JPH04111203A - Magnetic field generation mechanism for magneto-optical recorder - Google Patents

Magnetic field generation mechanism for magneto-optical recorder

Info

Publication number
JPH04111203A
JPH04111203A JP22804990A JP22804990A JPH04111203A JP H04111203 A JPH04111203 A JP H04111203A JP 22804990 A JP22804990 A JP 22804990A JP 22804990 A JP22804990 A JP 22804990A JP H04111203 A JPH04111203 A JP H04111203A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
core
cores
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22804990A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Hasegawa
光洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22804990A priority Critical patent/JPH04111203A/en
Publication of JPH04111203A publication Critical patent/JPH04111203A/en
Priority to US08/331,148 priority patent/US5485435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform multi-recording in magnetic field modulation recording by arranging a core for a magnetic field generating part in the travel direction of an optical head by dividing into plural cores, winding a coil for modulated magnetic field generation on each core, and arranging a member consisting of a magnetic material between the cores. CONSTITUTION:Two sliding surfaces 2, 3 are formed at the slider 1 of a magnetic head confronting with an air current generating by, for example, the rotation of a disk shape magneto-optical recording medium, and the cores 4, 5 for modulated magnetic field generation are embedded at the sliding surface side on one side of the sliding surfaces 2, 3. Winding coils 6, 7 to permit a driving current to flow are wound across the cores 4, 5, and a magnetic member 8 consisting of soft magnetic material with a cross-section equal to a projecting area almost in a direction of C is placed almost at the intermediate position of the cores 4, 5. Thereby, it is possible to eliminate the influence of a magnetic field generated by neighboring cores, and to drive each core independently, which realizes the multi-recording.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光磁気記録媒体に対してレーザビームを照射
するとともに、反対側から磁界を印加して光磁気的に情
報の記録、消去を行う光磁気記録装置の磁界発生機構に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention records and erases information magneto-optically by irradiating a magneto-optical recording medium with a laser beam and applying a magnetic field from the opposite side. The present invention relates to a magnetic field generation mechanism of a magneto-optical recording device.

[従来の技術] この種の光磁気式記録装置において、情報の記録、消去
を行う場合、光学ヘッドを用いて半導体レーザから出射
したレーザビームを、例えばディスク状の光磁気媒体に
対して照射するとともに、その照射位置に対応して、上
記光磁気記録媒体に垂直方向からの外部磁界を印加して
いる。上記磁界発生機構は、例えば、第6図に示すよう
に浮上式のもので、ディスク状の光磁気記録媒体の上方
に位置して、下側の光学ヘッド(図示せず)と対向した
状態で配設されていている。ここでは浮上刃を得るため
のスライダー71は非磁性材料で構成され、両側に2本
の滑面72.73を有し、一方の滑面の空気流出部(即
ち、光磁気記録媒体の走行方向の空気流が出る部分)に
は垂直磁界発生用のコア74を埋設している。上記スラ
イダー71の後端部に切れ込みを付けることで、巻線窓
75が形成してあり、この巻線窓75を介して上記コア
74にはコイル76が捲装されている。その結果、上記
コア74の端部には磁路が開放されて、磁極j2.及び
氾2が光磁気記録媒体(第7図には符号83で示す)に
対向するスライダー71の面に配置された形となる。そ
して、公知のように、上記コイルへの信号電圧によって
、上記記録媒体の記録層に垂直磁界を印加することにな
る。
[Prior Art] When recording and erasing information in this type of magneto-optical recording device, an optical head is used to irradiate a laser beam emitted from a semiconductor laser onto, for example, a disk-shaped magneto-optical medium. At the same time, an external magnetic field is applied in the perpendicular direction to the magneto-optical recording medium in accordance with the irradiation position. The above-mentioned magnetic field generating mechanism is, for example, a floating type as shown in FIG. 6, and is located above a disk-shaped magneto-optical recording medium, facing a lower optical head (not shown). It is arranged. Here, the slider 71 for obtaining the floating blade is made of a non-magnetic material, and has two sliding surfaces 72 and 73 on both sides, with an air outflow portion of one of the sliding surfaces (i.e., in the running direction of the magneto-optical recording medium). A core 74 for generating a vertical magnetic field is embedded in the part where the air flow comes out. A winding window 75 is formed by making a notch in the rear end of the slider 71, and a coil 76 is wound around the core 74 through this winding window 75. As a result, a magnetic path is opened at the end of the core 74, and the magnetic pole j2. and a flood 2 are arranged on the surface of the slider 71 facing the magneto-optical recording medium (indicated by reference numeral 83 in FIG. 7). As is well known, a perpendicular magnetic field is applied to the recording layer of the recording medium by applying a signal voltage to the coil.

方、第7図に示されるように、半導体レザからの光束8
1が対物レンズ82を介して、上記記録層84に焦点S
を結ぶ。この時、上述のコア74はこれに対向して記録
媒体83の反対側に位置され、磁極ρ1から垂直磁界を
上記記録層84に印加する。通常、上記焦点Sは光学ヘ
ッドの移動無しに、光磁気記録媒体の半径方向に約±2
50 tt m程度、移動されるのであって(トラッキ
ング)、上記コア74の磁極で1はその有効垂直磁界の
幅が、はぼ上記焦点の移動範囲をカバーする大きさに設
定される。
On the other hand, as shown in FIG. 7, the luminous flux 8 from the semiconductor laser
1 focuses on the recording layer 84 through the objective lens 82.
Tie. At this time, the core 74 is positioned on the opposite side of the recording medium 83, and a perpendicular magnetic field is applied to the recording layer 84 from the magnetic pole ρ1. Normally, the focal point S is approximately ±2 in the radial direction of the magneto-optical recording medium without moving the optical head.
The focal point is moved by about 50 tt m (tracking), and the width of the effective vertical magnetic field of the magnetic pole 1 of the core 74 is set to a size that approximately covers the moving range of the focal point.

更に、上記コア74は磁界の効率的な発生のため、磁路
を開放するようにコ字形を成しており、第6図にみられ
るように、磁極で1とは反対磁性の磁界を発生する磁極
℃2も、滑面92側に出ており、磁極で1、尼2の間隔
は十分な巻線窓75の面積を得るために比較的広く、数
100μm程度になっている。
Furthermore, in order to efficiently generate a magnetic field, the core 74 has a U-shape to open the magnetic path, and as shown in FIG. The magnetic pole 2 is also exposed on the smooth surface 92 side, and the interval between the magnetic poles 1 and 2 is relatively wide, approximately several 100 μm, in order to obtain a sufficient area for the winding window 75.

[発明が解決しようとする課題] しかしながら、コア74と対物レンズ82の位置合せ調
整誤差を含めると、光磁気ディスクの半径方向(トラッ
ク方向と直交する方向)におけるコア74の軸は約±3
00 (t、 mとなり、また、トラック方向の長さも
±1100LL程度は必要である。一方、上記コアが発
生する有効垂直磁界の範囲と、その時の磁気ヘッドの最
高変調周波数との関係は第8図に示される反比例関係に
ある。即ち、6H気ヘツドの有効磁界の範囲は、コアの
磁極の断面積に対応するので、磁極j21の断面積は0
゜6mm X 0.2mm =  0.12mm2にほ
ぼ一致することになり、最高変調周波数は約2.5MH
2である。
[Problems to be Solved by the Invention] However, if the alignment adjustment error between the core 74 and the objective lens 82 is included, the axis of the core 74 in the radial direction (direction perpendicular to the track direction) of the magneto-optical disk is approximately ±3.
00 (t, m), and the length in the track direction must be approximately ±1100LL.On the other hand, the relationship between the range of the effective perpendicular magnetic field generated by the core and the highest modulation frequency of the magnetic head at that time is as follows. The effective magnetic field range of the 6H magnetic head corresponds to the cross-sectional area of the magnetic pole of the core, so the cross-sectional area of the magnetic pole j21 is 0.
It almost matches ゜6mm x 0.2mm = 0.12mm2, and the highest modulation frequency is about 2.5MH
It is 2.

しかるに、光磁気記録装置における特性は、年々、高速
化に向けて要求を高めており、当然、最高変調周波数も
より高く設定することが望まれていて、上述の2.5M
Hzでは不十分である。また、2つの磁極g、、g2の
間隔が数11001Lと、広いため、2つの磁極間にお
いて磁路を形成する磁気抵抗が高く、垂直磁界を効率的
にかつ十分に発生できない。
However, the requirements for the characteristics of magneto-optical recording devices are increasing year by year toward higher speeds, and it is naturally desirable to set the maximum modulation frequency higher than the above-mentioned 2.5M.
Hz is insufficient. Furthermore, since the distance between the two magnetic poles g, g2 is wide, such as several 11001 L, the magnetic resistance that forms a magnetic path between the two magnetic poles is high, making it impossible to efficiently and sufficiently generate a perpendicular magnetic field.

そこで、磁気ヘッドにおけるコアを小型化し、複数配列
した構成が提唱されている。即ち、第9図に示すように
、ここでは小型化したコア101.103を備えていて
、これらにそれぞれコイル102.104を捲装してい
て、各コイルを独立して駆動するのである。先述のよう
な1つのコアの場合に比較して、上記のコア101.1
03の場合には必要な有効垂直磁界の範囲を約2分の1
とすることが可能なため、はぼ2倍の高周波化が得られ
ることになる。しかし、この場合にも、以下に述べるよ
うな別の問題がある。
Therefore, a configuration has been proposed in which the cores of a magnetic head are miniaturized and a plurality of cores are arranged. That is, as shown in FIG. 9, this device has miniaturized cores 101 and 103, each of which is wound with a coil 102 and 104, and each coil is driven independently. Compared to the one core case as described above, the core 101.1 described above
In the case of 03, the range of the necessary effective vertical magnetic field is reduced to about half.
Since it is possible to do this, it is possible to obtain a frequency that is approximately twice as high. However, even in this case, there are other problems as described below.

即ち、第9図の下側のグラフに示されるように、コア1
01に巻かれた巻線102に電流を流し、上向きの磁界
子H(矢印105)を発生させたときの、コア下部端面
から数10μm離れた水平方向の位置Xに対する磁界の
強さを実線】07で示すと、コア端面から上記位置Xが
離れるにしたがって、発生磁界は弱(なり、隣りのコア
103との中間位置では記録媒体に対する記録に必要な
垂直磁界200[0゜]より小さくなってしまう。従っ
て、2つのコア101.103の中間点において必要な
磁界を得るためには、コイルに流す電流を太き(しなけ
ればならず、高周波駆動には不利となり、コアを小型化
したことによる高周波化の利益が、失われてしまう。
That is, as shown in the lower graph of FIG.
When a current is passed through the winding 102 wound on the coil 102 to generate an upward magnetic field H (arrow 105), the solid line represents the strength of the magnetic field at a horizontal position X several tens of μm away from the lower end face of the core] 07, the generated magnetic field becomes weaker as the position Therefore, in order to obtain the necessary magnetic field at the midpoint between the two cores 101 and 103, the current flowing through the coil must be made thicker, which is disadvantageous for high-frequency drive, and it is necessary to make the core smaller. The benefits of higher frequency will be lost.

更に、光磁気情報記録装置の高速化の要求を満たすため
、マルチビーム記録を行うとき、記録媒体に複数の光ビ
ームを照射して、所定の位置にスポットを形成するのに
、記録情報によって変調される変調磁界を独立に印加さ
せる必要がある。
Furthermore, in order to meet the demand for faster speeds of magneto-optical information recording devices, when performing multi-beam recording, multiple light beams are irradiated onto the recording medium to form a spot at a predetermined position, which is modulated depending on the recording information. It is necessary to apply the modulated magnetic field independently.

ここでは、コア103に巻かれているコイル104に、
コア101に巻かれているコイル102とは逆向きの磁
界を発生するように電流を流す。この時、コア103で
発生する磁界は下向きの発生磁界1−H(矢印106で
示す)となり、上述と同様に水平位置Xに対する磁界の
強さが実線108のようになり、2つのコア101.1
03が発生するそれぞれの磁界107.108に対して
実際に記録媒体に印加される垂直磁界は点線109に示
すようになってしまい、それぞれのコア101.103
の記録媒体に対する中心位置X +o+ t X +o
sにおいても、記録に必要な±200 [0,]以上の
垂直磁界が得られな(なり、マルチビーム記録ができな
くなる。しかし、この2つのコアの相互干渉の影響を避
けるために2つのコアを離すことは1つの光学ヘッドに
おいて複数の光ビームを太き(離すことになり、実施面
において困難で、実現できない。
Here, in the coil 104 wound around the core 103,
A current is passed so as to generate a magnetic field in the opposite direction to that of the coil 102 wound around the core 101. At this time, the magnetic field generated in the core 103 becomes a downward generated magnetic field 1-H (indicated by the arrow 106), and the strength of the magnetic field with respect to the horizontal position X becomes as shown by the solid line 108, as described above, and the two cores 101. 1
The perpendicular magnetic field actually applied to the recording medium for each magnetic field 107 and 108 generated by 03 is as shown by a dotted line 109, and each core 101, 103
center position with respect to the recording medium X +o+ tX +o
s, it is not possible to obtain a perpendicular magnetic field of ±200 [0,] or more required for recording (and multi-beam recording becomes impossible. However, in order to avoid the influence of mutual interference between the two cores, the two cores Separating the light beams from each other would make the plurality of light beams thicker (separate) in one optical head, which is difficult in terms of implementation and cannot be realized.

(発明の目的 ) 本発明は上記事情に基いてなされたもので、有効な垂直
磁界の範囲を十分、効率的に確保しながら、しかも、最
高変調周波数をより高い値に設定できるとともに、磁界
変調記録においてマルチ記録が可能な高転送レートを有
する変調磁界発生装置を提供しようとするものである。
(Objective of the Invention) The present invention has been made based on the above circumstances, and it is possible to sufficiently and efficiently secure the range of an effective vertical magnetic field, set the maximum modulation frequency to a higher value, and modulate the magnetic field. The present invention aims to provide a modulated magnetic field generating device having a high transfer rate and capable of multi-recording.

(課題を解決するための手段 ) このため、本発明では光学ヘッドによって半導体レーザ
からの光を光磁気記録媒体に照射するとともに、その反
対側から複数の磁界発生部で磁界を発生させ、情報の記
録、消去を行うようにした光磁気配0装置の磁界発生機
構において、上記光学ヘッドの移動方向に上記磁界発生
部のためのコアを複数分割して配設し、且つ各コアに変
調磁界発生用のコイルを捲回してなり、上記コア間には
磁性材料から成る部材が配設しである。
(Means for Solving the Problems) Therefore, in the present invention, an optical head irradiates light from a semiconductor laser onto a magneto-optical recording medium, and a plurality of magnetic field generating sections generate a magnetic field from the opposite side, thereby generating information. In a magnetic field generating mechanism of a magneto-optical distribution device configured to perform recording and erasing, a plurality of cores for the magnetic field generating section are divided and arranged in the moving direction of the optical head, and each core is configured to generate a modulated magnetic field. A member made of a magnetic material is disposed between the cores.

(作  用  ) 1つの磁界発生用コアの磁極による有効な垂直磁界の範
囲を小さ(することで、磁極の断面積を小さくし、変調
可能な最高周波数が高(設定でき、しかも、隣接する磁
界発生用コアが発生する磁界の影響を完全に排除し、そ
れぞれの磁界発生コアを完全に独立して駆動でき、1つ
の光学ヘッドにおいて、マルチ記録が可能となる。
(Function) By reducing the range of the effective vertical magnetic field by the magnetic poles of one magnetic field generation core, the cross-sectional area of the magnetic poles can be made small, and the maximum frequency that can be modulated can be set to be high. The influence of the magnetic field generated by the generating cores is completely eliminated, and each magnetic field generating core can be driven completely independently, making multi-recording possible with one optical head.

(実施例 ) 以下、本発明の一実施例を第1図乃至第5図を参照して
具体的に説明する。図において符号1は非磁性材料より
なる磁気ヘッドのスライダーであり、そこには、例えば
、ディスク状の光磁気記録媒体の回転で生じる空気流に
対面して2つの滑面2.3がある。上記滑面2.3の片
側の滑面、例えば、滑面3側には変調磁界発生用のコア
4.5が埋設されている。そして、上記コア4.5には
それぞれ駆動電流を流すための巻線コイル6.7が巻か
れている。上記コア4.5のほぼ中間位置にそのほぼC
方向の投射面積に等しい断面積を有する軟磁性材料より
成る磁性部材8が置かれている。
(Example) Hereinafter, an example of the present invention will be specifically described with reference to FIGS. 1 to 5. In the figure, reference numeral 1 denotes a slider of a magnetic head made of a non-magnetic material, and there are two smooth surfaces 2.3 facing the airflow generated by the rotation of, for example, a disk-shaped magneto-optical recording medium. A core 4.5 for generating a modulated magnetic field is embedded in one side of the smooth surface 2.3, for example on the smooth surface 3 side. A winding coil 6.7 for passing a drive current is wound around each of the cores 4.5. At approximately the middle position of the above core 4.5, approximately C
A magnetic member 8 made of a soft magnetic material having a cross-sectional area equal to the projected area in the direction is placed.

上記磁性部材8の材質は高周波磁界に対し十分な高透磁
率を有する高透磁率材料が望ましく、例えば、それにM
。−Zゎフェライトをあげることができる。
The material of the magnetic member 8 is preferably a high magnetic permeability material having a sufficiently high permeability to a high frequency magnetic field.
. −Zゎferrite can be mentioned.

上記コア4.5は滑面3に対し垂直に開放された磁極ρ
a、I2<およびfl、、 I26を備えている。なお
、上記記録媒体に垂直磁界を印加する磁極には上記磁極
ρ3.ρ、を用いる。
The above core 4.5 has a magnetic pole ρ that is open perpendicular to the smooth surface 3.
a, I2< and fl, , I26. Note that the magnetic pole ρ3. is used as the magnetic pole for applying a perpendicular magnetic field to the recording medium. Use ρ.

第2図(A)乃至(C)には上記のコア4.5及びコイ
ル6.7並びに磁性部材8のみをその配置、構成につい
て示している。上記磁性部材8は上記コア4とコア5と
の間でそれらに接することなく配置され、また、上記磁
性部材8の面積は各コアの、第1図のC方向の投射面積
とほぼ同一である。
FIGS. 2A to 2C only show the arrangement and configuration of the core 4.5, coil 6.7, and magnetic member 8. The magnetic member 8 is arranged between the cores 4 and 5 without touching them, and the area of the magnetic member 8 is approximately the same as the projected area of each core in the C direction in FIG. .

そして、第4図に示すように上記磁極ρ3、β、に対応
して、上記コア4.5のそれぞれで構成される有効垂直
磁界の範囲に対応して、記録媒体(光磁気ディスク)5
6の反対側には、対物レンズ57が半径方向へ移動可能
に配列してあって、マルチ記録を行うための半導体レー
ザ(LD−A)59及び(LD−B)62から与えられ
た光束60.63を、光磁気ディスク内の光磁気記録層
55に収束し、焦点61.64を結んでいる。なお、上
記レーザ光源は同一チップ上に構成されたマルチ発光レ
ーザ素子でもよく、あるいは2つの別のレーザ素子でも
光学的に等価なものであれば良い。また、上記半導体レ
ーザ59.62はその発光点の間隔がレーザ製作上の制
約から、約100μm程度離れているが、そこから出射
した光束60.63はコリメータレンズ58で平行光束
とされ、対物レンズ57で上述のように記録層に収束さ
れる時、適正な焦点間隔にすることができる。
As shown in FIG. 4, a recording medium (magneto-optical disk) 5 is provided corresponding to the range of the effective perpendicular magnetic field formed by each of the cores 4.5, corresponding to the magnetic poles ρ3 and β.
On the opposite side of the lens 6, an objective lens 57 is arranged so as to be movable in the radial direction. .63 is focused on the magneto-optical recording layer 55 in the magneto-optical disk, and the focal point is 61.64. Note that the laser light source may be a multi-emission laser element configured on the same chip, or two separate laser elements as long as they are optically equivalent. Furthermore, the distance between the light emitting points of the semiconductor lasers 59 and 62 is approximately 100 μm apart due to restrictions in laser manufacturing, but the light beam 60 and 63 emitted from the semiconductor laser 59 and 62 is collimated by the collimator lens 58, and the objective lens When focused on the recording layer at 57 as described above, a proper focal distance can be achieved.

上記コイル6は記録情報(A)54の極性に応じた磁界
を発生させるための磁気ヘッド駆動回路51で駆動され
、従って、磁極℃3からは記録情報54に対応した垂直
磁界が上記焦点64に対して印加される。また、コイル
7は記録情報(B)53の極性に応じた磁界を発生させ
るための磁気ヘッド駆動回路52で駆動され、従って、
磁極4、からは記録情報53に対応した垂直磁界が上記
焦点61に対して印加される。
The coil 6 is driven by a magnetic head drive circuit 51 for generating a magnetic field according to the polarity of the recorded information (A) 54. Therefore, from the magnetic pole ℃ 3, a perpendicular magnetic field corresponding to the recorded information 54 is directed to the focal point 64. applied to the Further, the coil 7 is driven by a magnetic head drive circuit 52 for generating a magnetic field according to the polarity of the recorded information (B) 53, and therefore,
A perpendicular magnetic field corresponding to the recorded information 53 is applied from the magnetic pole 4 to the focal point 61 .

上記記録情報(A)、(B)とが異なる情報、例えば、
記録情報(A)が  1”であり、記録媒体に上向きの
磁界子Hな印加し、上向きの磁化を行うとともに、記録
情報(B)が °′0゛であり、下向きの磁界−Hを印
加し、下向きの磁化を行う場合には本発明における発生
磁界は第3図下側のグラフのようになる。
Information different from the above recorded information (A) and (B), for example,
When the recorded information (A) is 1'', an upward magnetic field H is applied to the recording medium to cause upward magnetization, and when the recorded information (B) is °'0゛, a downward magnetic field -H is applied. However, when downward magnetization is performed, the generated magnetic field in the present invention becomes as shown in the lower graph of FIG.

即ち、コア4では記録媒体に対して上向きの磁界子Hが
発生しており、コア5に対して下向きの磁界−Hが発生
しているので、それぞれのコアの下部端面から数10μ
m離れた記録媒体の面における垂直磁界の大きさはコア
4について実線35のよう磁界分布になり、コア5につ
いて実線36のよう磁界分布になる。因に、従来の構成
、即ち、磁性部材8が無い場合では、点線33及び34
のようになる。これは上記磁性部材8がコア4に対して
はコア5が発生する磁界をシールドし、コア5に対して
はコア4が発生する磁界をシールドする効果を有してい
ることを示している。即ち、それぞれのコアが発生する
磁界は上記磁性部材8によって互いに影響を及ぼさない
から、各コアは独立に駆動できることになる。
That is, in the core 4, an upward magnetic field H is generated with respect to the recording medium, and a downward magnetic field -H is generated with respect to the core 5.
The magnitude of the perpendicular magnetic field on the surface of the recording medium separated by m has a magnetic field distribution for the core 4 as shown by a solid line 35, and a magnetic field distribution for the core 5 as shown by a solid line 36. Incidentally, in the conventional configuration, that is, when there is no magnetic member 8, the dotted lines 33 and 34
become that way. This indicates that the magnetic member 8 has the effect of shielding the core 4 from the magnetic field generated by the core 5, and shielding the core 5 from the magnetic field generated by the core 4. That is, since the magnetic fields generated by each core do not affect each other due to the magnetic member 8, each core can be driven independently.

更に、各コアの近傍に軟磁性材料である磁性部材8が配
置されていると、上記磁性部材側の磁気抵抗が下がるこ
とで、必要磁界が強(なる(磁界分布が上記磁性部材8
側で多くなる)効果をもたらす。その結果、焦点64に
相当する位置xa、焦点61に相当する位置xbにおけ
る記録媒体56に印加される垂直磁界は記録層55の記
録のために十分な±200[0,]以上の磁界強度とな
り、十分な有効磁界範囲が得られる。
Furthermore, if a magnetic member 8 made of a soft magnetic material is arranged near each core, the magnetic resistance on the magnetic member side decreases, and the required magnetic field becomes strong (the magnetic field distribution becomes stronger).
(become more on the side) bring about an effect. As a result, the perpendicular magnetic field applied to the recording medium 56 at the position xa corresponding to the focal point 64 and the position xb corresponding to the focal point 61 has a magnetic field strength of ±200 [0,] or more, which is sufficient for recording in the recording layer 55. , a sufficient effective magnetic field range can be obtained.

本発明の磁界発生機構を光磁気記録装置におけるマルチ
記録に採用した場合の記録信号及びパターンは第5図に
示されている。ここで、(a)は記録情報(A)であり
、(b)は記録情報(B)である。なお、この実施例で
はレーザビームを連続点燈する方式での磁界変調記録を
採用している。従って、レーザ光源(LD−A)、(L
DB)は(C)、 (d)に示すようにハイレベルに維
持される。また、焦点64.61の磁界強度は(e)、
(f)に示される。従って、記録磁区のパターンは(g
)のようになる。ここで、斜線を施した領域は上向きの
磁化領域を示し、白抜きの領域は下向きの磁化領域を示
す。そして、焦点61を通過する垂直磁界は(h)で示
す磁区バタンを形成し、これによって、マルチ記録が可
能となる。
Recording signals and patterns when the magnetic field generating mechanism of the present invention is employed for multi-recording in a magneto-optical recording device are shown in FIG. Here, (a) is recorded information (A), and (b) is recorded information (B). Note that this embodiment employs magnetic field modulation recording in which a laser beam is turned on continuously. Therefore, the laser light source (LD-A), (L
DB) is maintained at a high level as shown in (C) and (d). Also, the magnetic field strength at the focal point 64.61 is (e),
Shown in (f). Therefore, the pattern of recording magnetic domains is (g
)become that way. Here, the shaded area indicates an upwardly magnetized area, and the white area indicates a downwardly magnetized area. Then, the perpendicular magnetic field passing through the focal point 61 forms magnetic domain bumps shown in (h), thereby making multi-recording possible.

なお、上記磁性部材8を、金属材料を主成分とする軟磁
性材料、例えば、パーマロイやセンダストなどの金属の
高透磁率材料を用いてもよい。
Note that the magnetic member 8 may be made of a soft magnetic material whose main component is a metal material, for example, a high magnetic permeability metal material such as permalloy or sendust.

この場合には上記磁性部材中に高周波磁界が印加される
と、そこに発生した渦電流によって、外部からの印加磁
界とは逆の向きに磁界が発生し、その結果、隣接コア方
向に分布する磁界成分が抑えられる効果がある。また、
上記金属磁性部材はフェライト系軟磁性材料よりも高透
磁率が得やす(、また加工性も良い。
In this case, when a high-frequency magnetic field is applied to the magnetic member, the eddy current generated there generates a magnetic field in the opposite direction to the externally applied magnetic field, and as a result, the magnetic field is distributed in the direction of the adjacent core. This has the effect of suppressing magnetic field components. Also,
The above-mentioned metal magnetic member can easily obtain higher magnetic permeability (and has better workability) than ferrite-based soft magnetic materials.

(発明の効果 ) 本発明は、以上詳述したようになり、光学へラドの移動
方向に上記磁界発生部のためのコアを複数分割して配設
し、且つ各コアに変調磁界発生用のコイルを捲回してな
り、上記コア間には磁性材料から成る部材が配設しであ
るので、隣合うコアが発生する磁界の影響を排除するこ
とができ、各コアを独立して駆動することが可能となり
、マルチ記録を実現でき、変調磁界による記録の高速化
が可能となる。
(Effects of the Invention) The present invention has been described in detail above, and the core for the magnetic field generation section is divided into a plurality of parts and arranged in the moving direction of the optical heald, and each core is provided with a core for generating a modulated magnetic field. It is made by winding a coil, and a member made of magnetic material is placed between the cores, so it is possible to eliminate the influence of magnetic fields generated by adjacent cores, and each core can be driven independently. This makes it possible to realize multi-recording and increase the speed of recording using a modulated magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す磁気ヘッドの斜視図、
第2図(a)乃至(c)は要部の正面図、平面図及び端
面図、第3図は2分割されたコアをその磁界分布と照ら
し合わせて示す正面図、第4図は光磁気記録の状態を示
す構成図、第5図は記録信号、磁区及びそのパターンを
示すグラフ、第6図は従来例の斜視図、第7図は従来の
光磁気記録の状態を示す説明図、第8図は変調周波数と
荷動磁界との関係を示すグラフ、第9図は従来の2分割
されたコアをその磁界分布と照らし合わせて示す正面図
である。
FIG. 1 is a perspective view of a magnetic head showing one embodiment of the present invention;
Figures 2 (a) to (c) are front views, top views, and end views of the main parts; Figure 3 is a front view showing the core divided into two parts in comparison with its magnetic field distribution; Figure 4 is magneto-optical. FIG. 5 is a block diagram showing the state of recording; FIG. 5 is a graph showing recording signals, magnetic domains and their patterns; FIG. 6 is a perspective view of a conventional example; FIG. 7 is an explanatory diagram showing the state of conventional magneto-optical recording; FIG. 8 is a graph showing the relationship between modulation frequency and load magnetic field, and FIG. 9 is a front view showing a conventional two-part core in comparison with its magnetic field distribution.

Claims (1)

【特許請求の範囲】 1、光学ヘッドによって半導体レーザからの光を光磁気
記録媒体に照射するとともに、その反対側から複数の磁
界発生部で磁界を発生させ、情報の記録、消去を行うよ
うにした光磁気記録装置の磁界発生機構において、上記
光学ヘッドの移動方向に上記磁界発生部のためのコアを
複数分割して配設し、且つ各コアに変調磁界発生用のコ
イルを捲回してなり、上記コア間には磁性材料から成る
部材が配設してあることを特徴とする光磁気記録装置の
磁界発生機構 2、上記磁性材料はフェライト系軟磁性材料を主成分と
する磁性材料である請求項1に記載の光磁気記録装置の
磁界発生機構 3、上記磁性材料は金属系軟磁性材料を主成分とする磁
性材料である請求項1に記載の光磁気記録装置の磁界発
生機構
[Claims] 1. A magneto-optical recording medium is irradiated with light from a semiconductor laser by an optical head, and a magnetic field is generated from a plurality of magnetic field generating sections from the opposite side to record and erase information. In the magnetic field generation mechanism of the magneto-optical recording device, a core for the magnetic field generation section is divided into a plurality of parts and arranged in the moving direction of the optical head, and a coil for generating a modulated magnetic field is wound around each core. , a magnetic field generating mechanism 2 of a magneto-optical recording device characterized in that a member made of a magnetic material is disposed between the cores, the magnetic material is a magnetic material whose main component is a ferrite-based soft magnetic material. A magnetic field generating mechanism 3 for a magneto-optical recording device according to claim 1, wherein the magnetic material is a magnetic material whose main component is a metallic soft magnetic material.
JP22804990A 1990-03-20 1990-08-31 Magnetic field generation mechanism for magneto-optical recorder Pending JPH04111203A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22804990A JPH04111203A (en) 1990-08-31 1990-08-31 Magnetic field generation mechanism for magneto-optical recorder
US08/331,148 US5485435A (en) 1990-03-20 1994-10-28 Magnetic field generator in which an end face of a magnetic material member projects from man end face of magnetic field generating cores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22804990A JPH04111203A (en) 1990-08-31 1990-08-31 Magnetic field generation mechanism for magneto-optical recorder

Publications (1)

Publication Number Publication Date
JPH04111203A true JPH04111203A (en) 1992-04-13

Family

ID=16870403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22804990A Pending JPH04111203A (en) 1990-03-20 1990-08-31 Magnetic field generation mechanism for magneto-optical recorder

Country Status (1)

Country Link
JP (1) JPH04111203A (en)

Similar Documents

Publication Publication Date Title
US5485435A (en) Magnetic field generator in which an end face of a magnetic material member projects from man end face of magnetic field generating cores
US4340914A (en) Thermomagnetic recording and reproducing apparatus
JPH03125355A (en) Magnetic head for magnetooptical recording
JPS61214256A (en) Photomagnetic disc device
JPH04111203A (en) Magnetic field generation mechanism for magneto-optical recorder
JPS6262453A (en) Photomagnetic information device
JPH04109401A (en) Magnetic field generating mechanism for magneto-optical recorder
JP2718712B2 (en) Magneto-optical recording device
JPS6010401A (en) Optical magnetic disc device
JPS6260148A (en) Photomagnetic information recording and reproducing device
JP2517559B2 (en) Magneto-optical information recording device
JP2578411B2 (en) Magneto-optical information recording device
JPH0568763B2 (en)
JPH069082B2 (en) Magnetic field application device
JPS6265203A (en) Auxiliary magnetic field impressing device
EP0415721B1 (en) Modulated magnetic field generator
JPH01224902A (en) Magnetic field impressing electromagnet for magneto-optical disk
JPH0770005B2 (en) External magnetic field applying device for magneto-optical disk drive
JP3334260B2 (en) Magneto-optical recording / reproducing apparatus and magnetic head used therefor
JPS61292247A (en) Information recording device
JPH0676524A (en) Medium cartridge for magneto-optical storage device
JPH0312004A (en) Magneto-optical disk device
JPH0388101A (en) Modulation magnetic field generator
JPH0312003A (en) Magneto-optical disk device
JPS62226455A (en) Photomagnetic recording and reproducing head