JPH04116938A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPH04116938A
JPH04116938A JP2238097A JP23809790A JPH04116938A JP H04116938 A JPH04116938 A JP H04116938A JP 2238097 A JP2238097 A JP 2238097A JP 23809790 A JP23809790 A JP 23809790A JP H04116938 A JPH04116938 A JP H04116938A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
iii
group
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2238097A
Other languages
Japanese (ja)
Inventor
Akihiko Okuhora
明彦 奥洞
Jiro Kasahara
二郎 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2238097A priority Critical patent/JPH04116938A/en
Priority to KR1019910015541A priority patent/KR100217710B1/en
Publication of JPH04116938A publication Critical patent/JPH04116938A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve transmitting conductance and permitting a FET to have the characteristic of flat voltage dependency by epitaxially growing a channel forming layer and a barrier layer each of which is composed of the specified compound semiconductor on a specified compound semiconductor substrate and performing heat processing at the prescribed temperature in the atmosphere which contains the atoms of the specified group. CONSTITUTION:A channel forming layer 5 composed of the III-V compound semiconductor and a barrier layer 7 of the III-V compound semiconductor which has large band gap are epitaxially grown on the III-V compound semiconductor substrate 1, and when heat processing is performed in the atmosphere which contains the group V element atoms of the III-V compound semiconductor at 650-850 deg.C, the diffusion of group III element atoms is promoted, the thickness of the layer 7 is reduced and the thickness of the layer 5 is increased. Defects caused by lattice unconformity is reduced by the alternate diffusion of the group III element atoms, transmitting conductance is improved and a FET is allowed to have the characteristic of flat gate voltage dependency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電界効果トランジスタ(FET)特に■−V
族化合物半導体、例えばMtGaAs/ InGaAs
/GaAsによる歪層を有するモジニレ−ジョンドープ
構造の高電子移動度トランジスタ(HEMT)の製法に
係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to field effect transistors (FETs), particularly ■-V
Group compound semiconductors, such as MtGaAs/InGaAs
The present invention relates to a method for manufacturing a high electron mobility transistor (HEMT) having a modinilation doped structure having a strained layer made of /GaAs.

〔発明の概要〕[Summary of the invention]

本発明はFETの製法に関わり、■−V族化合物半導体
基体上に、■−■族化合物半導体より成るチャンネル形
成層と、これに比しバンドギャップの大きい1の導電型
を有する■−v族化合物半導体より成るバリア層とをエ
ピタキシャル成長し、後の工程でV族の原子を含む雰囲
気中で650℃〜850℃の熱処理を行うことにより広
範囲のゲート電圧に対し伝達コンダクタンス9mの向上
をはかる。
The present invention relates to a method for manufacturing an FET, and includes a channel forming layer made of a ■-V group compound semiconductor on a ■-V group compound semiconductor substrate, and a ■-V group compound semiconductor having a conductivity type 1 having a larger band gap compared to the channel forming layer. By epitaxially growing a barrier layer made of a compound semiconductor and performing heat treatment at 650° C. to 850° C. in an atmosphere containing group V atoms in a later step, the transfer conductance is improved to 9 m over a wide range of gate voltages.

〔従来の技術〕[Conventional technology]

従来、超高周波用FETとしては、低雑音特性を生かし
たモジユレーション・ドープ構造のHEMTの検討が活
発に行われている。
Conventionally, as ultra-high frequency FETs, HEMTs with a modulation doped structure that take advantage of low noise characteristics have been actively studied.

第1図は、歪層を有するHEMT (いわゆるPsud
Figure 1 shows a HEMT with a strained layer (so-called Psud
.

morphic HEMT)  の路線的断面図で、例
えばGaAsサブストレイト(2)上に超格子構造のバ
ッファM (3) ’E−介して半絶縁性の例えばGa
As化合物半導体層(4)がエビタキーされて成る■−
v族化合物半導体装置(1)上に続いてこれに比しエネ
ルギーバンドギャップが小さいノンドープのInGaA
Sより成る歪層によるチャンネル形成層(5)と、極薄
のノンドープのスペーサ層(6)と、1の導電型一般に
はSiがドープされたn型を有し、歪層によるチアンネ
ル層(5)に比しエネルギーバンドギャップが大きいM
I G a A sによるバリア層(7)が連続的にエ
ピタキンーされる。そしてこのバリア層(7)上にこれ
に対しンヨットキー接合を形成するショットキー金属ゲ
ート電極(8)が被着され、これを挟んでその両側にソ
ース及びドレイン電極(9)及び(10)が例えばアロ
イによってチャンネル形成層(5)に達する深さに形成
される。
This is a cross-sectional view of a semi-insulating, e.g. GaAs substrate (2) with a superlattice structure buffer M (3)
The As compound semiconductor layer (4) is evita-keyed ■-
Next to the V-group compound semiconductor device (1) is non-doped InGaA, which has a smaller energy bandgap than this.
A channel forming layer (5) made of a strained layer made of S, an ultra-thin non-doped spacer layer (6), and a channel layer (5) made of a strained layer having the conductivity type 1, which is generally an n-type doped with Si. ) has a larger energy bandgap than M
A barrier layer (7) of IGaAs is successively epitakinized. A Schottky metal gate electrode (8) forming a Njotky junction is deposited on this barrier layer (7), and source and drain electrodes (9) and (10) are placed on both sides of the barrier layer (7), for example. It is formed by the alloy to a depth that reaches the channel forming layer (5).

この構成によるHIJITは、GaAs上にこれより格
子定数の大きいInGaAs層を堆積させるものである
が、その厚さを、転位の発生が生じる膜[(これを臨界
膜厚という)より小に選定させれば、第9図にそのバン
ドモデル図を示すように、その伝導帯に、大きなオフセ
ット電圧ΔEc を有するチャンネルを形成することが
できることから、歪層によらない通常の2次元電子ガス
(20EG)チャンネルによるHEMTに比し、電荷量
を大きくすることができ、これによって伝達コンダクタ
ンス9mを高めることができるという特徴を有する。第
9図においてE。
HIJIT with this configuration deposits an InGaAs layer with a larger lattice constant on GaAs, but its thickness is selected to be smaller than the film at which dislocations occur (this is called the critical film thickness). If so, as shown in the band model diagram in Figure 9, a channel with a large offset voltage ΔEc can be formed in the conduction band. Compared to a HEMT using a channel, this has the feature that the amount of charge can be increased, and thereby the transfer conductance can be increased by 9m. E in FIG.

はフエミレベルを示す。indicates the feminine level.

ところがこの歪層を有するHEMTは第10図にそのゲ
ート電圧v0 に対する CK< r a −:ソース
・ドレイン間電流)と9m(ミリシーメンス/mm)を
曲線(101)  及び(102)  で示すように、
VG が高くなると9mが低下するという特性を示し。
However, in the HEMT having this strained layer, the curves (101) and (102) show CK< r a -: source-drain current) and 9 m (mS/mm) with respect to the gate voltage v0 in Fig. 10. ,
It exhibits a characteristic that as VG increases, 9m decreases.

これは、歪層における本来のチャンネルとは別にこれと
平行に、VCを上げることによって第9図に鎖線aで示
すように、バリア層(7)中にチャンネルいわゆるパラ
レル・コンダクタンスが生じて来ることに因ると思われ
る。
This is due to the fact that, apart from and parallel to the original channel in the strained layer, by increasing VC, a so-called parallel conductance channel is generated in the barrier layer (7), as shown by the chain line a in Figure 9. This seems to be due to.

上述したように、歪層を有するFET例えば11EMT
は、超高周波用としての利点を有するものの、ゲート電
圧VG に対する伝達コンダクタンス9m点がある。し
たがってこの種のFETをリニアIC等に応用する場合
、動作点でゲインが低下してしまうという課題がある゛
As mentioned above, a FET with a strained layer, e.g. 11EMT
Although it has an advantage for ultra-high frequency applications, it has a transfer conductance of 9m with respect to the gate voltage VG. Therefore, when this type of FET is applied to a linear IC or the like, there is a problem that the gain decreases at the operating point.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はこのような課題の解決をはかる。 The present invention aims to solve such problems.

すなわち、本発明においては、伝達コンダクタンス9m
の向上をはかると同時にそのゲート電圧依存性が平坦な
特性を有するFET、例えば歪層を有するHEMTを得
ることができるようにする。
That is, in the present invention, the transfer conductance is 9 m.
It is thus possible to obtain an FET, for example, a HEMT having a strained layer, which has a flat gate voltage dependence.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、例えば第1図でその一例の路線的断面図を示
すように、■−v族化合物半導体基体(1)上に、これ
に比しバンドギャップの小さいII[−V族化合物半導
体より成るチャンネル形成11(5)と、このチャンネ
ル形成層(5)に比しバンドギャップの大きい■−■族
化合物半導体より成るバリア層(7)を、必要に応じて
アンドープの極薄のスペーサ層(6)を介してエピタキ
シャル成長してその後の工程で、これら■−V族化合物
半導体の■族の原子を含む雰囲気中でfli50℃〜8
50℃の熱処理を行う。
For example, as shown in FIG. 1, which shows an example of the cross-sectional view, the present invention is based on a compound semiconductor substrate (1) of a group II-V compound semiconductor having a smaller bandgap than that of a group II[-V compound semiconductor substrate (1). A barrier layer (7) made of a ■-■ group compound semiconductor having a larger band gap than this channel forming layer (5) is optionally coated with an undoped ultra-thin spacer layer ( 6), and in the subsequent process, fli50℃~8.
Heat treatment is performed at 50°C.

〔作用〕[Effect]

上述した熱処理を行った歪層を有するFETは、9mの
向上と、ゲート電圧V、に対する9mの変化の改善をは
かることができた。
The FET having the strained layer subjected to the heat treatment described above was able to achieve an improvement of 9 m and a change in gate voltage V of 9 m.

これは、第1+、:V族の過剰蒸気圧雰囲気中での熱処
理によって、■族原子の拡散が助長されること(Ins
t、 Phys、 Conf、 Ser、No 96;
 1988 P393〜P396参照)から、例えば第
2図に示すように、加熱前で実線図示のモデルが加熱後
に破線すで示すように緩やかになることによって、バリ
ア層(7)の厚みが減少し、又チャンネル層の厚みが増
加すること。
This is because the heat treatment in the excess vapor pressure atmosphere of the 1+, :V groups promotes the diffusion of group Ⅰ atoms (Ins.
t, Phys, Conf, Ser, No 96;
1988 P393-P396), for example, as shown in FIG. 2, the model shown by the solid line before heating becomes gentler as shown by the broken line after heating, so that the thickness of the barrier layer (7) decreases, Also, the thickness of the channel layer increases.

第2にこのような■族原子の相互拡散により、界面での
結晶性、例えば界面の組成のゆらぎや、格子不整合に起
因する欠陥が減少すること。
Second, such interdiffusion of group III atoms reduces crystallinity at the interface, such as fluctuations in composition at the interface and defects caused by lattice mismatch.

第3に、熱処理によってドーパントのSiもチャンネル
側に拡散することからチャンネル中でSiが活性化して
、いわゆるMES(金属−半導体装置ET、接合FET
などのドープト・チャンネル型のFETに特性が近づく
ことによってバリア層におけるチャンネルの発生、すな
わちパラレル・コンダクタンスの発生が抑制され、なお
かつ、チャンネルとゲート電極が近づくことにより、ゲ
ートとチャンネルの容量結合が大きくなることに因ると
思われる。
Thirdly, as the dopant Si also diffuses to the channel side by heat treatment, Si is activated in the channel, resulting in so-called MES (metal-semiconductor devices ET, junction FETs).
By bringing the characteristics closer to those of doped channel type FETs, the generation of a channel in the barrier layer, that is, the generation of parallel conductance, is suppressed, and by bringing the channel and gate electrode closer together, capacitive coupling between the gate and channel is increased. This seems to be due to the fact that

〔実施例〕〔Example〕

第1図を参照して本発明を歪層を有するH E !J 
T、特にn −Aji!yGaAs + −yAs/ 
InxGa +−xAs/GaAsによるMEMTを得
る場合の一実施例を説明する。
Referring to FIG. 1, the present invention will be described with reference to FIG. J
T, especially n-Aji! yGaAs + −yAs/
An example of obtaining MEMT using InxGa + -xAs/GaAs will be described.

この場合例えばGaAsサブストレイト(2)上に超格
子構造のバッファ層(3)を介して半絶縁性の例えばG
aAs化合物半導体層(4)がエピタキシーされた■−
■族のGaAs化合物半導体基体(1)上に、続いてG
aAs基体〔1)に比しエネルギーバンドギャップが小
さいノンドープのrnxGa+−xより成る歪層すなわ
ちチャンネル形成層(5)と、厚さtが0〜IOA程度
の極薄のノンドープのスペーサ層(6)と、1の導電型
例えばSiがドープされたn型を有し、チャンネル形成
層(5)に比しエネルギーバンドギャップが大きいAj
2yGal−yASによるバリア層(7)を連続的にM
OCVD (有機金属化学的気相成長法)、MBE(分
子線エピタキシ)、LPE(液相エピタキシ)等によっ
て成長させる。
In this case, for example, a semi-insulating layer of, for example, G
- The aAs compound semiconductor layer (4) is epitaxyed.
On the group III GaAs compound semiconductor substrate (1),
A strained layer or channel forming layer (5) made of non-doped rnxGa+-x with a smaller energy bandgap than the aAs substrate [1), and an extremely thin non-doped spacer layer (6) with a thickness t of about 0 to IOA. Aj has a conductivity type 1, for example, an n-type doped with Si, and has a larger energy band gap than the channel forming layer (5).
The barrier layer (7) made of 2yGal-yAS is continuously coated with M
The growth is performed by OCVD (metal-organic chemical vapor deposition), MBE (molecular beam epitaxy), LPE (liquid phase epitaxy), or the like.

その後、その■族原子のAs圧下、具体的にはAstl
、のオーバープレッシャ(過剰蒸気圧雰囲気)下でのラ
ンプアニール等のRT A (Rapid Therm
alAnneal)で650℃〜850℃の加熱を行う
。この場合の^S分圧は、熱処理温度におけるAs蒸気
圧より高い例えば100倍程度の^S分圧とする。
After that, the As compression of the group III atoms, specifically Astl
RT A (Rapid Thermal) such as lamp annealing under overpressure (excess vapor pressure atmosphere) of
heating at 650°C to 850°C. The ^S partial pressure in this case is set to be, for example, about 100 times higher than the As vapor pressure at the heat treatment temperature.

そしてバリア層(7)上にこれに対し、ショットキー接
合を形成するショットキー金属ゲート電極(8)を被着
し、これを挟んでその両側にソース及びドレイン電極(
9)及び(10)を例えばアロイによってチャンネル形
成層(5)に達する深さに形成する。
In contrast, a Schottky metal gate electrode (8) forming a Schottky junction is deposited on the barrier layer (7), with source and drain electrodes (
9) and (10) are formed by, for example, an alloy to a depth that reaches the channel forming layer (5).

このようにして得たHEMTにおいて、バリア層(7)
のAJly=0.3 、チャンネル形成層(5)のIn
1x=0.2 とし、チャンネル形成層(5)の厚さD
を150人とし、ゲート長Lg及びWgを、Lg=1μ
m、Wg=100μmとしたときの、その熱処理を75
0℃、10秒間行った場合と、850℃、10秒間行っ
た場合の、それぞれのVg に対する9m及び Jπを
第3図及び第4図に示す。曲線(31)及び(41)は
9m−Vggm、(32) 及ヒ<42> +t f「
=−Vg 曲ws ヲ示す。前述の第11図中曲線(1
1)及び(12)はそれぞれこのHE M Tの熱処理
前の同様の9m−Vg及びE’:”、−vg曲線で、こ
れらを比較して明らかなように、熱処理を行う本発明方
法によって得られたHEMTによる場合、Vgを上げて
行ったときの’Jtnの低下を格段に小さく抑えること
ができた。
In the HEMT thus obtained, the barrier layer (7)
AJly=0.3, In of the channel forming layer (5)
1x=0.2, and the thickness D of the channel forming layer (5)
150 people, gate length Lg and Wg, Lg=1μ
m, Wg = 100 μm, the heat treatment is 75
Figures 3 and 4 show 9m and Jπ for Vg when the test was carried out at 0°C for 10 seconds and when the test was carried out at 850°C for 10 seconds, respectively. Curves (31) and (41) are 9m-Vggm, (32)
=-Vg Indicates the song ws. The curve (1
1) and (12) are similar 9m-Vg, E':'', -vg curves of this HEMT before heat treatment, and as is clear from comparing these, the curves obtained by the heat treatment method of the present invention are In the case of the HEMT, the decrease in 'Jtn when Vg was increased could be suppressed to a much smaller level.

また、第5図はこの熱処理(アニール)温度と9ffl
の関係の測定結果を、lno、 2゜Gaol。^Sの
歪層(5)の厚さDをそれぞれ50A(X印でプロット
)、150人(ム印でプロット)、について示したもの
で、熱処理によってgmの向上がみられる。
Also, Figure 5 shows this heat treatment (annealing) temperature and 9ffl.
The measurement result of the relationship is lno, 2°Gaol. The thickness D of the strained layer (5) of ^S is shown for 50A (plotted with an X mark) and 150 people (plotted with a mu mark), respectively, and it can be seen that gm is improved by heat treatment.

更に、lno、 2Ga01ASによる歪層(5)の厚
さDを変化させたときの歪層(5)からAj’o、 3
Glo、 JSバリア層(7)へのInの拡散と、同様
のバリア層(7)から歪層(5〕へのMの拡散と熱処理
温度との関係の測定結果を第6図及び第7図にそれぞれ
D =300人をE印、D=200人をΔ印、D=10
0人をOで示す。これらによれば処理温度を上げるほど
拡散定数は大きくなるるが、同時に膜厚が大となるにつ
れその拡散が大きくなっている。つまりこれら拡散は膜
厚に依存していて、この膜厚が完全に転位が発生して歪
が開放される厚さ以下、つまり臨界膜厚以下で、その厚
さが厚いほどIn及びMの拡散が良好に行われることに
なって、このHEMTが第2図で説明したようにバンド
ギャップのオフセット部でなだらかに、云い換えれば通
常のドープト・チャンネルFETの特性に近づくと考え
られる。つまり、パラレル・コンダクタンスの発生が回
避されゲート電圧Vg に対する伝達コンダクタンス9
mの依存性を良好に改善できることになる。
Furthermore, Aj'o, 3 from the strained layer (5) when the thickness D of the strained layer (5) made of lno, 2Ga01AS is changed.
Figures 6 and 7 show the measurement results of the relationship between the diffusion of In into the Glo, JS barrier layer (7), the diffusion of M from the similar barrier layer (7) to the strained layer (5), and the heat treatment temperature. D = 300 people are marked E, D = 200 people are marked Δ, and D = 10.
0 people are indicated by O. According to these, the diffusion constant increases as the processing temperature increases, but at the same time, as the film thickness increases, the diffusion increases. In other words, these diffusions depend on the film thickness, and when this film thickness is below the thickness at which dislocations are completely generated and strain is released, that is, below the critical film thickness, the thicker the film thickness, the more In and M will diffuse. It is considered that this HEMT is smoothly performed in the bandgap offset portion as explained in FIG. 2, or in other words, approaches the characteristics of a normal doped channel FET. In other words, the generation of parallel conductance is avoided and the transfer conductance 9 with respect to the gate voltage Vg
This means that the dependence of m can be favorably improved.

尚、この歪層(5)の転位が生じる臨界膜厚は実際には
、成る膜厚で急激に転位が発生するという明確なもので
はなく、徐々に転位の発生が見られるという類いのもの
であって、更にこの歪層(5)の発生は、InGaAs
xAsにおいてXの値がx=o、2程度に小さいものに
おいても、200A〜250人から幾分の転位の発生が
みられる。
The critical film thickness at which dislocations occur in this strained layer (5) is not actually a clear film thickness at which dislocations occur suddenly, but rather a film thickness at which dislocations occur gradually. Moreover, the generation of this strained layer (5) is caused by InGaAs
Even in xAs, where the value of X is as small as x=o, about 2, some dislocations occur from 200A to 250A.

今Xの値が0.2に選ばれると、計算上では、チャンネ
ルを形成する量子井戸の電子が最大に蓄えられる幅りは
、150人となるが<19871EDM(Intern
atior+alεIectron Device M
eetir+g)P418〜P428参照)、実際上は
、電子移動度等の特性を勘案して、X及びDの選定がな
される。しかしながら第9図にそのInの含有量X及び
歪(Δa / a:aはGaAsの格子定数、ΔaはG
aAsとInGaAsの各格定数の差)と、臨界膜厚の
関係を示すように、斜線を付した部分が転位の発生が殆
どみられない領域でしたがって歪層を有するHEMTに
おいては、この斜線範囲でなおかつ歪(strain)
が4%以下に選ばれる。
If the value of
atior+alεIectron Device M
(see P418 to P428), in practice, X and D are selected in consideration of characteristics such as electron mobility. However, Fig. 9 shows the In content X and the strain (Δa/a: a is the lattice constant of GaAs, Δa is the G
As shown in the figure, the shaded area is a region where almost no dislocations occur, and therefore in a HEMT with a strained layer, the shaded area is Strain
is selected to be 4% or less.

上述の本発明方法によるFET、例えばInGaAsに
よる)IEMTは、これが歪層を有する)l E M 
Tであることから上述したギャップのΔEc が大で、
その2次元電子ガス濃度を高めることができると共に、
電子輸送特性にすぐれたInGaAsを用いたことによ
る高伝達コンダクタンス91Ilが得られ、これによっ
てf T (f t= 9m/2 πCgs、ここで口
gs  はゲート・ソース間容量)の向上、したがって
高速性、高性能性を有するが、加えて本発明方法ではそ
のチャンネル形成歪層(5)の厚さの選定及び熱処理に
よってゲート電圧Vg に対する9mの変化を抑制する
ことができたのである。
The FET according to the method of the invention described above, for example an IEMT (made of InGaAs), which has a strained layer) l E M
Since T, the above-mentioned gap ΔEc is large,
The two-dimensional electron gas concentration can be increased, and
By using InGaAs, which has excellent electron transport properties, a high transfer conductance of 91Il is obtained, which improves f T (f t = 9m/2 πCgs, where gs is the gate-source capacitance), and therefore improves high speed. In addition, the method of the present invention was able to suppress a change of 9 m with respect to the gate voltage Vg by selecting the thickness of the channel forming strained layer (5) and heat treatment.

尚、上述した例ではn −AA’GaAs/InGaA
s/GaAsの歪層を宥するHEMTに本発明を適用し
た場合であるが、他の■−v族化合物半導体の歪層を有
する、もしくは有しない通常のHE !J T等のFE
Tに適用することができる。
In the above example, n -AA'GaAs/InGaA
This is a case in which the present invention is applied to a HEMT with a strained layer of s/GaAs, but it can be applied to a normal HEMT with or without a strained layer of other ■-v group compound semiconductors! FE such as J.T.
It can be applied to T.

また上述した例では、各層(3)〜(7)のエピタキシ
ー後に■族原子を含む雰囲気中での熱処理を施した場合
であるが、これら層の形成後の例えばソース・ドレイン
部にゲート電極をマスクとして低抵抗化のためのイオン
注入を行う場合のアニール処理時に行うこともできるな
ど、他の熱処理工程と兼ねしめることもできる。
Furthermore, in the above example, after epitaxy of each layer (3) to (7), heat treatment is performed in an atmosphere containing group III atoms. It can also be used as a mask during annealing when performing ion implantation to lower resistance, and can also be used in combination with other heat treatment steps.

〔発明の効果〕〔Effect of the invention〕

上述の本発明方法によれば、高い’jm % f、が得
られると共に、V族原子を含む雰囲気中での熱処理を行
ったことによって■族原子の移動を活性にし、例えばn
 −AA’GaAs/InGaAs/GaAs系のHE
MTに右いて、そのA45Inの拡散を高め、更にその
熱処理によって例えばn−AAIGaAs中のドーパン
トとしてのSiの拡散によって、ドープト・チャンネル
様の特性を示し、パラレルコンダクタンス発生の抑制を
行うことができゲート電圧Vg に対する9mの変化を
抑制できることから、リニアIC等に適用して動作点で
ゲインの低下を来すなどの不都合を回避でき、実用上大
きな利点をもたらすことができる。
According to the above-mentioned method of the present invention, a high 'jm % f can be obtained, and the heat treatment in an atmosphere containing group V atoms activates the movement of group II atoms, for example, n
-AA'GaAs/InGaAs/GaAs-based HE
By increasing the diffusion of A45In in the MT and further by heat treatment, for example, by diffusing Si as a dopant in n-AAIGaAs, the gate exhibits doped channel-like characteristics and suppresses the generation of parallel conductance. Since the variation of 9 m with respect to the voltage Vg can be suppressed, it is possible to avoid problems such as a decrease in gain at the operating point when applied to a linear IC, etc., and it is possible to bring about a great practical advantage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する一例の歪層を有するHEMT
の断面図、第2図はその歪層近傍のバンドモデル図、第
3図及び第4図は本発明方法によって得たHEMTのゲ
ート電圧に対する9m及び 飼の関係を示す図、第5図
は熱処理温度と9mの関係を示す図、第6図及び第7図
はそれぞれ熱処理温度とM及びInの拡散定数の関係を
示す図、第8図はIn1X及び歪と臨界膜厚の関係を示
す図、第9図は従来方法によって得た歪層を有するHE
MTノバンドモデル図、第10図はそのゲート電圧Vg
 に対する9m及びJ「ニーの関係を示す図である。 (1)は■−v族化合物半導体基体、(2)はサブスト
レイト、(3)はバッファ層、(4)は基体層、(5)
は歪層、(6)はスペーサ、(7)はバリア層である。
FIG. 1 shows an example of a HEMT with a strained layer to which the present invention is applied.
2 is a band model diagram near the strained layer, FIGS. 3 and 4 are diagrams showing the relationship between 9m and 9m with respect to the gate voltage of the HEMT obtained by the method of the present invention, and FIG. A diagram showing the relationship between temperature and 9m, Figures 6 and 7 are diagrams each showing the relationship between heat treatment temperature and the diffusion constants of M and In, and Figure 8 is a diagram showing the relationship between In1X and strain and critical film thickness. Figure 9 shows an HE with a strained layer obtained by the conventional method.
MT band model diagram, Figure 10 shows its gate voltage Vg
FIG. 9 is a diagram showing the relationship between 9m and J'knee. (1) is a ■-v group compound semiconductor substrate, (2) is a substrate, (3) is a buffer layer, (4) is a base layer, (5)
is a strained layer, (6) is a spacer, and (7) is a barrier layer.

Claims (1)

【特許請求の範囲】  III−V族化合物半導体基体上に、 III−V族化合物半導体より成るチャンネル形成層と、 これに比しエネルギーバンドギャップの大きいIII−V
族化合物半導体より成る1の導電型を有するバリア層と
をエピタキシャル成長し、 その後の工程で上記V族原子を含む雰囲気中で650℃
〜850℃の熱処理を行うことを特徴とする歪層を有す
る電界効果トランジスタの製法。
[Claims] A channel forming layer made of a III-V compound semiconductor on a III-V compound semiconductor substrate;
A barrier layer having conductivity type 1 made of a group compound semiconductor is epitaxially grown, and in a subsequent step, the layer is grown at 650°C in an atmosphere containing the group V atoms.
A method for manufacturing a field effect transistor having a strained layer, characterized by performing heat treatment at ~850°C.
JP2238097A 1990-09-07 1990-09-07 Manufacture of field effect transistor Pending JPH04116938A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2238097A JPH04116938A (en) 1990-09-07 1990-09-07 Manufacture of field effect transistor
KR1019910015541A KR100217710B1 (en) 1990-09-07 1991-09-06 Manufacturing method of a field efect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238097A JPH04116938A (en) 1990-09-07 1990-09-07 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPH04116938A true JPH04116938A (en) 1992-04-17

Family

ID=17025128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238097A Pending JPH04116938A (en) 1990-09-07 1990-09-07 Manufacture of field effect transistor

Country Status (2)

Country Link
JP (1) JPH04116938A (en)
KR (1) KR100217710B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195287A (en) * 2009-12-23 2016-11-17 インテル コーポレイション Improvement in conductivity of group iii-v semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195287A (en) * 2009-12-23 2016-11-17 インテル コーポレイション Improvement in conductivity of group iii-v semiconductor device
US9899505B2 (en) 2009-12-23 2018-02-20 Intel Corporation Conductivity improvements for III-V semiconductor devices

Also Published As

Publication number Publication date
KR920007237A (en) 1992-04-28
KR100217710B1 (en) 1999-09-01

Similar Documents

Publication Publication Date Title
US4845049A (en) Doping III-V compound semiconductor devices with group VI monolayers using ALE
US4186410A (en) Nonalloyed ohmic contacts to n-type Group III(a)-V(a) semiconductors
Solomon et al. A GaAs gate heterojunction FET
KR890004452B1 (en) High electron mobility semiconductor device
US20130040431A1 (en) InP-Based Transistor Fabrication
EP0114962A2 (en) Double heterojunction field effect transistors
US7187045B2 (en) Junction field effect metal oxide compound semiconductor integrated transistor devices
JPS61295671A (en) Complementary planar hetero structure ic and manufacture thereof
JPH06132318A (en) Heterojunction field-effect transistor and its manufacture
GB2285175A (en) High electron mobility transistor
US6569693B2 (en) Method for fabricating epitaxial substrate
JPS61256675A (en) Manufacture of schottky gate field effect transistor
KR920003799B1 (en) Semiconductor device
US5489549A (en) Method of fabricating n-type antimony-based strained layer superlattice
US5086321A (en) Unpinned oxide-compound semiconductor structures and method of forming same
JP2764049B2 (en) Method of manufacturing compound semiconductor device, compound semiconductor device and field effect transistor
KR101545393B1 (en) SiGe SURFACE PASSIVATION BY GERMANIUM CAP
JPS5953714B2 (en) semiconductor equipment
JPH04116938A (en) Manufacture of field effect transistor
JP3036404B2 (en) Semiconductor device and manufacturing method thereof
JPH03187269A (en) Semiconductor device
Masselink Real‐space‐transfer of electrons in InGaAs/InAlAs heterostructures
Maezawa et al. Large transconductance n+-Ge gate AlGaAs/GaAs MISFET with thin gate insulator
Solomon et al. Reduction of backgating in GaAs SISFET's with a low-temperature buffer
Kiehl et al. High-transconductance p-channel AlGaAs/GaAs HFETs with low-energy beryllium and fluorine co-implantation self-alignment