JPH04112478A - Pyrolytic boron nitride jig - Google Patents

Pyrolytic boron nitride jig

Info

Publication number
JPH04112478A
JPH04112478A JP23040590A JP23040590A JPH04112478A JP H04112478 A JPH04112478 A JP H04112478A JP 23040590 A JP23040590 A JP 23040590A JP 23040590 A JP23040590 A JP 23040590A JP H04112478 A JPH04112478 A JP H04112478A
Authority
JP
Japan
Prior art keywords
pbn
jig
layer
heating
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23040590A
Other languages
Japanese (ja)
Inventor
Noboru Kimura
昇 木村
Yoshihiro Kubota
芳宏 久保田
Kesaji Harada
原田 今朝治
Kenji Sato
健司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP23040590A priority Critical patent/JPH04112478A/en
Publication of JPH04112478A publication Critical patent/JPH04112478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Surface Heating Bodies (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a jig to be heated under high degree of vacuum, which is free from sputter of impurities in decompressed heating, etc., equipped with anti-heat cycle property, and which is used in a long life cell for molecular radiation epitaxy, by placing a Si carbide layer over the surface of a molding of pyrolyzed boron nitride(PBN). CONSTITUTION:To the surface of a PBN molding, an electroconductive resistance film is attached by evaporation process using, for example, the CVD method, and the resultant is subjected to machining process to form a heater pattern, and on its outside a PBN layer is formed. If current is fed to this Si carbide layer, its runs temperature to allow serving as a heating jig. This structure in which PBN layer is formed on the outside of the Si carbide layer is free from sputter of impurities out of the layer even during decompressed heating process, and also the conductive resistance film consisting of Si carbide working as a heater is in direct touch with the PBN, so that the temp. control can be done easily. Further this is free from risk of deformation, which eliminates likelihood of occurrence of any accident.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱分解窒化ほう素泊具、特には熱分解窒化ほう
集成形体に炭化けい素からなる導電膜を接合したもので
あるために、真空装置内の加熱などで装着が容易であり
、ヒーターサイクルにも安定な熱源とすることができる
加熱用熱分解窒化ほう素泊具に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a pyrolytic boron nitride shim, particularly a pyrolytic nitride nitride molded body bonded with a conductive film made of silicon carbide. The present invention relates to a pyrolytic boron nitride holder for heating, which is easy to install for heating in a vacuum device, and can be used as a stable heat source in a heater cycle.

(従来の技術) 熱分解窒化ほう素(以下PBNと略記する)は通常塩化
ほう素(BCl、)やフッ化ほう素(BF3)などのハ
ロゲン化ほう素とアンモニアガスとを高温に保持した炉
内で熱分解反応させ、所定形状の基体表面に窒化ほう素
を析出させる化学気相反応法CCVD法)によって製造
されるが、このものは高純度で耐熱性にすぐれており、
金属にぬれない、脱ガスがないという特徴をもフている
ことから分子線エピタキシー用セル、治具なと高真空中
で加熱される容器や治具として用いられている。
(Prior art) Pyrolytic boron nitride (hereinafter abbreviated as PBN) is usually produced in a furnace in which boron halides such as boron chloride (BCl) or boron fluoride (BF3) and ammonia gas are kept at high temperatures. It is manufactured by a chemical vapor phase reaction method (CCVD method) in which boron nitride is precipitated on the surface of a predetermined shape of substrate through a thermal decomposition reaction within the chamber, and this product has high purity and excellent heat resistance.
Because it does not wet metals and does not cause outgassing, it is used as cells and jigs for molecular beam epitaxy, as well as containers and jigs that are heated in high vacuum.

(発明が解決しようとする課題) しかし、このPBNを用いた加熱器もこれを加熱するた
めにはワイヤー状、プレート状のタングステンまたはタ
ンタルなどのような高融点金属からなるヒーターを装着
したものとされているために、これには1)このヒータ
ーを装置内に装着するための部品数が多くなり、その取
り付は方法も複雑となる、2)ヒーターが直接セルに触
れていないので温度コントロールが難しい、3)ヒータ
ーが金属製であるために高温で変形が発生し易く、ショ
ート、スパークなどのトラブルにつながるケースが時々
発生する、という欠点がある。
(Problem to be solved by the invention) However, in order to heat the heater using PBN, it is necessary to install a wire-shaped or plate-shaped heater made of a high-melting point metal such as tungsten or tantalum. This is due to the following reasons: 1) The number of parts required to install this heater inside the device is large and the installation method is complicated; 2) Temperature control is difficult because the heater is not in direct contact with the cell. 3) Since the heater is made of metal, it tends to deform at high temperatures, which can sometimes lead to problems such as short circuits and sparks.

そのため、これには導電体をヒーターベース上に形成し
てなる二層ヒーターからなるものも提案されている(特
開昭83−241921号公報参照)が、このものは導
電体層がタングステン、タンタルや炭素からなるもので
、これには■剥離し易い、■減圧加熱等において不純物
の飛散があるなどの不利があるために好ましくないとい
う欠点がある。
Therefore, a two-layer heater in which a conductor is formed on a heater base has been proposed (see Japanese Patent Laid-Open No. 83-241921), but in this heater, the conductor layer is made of tungsten, tantalum, etc. This material is undesirable because it has disadvantages such as (1) easy peeling, and (2) scattering of impurities during heating under reduced pressure.

(課題を解決するための手段) 本発明はこのような不利を解決したPBN治具に関する
もので、これはPBN成形体の表面に炭化けい素を積層
するか、さらにはこれに熱分解窒化ほう素を積層してな
る加熱用熱分解窒化ほう素治具に関するものである。
(Means for Solving the Problems) The present invention relates to a PBN jig that solves the above disadvantages, and is made by laminating silicon carbide on the surface of a PBN molded body, or by adding pyrolytic nitriding to this. This invention relates to a heating pyrolytic boron nitride jig made of laminated layers of pyrolytic boron nitride.

すなわち、本発明者らはPBNを用いた加熱治具を開発
すべく種々検討した結果、PBN成形体の表面に例えば
CVD法で炭化けい素よりなる導電性抵抗体膜を蒸着し
、これを機械加工してヒーターパターンを形成させるか
、またはその外側にPBNの層を形成する。そして、こ
の炭化けい素層に通電すればこれが加熱されるので、こ
れを加熱治具として使用することができることを見出す
と共に、炭化けい素層の外側にPBN層を形成したもの
は減圧加熱中でもこの炭化けい素層から不純物が飛散す
ることがなく、また、このヒーターとなる炭化けい素か
らなる導電性抵抗体膜がPBNと直接接触しているので
温度コントロールが容易で、しかもこれは変形しないの
で事故を起すこともないということを確認して本発明を
完成させた。
That is, as a result of various studies aimed at developing a heating jig using PBN, the present inventors deposited a conductive resistor film made of silicon carbide on the surface of a PBN molded body by, for example, the CVD method, and then mechanically deposited a conductive resistor film made of silicon carbide. Process it to form a heater pattern or form a layer of PBN on the outside. They discovered that this silicon carbide layer can be used as a heating jig because it can be heated by applying electricity to it, and that a PBN layer formed on the outside of the silicon carbide layer can be used even during reduced pressure heating. Impurities do not scatter from the silicon carbide layer, and since the conductive resistor film made of silicon carbide that serves as the heater is in direct contact with the PBN, temperature control is easy, and it does not deform. The present invention was completed after confirming that no accidents would occur.

以下にさらにこれを詳述する。This will be explained in further detail below.

(作用) 本発明はPBN成形体表面に炭化けい素からなる導電性
抵抗体膜、またはこの上にざらにPBN膜とを設けてな
る加熱用PBN治具に関するものである。
(Function) The present invention relates to a heating PBN jig comprising a conductive resistor film made of silicon carbide on the surface of a PBN molded body, or a PBN film roughly provided thereon.

本発明のPBN治具を構成するPBN成形体は従来公知
の方法で作られたものとすればよい。したがって、これ
は塩化ほう素 (BCj23)やフッ素ほう素(BF3
)などのハロゲン化ほう素とアンモニアガスとを約2,
000℃の高温真空炉中で反応させ、生成したPBNを
基体上に析出させることによって作ったものとすればよ
いが、この形状はルツボ状、セル状、ボート状などの容
器形状、円盤状、棒状、バイブ状などのようなヒーター
形状とすればよい。
The PBN molded body constituting the PBN jig of the present invention may be made by a conventionally known method. Therefore, it is similar to boron chloride (BCj23) and boron fluoride (BF3).
) and ammonia gas in a mixture of about 2,
It may be made by reacting in a high-temperature vacuum furnace at 000°C and depositing the generated PBN on a substrate, but this shape may be a container shape such as a crucible, a cell, a boat, a disc, or The heater may be shaped like a rod or a vibrator.

また、PBN成形体表面に対する炭化けい素からなる半
導性抵抗体膜の形成方法は具体的には四塩化けい素とメ
タンガスとをt、ooo〜1,300℃で反応させてP
BN成形体上に炭化けい素を蒸着させればよく、これに
よれば1)高温で熱変形しない、2)コンパクトでかさ
ばらない、3)耐ヒートサイクル性があり、高寿命であ
る、という特徴をもつ炭化けい素からなる導電性抵抗体
膜を容易に得ることができる。また、高純度が要求され
る場面に用いる場合、本発明のPBN治具はこの炭化け
い素皮膜の上にざらにPBNを蒸着させることが必要と
される。
In addition, the method for forming a semiconducting resistor film made of silicon carbide on the surface of a PBN molded body is specifically to react silicon tetrachloride and methane gas at t,ooo to 1,300°C.
Silicon carbide can be deposited on a BN molded body, and this has the following characteristics: 1) It does not undergo thermal deformation at high temperatures, 2) It is compact and not bulky, and 3) It has heat cycle resistance and has a long life. It is possible to easily obtain a conductive resistor film made of silicon carbide. Further, when used in situations where high purity is required, the PBN jig of the present invention is required to roughly deposit PBN on the silicon carbide film.

また、例えばプレート状PBNの片面のみではなく、表
裏2面の各々に炭化けい素膜を形成し、場合によフては
さらにその上にPBN膜を蒸着して、SiC膜またはそ
の上にPBNを交互に形成させたものは厚さ方向での温
度バランスが良くなり、熱的変形がさらに小さくなるの
で安定したヒーターとして使用できるという有利性が与
えられる。
In addition, for example, a silicon carbide film is formed not only on one side of a plate-shaped PBN but on each of the front and back sides, and in some cases, a PBN film is further deposited on the SiC film or on the PBN film. The structure in which these are alternately formed has a better temperature balance in the thickness direction and further reduces thermal deformation, giving the advantage that it can be used as a stable heater.

なお、本発明のPBN治具を構成するPBN成形体表面
に形成される導電性抵抗体膜は導電性で適宜の抵抗値を
もつものであり、化学、気相反応法(CVD法)などで
蒸着できる性質をもつものであればよいということから
、熱分解炭素、タングステンなどとすることも考えられ
るけれども、熱分解炭素は0〜1,000℃における熱
膨張係数が−0,2〜1.2 xlO−’/lとPBN
の2.5 xlO−’/lよりも小さく、しかもこれは
その抵抗値が温度の上昇と共に半減してしまうという難
点があるし、タングステンもその抵抗値が温度上昇と共
に増加し、1,000℃付近では倍増し、これはまた熱
膨張率も4.5 Xl0−’/l:とPBNと異なるた
めに剥離し易いという不利があるので、この導電性抵抗
体膜としては抵抗値の温度依存性が少なく、温度的に安
定であり、熱膨張係数も3.5 Xl0−6/’CとP
ilNに比較的近い炭化けい素とすることが必要とされ
る。
The conductive resistor film formed on the surface of the PBN molded body constituting the PBN jig of the present invention is conductive and has an appropriate resistance value, and can be formed by a chemical, vapor phase reaction method (CVD method), etc. Pyrolytic carbon, tungsten, etc. may be used as long as it has properties that allow vapor deposition, but pyrolytic carbon has a coefficient of thermal expansion of -0.2 to 1.0 at 0 to 1,000°C. 2 xlO-'/l and PBN
This is smaller than 2.5 xlO-'/l, and this has the disadvantage that its resistance value is halved as the temperature rises, and the resistance value of tungsten also increases as the temperature rises, and at 1,000℃ This also has a thermal expansion coefficient of 4.5 It is thermally stable, with a coefficient of thermal expansion of 3.5 Xl0-6/'C and P
A silicon carbide relatively close to ilN is required.

(実施例) つぎに本発明の実施例、比較例をあげる。(Example) Next, examples of the present invention and comparative examples will be given.

実施例1 第1図に示したような形状をした、つばをもった20m
a+φx 110 mmlのPBNセルを真空加熱炉内
に設置し、セルの内側にはガスが接触しないようにマス
キングしてから炉内を1トール以下に減圧し、1,10
0℃に加熱した。ついで、この炉内に四塩化けい素(S
t(、+1.)を4n+Il/分、キャリアガスとして
の水素ガスを20mfl/分、メタンガス4m1l1分
を供給して反応させたところ、PBNセルの表面に厚さ
50μmの炭化けい素(SiC)膜が蒸着されたので、
冷却後これを取り出し、これに第2図に示したようにモ
リブデンの電極を取りつけたところ、これは約40Ωの
抵抗値を示した。
Example 1 A 20m long tube with a brim shaped as shown in Figure 1.
A + φx 110 mml PBN cell was placed in a vacuum heating furnace, the inside of the cell was masked to prevent gas from coming into contact with it, the pressure inside the furnace was reduced to 1 torr or less, and the temperature was 1,10 mm.
Heated to 0°C. Next, silicon tetrachloride (S
When reacting by supplying t(, +1.) at 4n+Il/min, hydrogen gas as a carrier gas at 20 mfl/min, and methane gas at 4 ml/min, a silicon carbide (SiC) film with a thickness of 50 μm was formed on the surface of the PBN cell. was deposited, so
After cooling, it was taken out and a molybdenum electrode was attached to it as shown in FIG. 2, and it showed a resistance value of about 40Ω.

つぎに第3図に示したようにこのPBN治具1を真空容
器2の中に入れ、これにモリブデン板3を取りつけ、こ
の装置の外に放射温度計4を、またこのPBN治具1に
熱電対5を取りつけ、これに電源6を結び、交流電流を
流してPBN治具を加熱したところ、この電力とPBN
治其の温度について第4図に示したとおりの結果が得ら
れ、これについて1000℃までの加熱、冷却を50回
繰り返したが、このセルには何の異常も見られなかった
Next, as shown in FIG. 3, this PBN jig 1 is placed in a vacuum container 2, a molybdenum plate 3 is attached to it, and a radiation thermometer 4 is attached to the outside of this device. When a thermocouple 5 was attached, a power supply 6 was connected to it, and an alternating current was applied to heat the PBN jig.
Regarding the cell temperature, the results shown in FIG. 4 were obtained, and the cell was heated to 1000° C. and cooled 50 times, but no abnormality was observed in the cell.

実施例2 実施例1で得られた炭化けい素を被覆したPBNセルの
電極を接触させる部分をPBN製の厚さ1mm、幅5m
mのリングによって覆い、CVD装置内にセットし、1
,700℃に昇温した。
Example 2 The part where the electrode of the PBN cell coated with silicon carbide obtained in Example 1 comes into contact was made of PBN with a thickness of 1 mm and a width of 5 m.
Cover it with a ring of m and set it in the CVD equipment.
, the temperature was raised to 700°C.

ついで、ここにNH3ガス30cc/分、BCII 3
ガス10cc/分を流し込み、圧力が0.5トールなる
ように減圧ポンプ、排気弁でコントロールしてPBN膜
をコーティングし、膜厚が20μmとなったところで反
応を止めて降温した。
Next, NH3 gas 30cc/min, BCII 3
A PBN film was coated by flowing gas at 10 cc/min and controlling the pressure to 0.5 torr using a pressure reducing pump and an exhaust valve. When the film thickness reached 20 μm, the reaction was stopped and the temperature was lowered.

このようにして作られたPBNコーティングSiCヒー
ター付のPBNセルを実施例1と同様に1,000℃ま
での加熱、冷却を50回繰り返したが、このセルには何
の異常もみられなかった。つぎにこれに第2図に示した
ようにモリブデン電極を取り付けてMBE装置の分子線
源用セルとして用いてGaAsの成膜を行なったところ
、得られた膜の電子移動度は8.3[10[cm2/V
 Secコと理論値に近いものであった。
The PBN cell with the PBN coated SiC heater made in this manner was repeatedly heated to 1,000° C. and cooled 50 times in the same manner as in Example 1, but no abnormality was observed in this cell. Next, as shown in Fig. 2, a molybdenum electrode was attached to this and used as a molecular beam source cell of an MBE apparatus to form a GaAs film, and the electron mobility of the obtained film was 8.3[ 10 [cm2/V
Sec was close to the theoretical value.

これに対し、実施例1で得られた炭化けい素をコーティ
ングしただけのセルを用いてMBEを行ないGaAsの
膜を形成した場合の膜の電子移動度は6.800  [
cm2/V Sec ]で、これはPBNをコーティン
グしたものに比べて劣るものであった。
On the other hand, when a GaAs film is formed by MBE using the cell coated with silicon carbide obtained in Example 1, the electron mobility of the film is 6.800 [
cm2/V Sec], which was inferior to that coated with PBN.

比較例 実施例と同じように第2区に示した形状のつばをもった
2 0mmφX110mmJZのPBNセルを、セルの
内側にガスが接触しないようにマスキングして真空熱炉
中に設置し、1,700℃に加熱してからこの炉中にメ
タンガスを10m1/分で流して熱分解させ、生成した
熱分解炭素をPBNセルの表面に厚さ110Atで蒸着
させ、この土に実施例と同様にPBN膜を厚さ5μmで
蒸着させ、冷却後これを取り出して第2図に示したよう
にモリブデン電極を取りつけたところ、このものは約2
Ωの抵抗値を示した。
Comparative Example As in the example, a 20 mm φ x 110 mm JZ PBN cell with a brim of the shape shown in Section 2 was masked to prevent gas from coming into contact with the inside of the cell and placed in a vacuum heat furnace. After heating to 700°C, methane gas was flowed into this furnace at a rate of 10 m1/min to cause thermal decomposition, and the generated pyrolytic carbon was evaporated to a thickness of 110 At on the surface of the PBN cell. A film was deposited to a thickness of 5 μm, and after cooling, it was taken out and a molybdenum electrode was attached as shown in Figure 2.
The resistance value in Ω is shown.

ついで、これを第3図に示したように真空容器内に設置
し、通電して加熱実験を行なったところ、このものも第
4図に示したような発熱を示したが、この熱分解炭素層
は繰り返し実験の6回目にPBN表面から剥離した。
Next, this was placed in a vacuum container as shown in Figure 3, and a heating experiment was conducted by turning on electricity, which also showed heat generation as shown in Figure 4, but this pyrolyzed carbon The layer was peeled off from the PBN surface at the sixth repeat.

(発明の効果) 本発明はPBN治具に関するもので、これはPBN成形
体の表面に炭化けい素からなる導電性抵抗体膜を接合す
るか、またはその上にさらにPBN層を形成し、電力供
給により加熱し得るようにしてなることを特徴とするも
のであるが、この炭化けい素からなる導電性抵抗体膜に
電力を供給するとこの導電性抵抗体膜が発熱するのでこ
のものは加熱治具として有用なものとされるし、これは
この導電性抵抗体膜がCVD法などのような方法で工業
的に容易にかつ安価に形成させることができるし、この
導電性抵抗体膜は高温でも熱変形しないし、コンパクト
でかさばらず、耐ヒートサイクル性があり、高寿命であ
ることから、各種分野における加熱装置として有用とさ
れるという工業的有益性が付与されるし、このものは高
純度が要求される分野において特に有益性が発揮される
(Effects of the Invention) The present invention relates to a PBN jig, in which a conductive resistor film made of silicon carbide is bonded to the surface of a PBN molded body, or a PBN layer is further formed thereon, and a PBN jig is used. The electrically conductive resistor film made of silicon carbide generates heat when electrical power is supplied to the electrically conductive resistor film, so this electrically conductive resistor film cannot be heated. This conductive resistor film can be formed industrially easily and inexpensively by methods such as CVD, and this conductive resistor film can be formed at high temperatures. However, it does not deform due to heat, is compact, is not bulky, has heat cycle resistance, and has a long lifespan, so it has industrial benefits such as being useful as a heating device in various fields. It is particularly useful in areas where purity is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で使用されたPBN成形体の縦断面図、
第2図は第1図のPBN成形体に導電性抵抗体膜を形成
し、電極を取りつけた実施例で得られた本発明のP8N
治其の斜視図、第3図はこのPBN治具を装置した加熱
装置の縦断面図、第4図はこの加熱装置の供給電力と発
熱温度との関係グラフを示したものである。 1・・・PBN治具   2・・・真空容器・モリブデ
ン板 ・放射温度計 □電力 (kw)
FIG. 1 is a longitudinal cross-sectional view of the PBN molded body used in the examples.
Figure 2 shows the P8N of the present invention obtained in an example in which a conductive resistor film was formed on the PBN molded body of Figure 1 and electrodes were attached.
A perspective view of the jig, FIG. 3 is a vertical sectional view of a heating device equipped with this PBN jig, and FIG. 4 is a graph showing the relationship between the power supplied to this heating device and the heat generation temperature. 1... PBN jig 2... Vacuum container, molybdenum plate, radiation thermometer □ Power (kw)

Claims (3)

【特許請求の範囲】[Claims] 1.熱分解窒化ほう素成形体の表面に炭化けい素を積層
してなることを特徴とする熱分解窒化ほう素治具。
1. A pyrolytic boron nitride jig characterized by laminating silicon carbide on the surface of a pyrolytic boron nitride molded body.
2.熱分解窒化ほう素成形体の表面に炭化けい素と熱分
解窒化ほう素とを積層してなることを特徴とする加熱用
熱分解窒化ほう素治具。
2. A pyrolytic boron nitride jig for heating, characterized by laminating silicon carbide and pyrolytic boron nitride on the surface of a pyrolytic boron nitride molded body.
3.熱分解窒化ほう素成形体がセル状、ボート状、パイ
プ状またはプレート状である請求項1または2に記載し
た加熱用熱分解窒化ほう素治具。
3. The pyrolytic boron nitride jig for heating according to claim 1 or 2, wherein the pyrolytic boron nitride molded body is in the shape of a cell, a boat, a pipe, or a plate.
JP23040590A 1990-08-31 1990-08-31 Pyrolytic boron nitride jig Pending JPH04112478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23040590A JPH04112478A (en) 1990-08-31 1990-08-31 Pyrolytic boron nitride jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23040590A JPH04112478A (en) 1990-08-31 1990-08-31 Pyrolytic boron nitride jig

Publications (1)

Publication Number Publication Date
JPH04112478A true JPH04112478A (en) 1992-04-14

Family

ID=16907372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23040590A Pending JPH04112478A (en) 1990-08-31 1990-08-31 Pyrolytic boron nitride jig

Country Status (1)

Country Link
JP (1) JPH04112478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331134A (en) * 1992-05-21 1994-07-19 Shin-Etsu Chemical Co., Ltd. Double-layered ceramic heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331134A (en) * 1992-05-21 1994-07-19 Shin-Etsu Chemical Co., Ltd. Double-layered ceramic heater

Similar Documents

Publication Publication Date Title
US6242719B1 (en) Multiple-layered ceramic heater
US7446284B2 (en) Etch resistant wafer processing apparatus and method for producing the same
US4625678A (en) Apparatus for plasma chemical vapor deposition
JP4067858B2 (en) ALD film forming apparatus and ALD film forming method
JP2008520087A (en) Encapsulated wafer process equipment and manufacturing method
JP2013004247A (en) Ceramic heater
JPS58115855A (en) Semiconductor device and method of producing same
JPH11260534A (en) Heating apparatus and manufacture thereof
JPH10503747A (en) Formation of diamond material by rapid heating and quenching of carbon-containing materials
US20030047283A1 (en) Apparatus for supporting a substrate and method of fabricating same
JP4498476B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JPH01293970A (en) Fitting and manufacture thereof and method of joining part
US6207305B1 (en) Corrosion-resistant members against a chlorine-based gas
JPH04112478A (en) Pyrolytic boron nitride jig
US5495550A (en) Graphite flash evaporator having at least one intermediate layer and a pyrolytic boron nitride coating
JPH11204239A (en) Plate type heater, its manufacture and thin film manufacturing device
JP3813381B2 (en) Multilayer ceramic heater
JP2778598B2 (en) Heating method and heating device
KR100334351B1 (en) Low temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
US20090308859A1 (en) Ceramic heater and method of manufacturing the same
JP2535586B2 (en) Plasma processing device
JPH07226431A (en) Electrostatic chuck
JP4000236B2 (en) Ceramic heater
JP3869160B2 (en) Multilayer ceramic heater and manufacturing method thereof
JPH04325685A (en) Production of thin film