04257323A (en) Production of pitch carbon fiber and graphite fiber
JPH04245923A (en) Production of pitch-based carbon fiber and graphite fiber
JPH05247730A (en) High-strength and high-modulus pitch-based carbon fiber with excellent openability and its production
JPH04272232A (en) Production of pitch-base carbon fiber and graphite fiber
JPH04257322A (en) Production of pitch carbon fiber and graphite fiber
JPH05171519A (en) Production of pitch carbon fiber
JPS62191515A (en) Production of carbon fiber and graphite fiber
JPS63315613A (en) Production of carbon and graphite fiber