JPH04109401A - Magnetic field generating mechanism for magneto-optical recorder - Google Patents

Magnetic field generating mechanism for magneto-optical recorder

Info

Publication number
JPH04109401A
JPH04109401A JP22508390A JP22508390A JPH04109401A JP H04109401 A JPH04109401 A JP H04109401A JP 22508390 A JP22508390 A JP 22508390A JP 22508390 A JP22508390 A JP 22508390A JP H04109401 A JPH04109401 A JP H04109401A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
core
recording medium
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22508390A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Hasegawa
光洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22508390A priority Critical patent/JPH04109401A/en
Publication of JPH04109401A publication Critical patent/JPH04109401A/en
Priority to US08/331,148 priority patent/US5485435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To enable higher setting for the highest modulation frequency and also multirecording under magnetic field modulation recording by dividing a core, disposing them in the same direction as a track direction of a recording medium, winding a coil around each core and disposing a member of a magnetic material between the cores. CONSTITUTION:There are two sliding surfaces 2 and 3 opposite to an airflow generated by the rotation of, for instance, a discoid magneto-optical recording medium, and one side sliding surface of the sliding surfaces 2 and 3, for example, on the side of the sliding surface 3 the cores 4 and 5 for generating a modulation magnetic field are imbedded. Then, winding coils 6 and 7 are wound around the cores 4 and 5 to be conducted by a driving current respectively. Then, a magnetic member 8 made of a soft magnetic material having a cross-sectional area equivalent to or more than a projecting area of an approximately orthogonal surface to a traveling direction of the recording medium is placed in an approximately intermediate position between the cores 4 and 5. By this method, the modulatable max. high frequency can highly be set, and moreover, an effect of a magnetic field generated by the adjacent cores for generating the magnetic field is completely excluded, and the individual magnetic field generating cores are driven completely independently, so that the multirecording is performed with one optical head.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光磁気記録媒体に対してレーザビームを照射
するとともに、反対側から磁界を印加して光磁気的に情
報の記録、消去を行う光磁気記録装置の磁界発生機構に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention records and erases information magneto-optically by irradiating a magneto-optical recording medium with a laser beam and applying a magnetic field from the opposite side. The present invention relates to a magnetic field generation mechanism of a magneto-optical recording device.

[従来の技術] この種の光磁気式記録装置において、情報の記録、消去
を行う場合、光学ヘッドを用いて半導体レーザから出射
したレーザビームを、例えばディスク状の光磁気媒体に
対して照射するとともに、その照射位置に対応して、上
記光磁気記録媒体に垂直方向からの外部磁界を印加して
いる。上記磁界発生機構は、例えば、第8図に示すよう
に浮上式のもので、ディスク状の光磁気記録媒体の上方
に位置して、下側の光学ヘッド(図示せず)と対向した
状態で配設されていている。ここでは浮上刃を得るため
のスライダー81は非磁性材料で構成され、両側に2本
の滑面82.83を有し、一方の滑面の空気流出部(即
ち、光磁気記録媒体の走行方向の空気流が比る部分)に
は垂直磁界発生用のコア84を埋設している。上記スラ
イダー81の後端部に切れ込みを付けることで、巻線窓
85が形成してあり、この巻線窓85を介して上記コア
84にはコイル86が捲装されている。その結果、上記
コア84の端部には磁路が開放されて、磁極I21及び
i2が光磁気配録媒体(第9図には符号93で示す)に
対向するスライダー81の面に配!された形となる。そ
して、公知のように、上記コイルへの信号電圧によって
、上記記録媒体の記録層に垂直磁界を印加することにな
る。
[Prior Art] When recording and erasing information in this type of magneto-optical recording device, an optical head is used to irradiate a laser beam emitted from a semiconductor laser onto, for example, a disk-shaped magneto-optical medium. At the same time, an external magnetic field is applied in the perpendicular direction to the magneto-optical recording medium in accordance with the irradiation position. The above-mentioned magnetic field generation mechanism is, for example, a floating type as shown in FIG. 8, and is located above a disk-shaped magneto-optical recording medium, facing a lower optical head (not shown). It is arranged. Here, the slider 81 for obtaining the floating blade is made of a non-magnetic material and has two smooth surfaces 82 and 83 on both sides, and has an air outflow portion of one of the smooth surfaces (i.e., in the running direction of the magneto-optical recording medium). A core 84 for generating a vertical magnetic field is embedded in the part where the air flow is compared. A winding window 85 is formed by making a notch in the rear end of the slider 81, and a coil 86 is wound around the core 84 through this winding window 85. As a result, a magnetic path is opened at the end of the core 84, and the magnetic poles I21 and i2 are arranged on the surface of the slider 81 facing the magneto-optical recording medium (indicated by reference numeral 93 in FIG. 9)! It becomes a shape. As is well known, a perpendicular magnetic field is applied to the recording layer of the recording medium by applying a signal voltage to the coil.

一方、第9図に示されるように、半導体レーザからの光
束91が対物レンズ92を介して、上記記録層94に焦
点Sを結ぶ。この時、上述のコア84はこれに対向して
記録媒体93の反対側に位置され、磁極ρ1から垂直磁
界を上記記録層94に印加する。通常、上記焦点Sは光
学ヘッドの移動無しに、光磁気記録媒体の半径方向に約
±250μm程度、移動されるのであって(トラッキン
グ)、上記コア84の磁極C1はその有効垂直磁界の幅
が、はぼ上記焦点の移動範囲をカバーする大きさに設定
される。
On the other hand, as shown in FIG. 9, a light beam 91 from a semiconductor laser is focused S on the recording layer 94 via an objective lens 92. At this time, the core 84 is positioned on the opposite side of the recording medium 93, and a perpendicular magnetic field is applied to the recording layer 94 from the magnetic pole ρ1. Normally, the focal point S is moved about ±250 μm in the radial direction of the magneto-optical recording medium without moving the optical head (tracking), and the magnetic pole C1 of the core 84 has a width of its effective perpendicular magnetic field. , is set to a size that approximately covers the movement range of the focal point.

更に、上記コア84は磁界の効率的な発生のため、磁路
な開放するように口字形を成しており、第8図にみられ
るように、磁極I21とは反対磁性の磁界を発生する磁
極!2も、滑面83側に出ており、磁極氾1、ρ2の間
隔は十分な巻線窓85の面積を得るために比較的広(、
数100μm程度になっている。
Further, in order to efficiently generate a magnetic field, the core 84 is shaped like an open magnetic path, and as shown in FIG. 8, generates a magnetic field with opposite magnetism to the magnetic pole I21. Magnetic pole! 2 also comes out on the smooth surface 83 side, and the interval between the magnetic poles 1 and ρ2 is relatively wide (,
The thickness is approximately several 100 μm.

[発明が解決しようとする課題] しかしながら、コア84と対物レンズ92の位置合せ調
整誤差を含めると、光磁気ディスクの半径方向(トラッ
ク方向と直交する方向)におけるコア84の軸は約±3
00μmとなり、また、トラック方向の長さも±100
μm程度は必要である。一方、上記コアが発生する有効
垂直磁界の範囲と、その時の磁気ヘッドの最高変調周波
数との関係は第10図に示される反比例関係にある。
[Problems to be Solved by the Invention] However, if the alignment adjustment error between the core 84 and the objective lens 92 is included, the axis of the core 84 in the radial direction of the magneto-optical disk (direction perpendicular to the track direction) is approximately ±3.
00μm, and the length in the track direction is also ±100μm.
A thickness of approximately μm is necessary. On the other hand, the relationship between the range of the effective perpendicular magnetic field generated by the core and the maximum modulation frequency of the magnetic head at that time is inversely proportional as shown in FIG.

即ち、磁気ヘッドの有効磁界の範囲は、コアの磁極の断
面積に対応するので、磁極℃1の断面積は0、6mm 
x 0.2mm = 0.12mm”にほぼ一致するこ
とになり、最高変調周波数は約2゜5MH2である。
That is, the range of the effective magnetic field of the magnetic head corresponds to the cross-sectional area of the magnetic pole of the core, so the cross-sectional area of the magnetic pole C1 is 0.6 mm.
x 0.2 mm = 0.12 mm", and the highest modulation frequency is approximately 2°5 MH2.

しかるに、光磁気記録装置における特性は、年々、高速
化に向けて要求を高めており、当然、最高変調周波数も
より高く設定することが望まれていて、上述の2.5M
Hzでは不十分である。また、2つの磁極(11,Aオ
の間隔が数100μmと、広いため、2つの磁極間にお
いて磁路を形成する磁気抵抗が高く、垂直磁界を効率的
にかつ十分に発生できない。
However, the requirements for the characteristics of magneto-optical recording devices are increasing year by year toward higher speeds, and it is naturally desirable to set the maximum modulation frequency higher than the above-mentioned 2.5M.
Hz is insufficient. Furthermore, since the distance between the two magnetic poles (11, A) is wide, several hundred μm, the magnetic resistance that forms the magnetic path between the two magnetic poles is high, making it impossible to efficiently and sufficiently generate a perpendicular magnetic field.

そこで、磁気ヘッドにおけるコアを小型化し、複数配列
した構成が提唱されている。即ち、第11図に示すよう
に、ここでは小型化したコア111.113を備えてい
て、これらにそれぞれコイル112.114を捲装して
いて、各コイルを独立して駆動するのである。先述のよ
うな1つのコアの場合に比較して、上記のコア]11.
113の場合には必要な有効垂直磁界の範囲を約2分の
1とすることが可能なため、はぼ2倍の高周波化が得ら
れることになる。しかし、この場合にも、以下に述べる
ような別の問題がある。
Therefore, a configuration has been proposed in which the cores of a magnetic head are miniaturized and a plurality of cores are arranged. That is, as shown in FIG. 11, this device has miniaturized cores 111 and 113, each of which is wound with a coil 112 and 114, and each coil is driven independently. Compared to the case of one core as described above, the above core]11.
In the case of 113, it is possible to reduce the range of the necessary effective vertical magnetic field to about half, so that it is possible to obtain a frequency that is approximately twice as high. However, even in this case, there are other problems as described below.

即ち、第11図の下側のグラフに示されるように、コア
111に巻かれた巻線112に電流を流し、上向きの磁
界子H(矢印115)を発生させたときの、コア下部端
面から数10μm離れた水平方向の位置Xに対する磁界
の強さを実線117で示すと、コア端面から上記位置x
55g1れるにしたがって、発生磁界は弱くなり、隣り
のコア113との中間位置では記録媒体に対する記録に
必要な垂直磁界200[0,]より小さ(なってしまう
。従って、2つのコア111.113の中間点において
必要な磁界を得るためには、コイルに流す電流を大きく
しなけわばならず、高周波駆動には不利となり、コアを
小型化したことによる高周波化の利益が、失われてしま
う。
That is, as shown in the lower graph of FIG. 11, when a current is passed through the winding 112 wound around the core 111 and an upward magnetic field H (arrow 115) is generated, from the lower end face of the core A solid line 117 indicates the strength of the magnetic field at a horizontal position X several tens of μm apart.
55g1, the generated magnetic field becomes weaker, and at the intermediate position between the adjacent cores 113, it becomes smaller than the perpendicular magnetic field 200[0,] required for recording on the recording medium. In order to obtain the necessary magnetic field at the intermediate point, it is necessary to increase the current flowing through the coil, which is disadvantageous for high-frequency drive, and the advantage of increasing the frequency by making the core smaller is lost.

更に、光磁気情報記録装置の高速化の要求を満たすため
、マルチビーム記録を行うとき、記録媒体に複数の光ビ
ームを照射して、所定の位置にスポットを形成するのに
、記録情報によって変調される変調磁界を独立に印加さ
せる必要がある。
Furthermore, in order to meet the demand for faster speeds of magneto-optical information recording devices, when performing multi-beam recording, multiple light beams are irradiated onto the recording medium to form a spot at a predetermined position, which is modulated depending on the recording information. It is necessary to apply the modulated magnetic field independently.

ここでは、コア11.3に巻かれているコイル114に
、コア111に巻かれているコイル1】2とは逆向きの
磁界を発生するように電流を流す。この時、コア113
で発生する磁界は下向きの発生磁界1−H(矢印116
で示す)となり、上述と同様に水平位置Xに対する磁界
の強さが実線1]8のようになり、2つのコア111、
]I1が発生するそれぞれの磁界]】7.118に対し
て実際に記録媒体に印加される垂直磁界は点線119に
示すようになってしまい、そねぞれのコア111.11
3の記録媒体に対する中心位置x11. 、 xl+3
においても、記録に必要な±200[0゜]以上の垂直
磁界が得られなくなり、マルチビーム記録ができな(な
る。しかし、この2つのコアの相互干渉の影響を避ける
ために2つのコアを離すことは1つの光学ヘッドにおい
て複数の光ビームを大きく離すことになり、実施面にお
いて困難で、実現できない。
Here, a current is passed through the coil 114 wound around the core 11.3 so as to generate a magnetic field in the opposite direction to that of the coils 1 and 2 wound around the core 111. At this time, core 113
The magnetic field generated by the downward generated magnetic field 1-H (arrow 116
As shown above, the strength of the magnetic field with respect to the horizontal position X becomes as shown by the solid line 1]8, and the two cores 111,
]7.118, the perpendicular magnetic field actually applied to the recording medium is as shown by the dotted line 119, and each core 111.11
Center position x11.3 for the recording medium. , xl+3
However, in order to avoid the influence of mutual interference between the two cores, it is impossible to obtain a perpendicular magnetic field of ±200 [0°] or more, which is necessary for recording. Separating them would mean separating the plurality of light beams in one optical head by a large distance, which is difficult to implement and cannot be realized.

(発明の目的 ) 本発明は上記事情に基いてなされたもので、有効な垂直
磁界の範囲を十分、効率的に確保しながら、しかも、最
高変調周波数をより高い値に設定できるとともに、磁界
変調記録においてマルチ記録が可能な高転送レートを有
する変調磁界発生装置を提供し、ようとするものである
(Objective of the Invention) The present invention has been made based on the above circumstances, and it is possible to sufficiently and efficiently secure the range of an effective vertical magnetic field, set the maximum modulation frequency to a higher value, and modulate the magnetic field. It is an object of the present invention to provide a modulated magnetic field generating device having a high transfer rate and capable of multi-recording.

(課題を解決するための手段 ) このため、本発明では光学ヘッドによって半導体レーザ
からの光を光磁気記録媒体に照射するとともに、その反
対側から複数の磁界発生部で磁界を発生させ、情報の記
録、消去を行うようにした光磁気記録装置の磁界発生機
構において、上記光学ヘッドからの光は上記記録媒体の
複数または同一トラックに複数、照射され、また、上記
磁界発生部のためのコアを複数分割して記録媒体のトラ
ック方向に配設し、且つ各コアに変調磁界発生用のコイ
ルを捲回してなり、上記コア間には磁性材料から成る部
材が配設しである。
(Means for Solving the Problems) Therefore, in the present invention, an optical head irradiates light from a semiconductor laser onto a magneto-optical recording medium, and a plurality of magnetic field generating sections generate a magnetic field from the opposite side, thereby generating information. In a magnetic field generation mechanism of a magneto-optical recording device that performs recording and erasing, light from the optical head is irradiated onto a plurality of tracks or the same track of the recording medium, and a core for the magnetic field generation section is irradiated with light from the optical head. It is divided into a plurality of cores and arranged in the track direction of the recording medium, and each core is wound with a coil for generating a modulated magnetic field, and a member made of a magnetic material is arranged between the cores.

(作  用  ) 1つの磁界発生用コアの磁極による有効な垂直磁界の範
囲を小さくすることで、磁極の断面積を小さ(し、変調
可能な最高周波数が高(設定でき、しかも、隣接する磁
界発生用コアが発生する磁界の影響を完全に排除し、そ
れぞれの磁界発生コアを完全に独立して駆動でき、1つ
の光学ヘッドにおいて、マルチ記録が可能となる。
(Function) By reducing the range of the effective perpendicular magnetic field due to the magnetic poles of one magnetic field generation core, the cross-sectional area of the magnetic poles can be reduced (and the maximum frequency that can be modulated can be set to high), and the adjacent magnetic field The influence of the magnetic field generated by the generating cores is completely eliminated, and each magnetic field generating core can be driven completely independently, making multi-recording possible with one optical head.

(実施例 ) 以下、本発明の一実施例を第1図乃至第7図を参照して
具体的に説明する。図において符号1は非磁性材料より
なる磁気ヘッドのスライダーであり、そこには、例えば
、ディスク状の光磁気記録媒体の回転で生じる空気流に
対面して2つの滑面2.3がある。上記滑面2.3の片
側の滑面、例えば、滑面3側には変調磁界発生用のコア
4.5が埋設されている。そして、上記コア4.5には
それぞれ駆動電流を流すための巻線コイル6.7が巻か
れている。上記コア4.5のほぼ中間位置にそのほぼ記
録媒体の走行方向に直交する面の投射面積に等しいか、
あるいはそれ以上の断面積を有する軟磁性材料より成る
磁性部材8が置かれている。
(Example) Hereinafter, an example of the present invention will be specifically described with reference to FIGS. 1 to 7. In the figure, reference numeral 1 denotes a slider of a magnetic head made of a non-magnetic material, and there are two smooth surfaces 2.3 facing the airflow generated by the rotation of, for example, a disk-shaped magneto-optical recording medium. A core 4.5 for generating a modulated magnetic field is embedded in one side of the smooth surface 2.3, for example on the smooth surface 3 side. A winding coil 6.7 for passing a drive current is wound around each of the cores 4.5. Is the area approximately equal to the projected area of the surface perpendicular to the running direction of the recording medium at approximately the middle position of the core 4.5?
A magnetic member 8 made of a soft magnetic material and having a cross-sectional area larger than that is placed.

上記磁性部材8の材質は高周波磁界に対し十分な高透磁
率を有する高透磁率材料が望ましく、例えば、それにM
、、−2nフエライトをあげることができる。
The material of the magnetic member 8 is preferably a high magnetic permeability material having a sufficiently high permeability to a high frequency magnetic field.
, -2n ferrite can be mentioned.

上記コア4.5は滑面3に対し垂直に開放された磁極β
3.14およびβs 、I26を備えている。なお、上
記記録媒体に垂直磁界を印加する磁極には上記磁極℃1
、C5を用いる。
The above core 4.5 has a magnetic pole β opened perpendicularly to the smooth surface 3.
3.14 and βs, I26. Note that the magnetic pole that applies a perpendicular magnetic field to the recording medium has a temperature of 1°C.
, C5 is used.

第2図(A)乃至(C)には上記のコア4.5及びコイ
ル6.7並びに磁性部材8のみをその配置、構成につい
て示している。上記磁性部材8は上記コア4とコア5と
の間でそれらに接することなく配置され、また、上記磁
性部材8の面積は各コアの、第1図の記録媒体の走行方
向の投射面積とほぼ同一か、あるいはそれ以上である。
FIGS. 2A to 2C only show the arrangement and configuration of the core 4.5, coil 6.7, and magnetic member 8. The magnetic member 8 is arranged between the cores 4 and 5 without touching them, and the area of the magnetic member 8 is approximately the projected area of each core in the running direction of the recording medium in FIG. are the same or greater.

そ(で、第6図に示すように上記磁極12s、ρ、に対
応して、上記コア4.5のそれぞれで構成される有効垂
直磁界の範囲に対応して、配録媒体(光磁気ディスク)
56の反対側には、対物レンズ57が半径方向へ移動可
能に配列してあって、マルチ記録を行うための半導体レ
ーザ(LD−A)59及び(LD−B)62から与えら
れた光束60.63を、光磁気ディスク内の光磁気記録
層55に収束し、焦点61.64を結んでいる。なお、
上記レーザ光源は同一チップ上に構成されたマルチ発光
レーザ素子でもよく、あるいは2つの別のレーザ素子で
も光学的に等価なものであれば良い、また、上記半導体
レーザ59.62はその発光点の間隔がレーザ製作上の
制約から、約100μm程度離れているが、そこから出
射した光束60.63はコリメータレンズ58で平行光
束とされ、対物レンズ57で上述のように記録層に収束
される時、適正な焦点間隔にすることができる。
Then, as shown in FIG. 6, a recording medium (magneto-optical disk )
On the opposite side of the lens 56, an objective lens 57 is arranged so as to be movable in the radial direction. .63 is focused on the magneto-optical recording layer 55 in the magneto-optical disk, and the focal point is 61.64. In addition,
The laser light source may be a multi-emitting laser element constructed on the same chip, or two separate laser elements as long as they are optically equivalent. Although the distance is about 100 μm due to laser manufacturing restrictions, the light beams 60 and 63 emitted from there are collimated by the collimator lens 58 and converged onto the recording layer by the objective lens 57 as described above. , it is possible to obtain an appropriate focal distance.

上記コイル6は記録情報(A)54の極性に応じた磁界
を発生させるための磁気ヘッド駆動回路51で駆動され
、従って、磁極℃、からは記録情報54に対応した垂直
磁界が上記焦点64に対して印加される。また、コイル
7は記録情報(B)53の極性に応じた磁界を発生させ
るための磁気ヘッド駆動回路52で駆動され、従って、
磁極℃5からは記録情報53に対応した垂直磁界が上記
焦点61に対して印加される。
The coil 6 is driven by a magnetic head drive circuit 51 for generating a magnetic field according to the polarity of the recorded information (A) 54. Therefore, from the magnetic pole °C, a perpendicular magnetic field corresponding to the recorded information 54 is directed to the focal point 64. applied to the Further, the coil 7 is driven by a magnetic head drive circuit 52 for generating a magnetic field according to the polarity of the recorded information (B) 53, and therefore,
A perpendicular magnetic field corresponding to the recorded information 53 is applied from the magnetic pole 5 to the focal point 61 .

本発明の光磁気記録装置における光学ヘッドから照射さ
れる2つの光束は上述のように2つの焦点で、記録層の
うえに収束されるが、その時の磁気ヘッドとの相対関係
は光学ヘッド側から見たとき、第6図のようには位置さ
れる。ここでは、焦点61.64はトラック番号nとn
+1に約50μm程度離れては位置される。この実施例
では上記記録媒体のトラックはa、b2本のトラックが
それぞれ独立してスパイラル状に構成されているので、
上記焦点61がa、、トラックに、焦点64がb7トラ
ツクにある場合、記録媒体が1回転すると、それぞれの
焦点はa n+1 s b nや、トラックへ移動する
。なお、使用する記録媒体は上記独立の2本のトラック
を有するものでなくてもよい。即ち、通常の1本のスパ
イラルトラックの場合、記録媒体の1回転ごとに、1回
のトラックジャンプを行うようにしてもよいのである。
The two light beams irradiated from the optical head in the magneto-optical recording device of the present invention are converged onto the recording layer at two focal points as described above, but the relative relationship with the magnetic head at this time is from the optical head side. When viewed, it is positioned as shown in Figure 6. Here, the focal points 61.64 are track numbers n and n
+1 and is located approximately 50 μm apart. In this embodiment, the recording medium has two tracks a and b, which are each independently arranged in a spiral shape.
When the focus 61 is on track a, and the focus 64 is on track b7, when the recording medium rotates once, each focus moves to track a n+1 s b n. Note that the recording medium used does not have to have the two independent tracks described above. That is, in the case of one normal spiral track, one track jump may be performed for each rotation of the recording medium.

これを具体的に説明すれば、記録媒体が1回転するとき
、焦点61はす、、トラックへ移動し、更にトラックジ
ャンプによって、a、、。、へ移動すれば、焦点64が
記録したbゎトラックの情報を消すおそれがない。
To explain this specifically, when the recording medium rotates once, the focal point 61 moves to the track a, and further, by a track jump, the focus 61 moves to the track a. , there is no risk of erasing the information of the bw track recorded by the focal point 64.

上記磁気ヘッドは記録媒体を挟み、光学ヘッドとは反対
側に位置する。そして′、上記焦点61.64はほぼ磁
気ヘッドの磁極β3とβ5とのほぼ中間において、磁性
部材8で、磁気シールドされている。上記磁性部材の厚
さは5μm、Mi極ρ3とi、の間隔は15μm程度と
するのが、磁気ヘッドの製作上の精度や、作り易さの点
で好ましい。
The magnetic head is located on the opposite side of the optical head across the recording medium. Then, the focal points 61 and 64 are magnetically shielded by a magnetic member 8 approximately in the middle between the magnetic poles β3 and β5 of the magnetic head. It is preferable that the thickness of the magnetic member be 5 μm, and the distance between the Mi poles ρ3 and i be about 15 μm, from the viewpoint of manufacturing precision and ease of manufacturing the magnetic head.

上記記録情報(A)、(B)とが異なる情報、例えば、
記録情報(A)が ”1”であり、記録媒体に上向きの
磁界中Hな印加し、上向きの磁化を行うとともに、記録
情報(B)が ”0”であり、下向きの磁界−Hを印加
し、下向きの磁化を行う場合には本発明における発生磁
界は第3図下側のグラフのようになる。
Information different from the above recorded information (A) and (B), for example,
When the recorded information (A) is "1", an upward magnetic field of H is applied to the recording medium to cause upward magnetization, and when the recorded information (B) is "0", a downward magnetic field -H is applied. However, when downward magnetization is performed, the generated magnetic field in the present invention becomes as shown in the lower graph of FIG.

即ち、コア4では記録媒体に対して上向きの磁界中Hが
発生しており、コア5に対して下向きの磁界−Hが発生
しているので、それぞれのコアの下部端面から数10μ
m離れた記録媒体の面における垂直磁界の大きさはコア
4について実線35のよう磁界分布になり、コア5につ
いて実線36のよう磁界分布になる。因に、従来の構成
、即ち、磁性部材8が無い場合では、点線33及び34
のようになる。これは上記磁性部材8がコア4に対して
はコア5が発生する磁界をシールドし、コア5に対して
はコア4が発生する磁界をシールドする効果を有してい
ることを示している。即ち、それぞれのコアが発生する
磁界は上記磁性部材8によって互いに影響を及ぼさない
から、各コアは独立に駆動できることになる。
That is, in the core 4, an upward magnetic field H is generated with respect to the recording medium, and a downward magnetic field -H is generated with respect to the core 5.
The magnitude of the perpendicular magnetic field on the surface of the recording medium separated by m has a magnetic field distribution for the core 4 as shown by a solid line 35, and a magnetic field distribution for the core 5 as shown by a solid line 36. Incidentally, in the conventional configuration, that is, when there is no magnetic member 8, the dotted lines 33 and 34
become that way. This indicates that the magnetic member 8 has the effect of shielding the core 4 from the magnetic field generated by the core 5, and shielding the core 5 from the magnetic field generated by the core 4. That is, since the magnetic fields generated by each core do not affect each other due to the magnetic member 8, each core can be driven independently.

更に、各コアの近傍に軟磁性材料である磁性部材8が配
置されていると、上記磁性部材側の磁気抵抗が下がるこ
とで、必要磁界が強くなる(Fa界分布が上記磁性部材
8側で多くなる)効果をもたらす。その結果、焦点64
に相当する位置xa、焦点61に相当する位置xbにお
ける記録媒体56に印加される垂直磁界は記録層55の
記録のために十分な±200[0,]以上の磁界強度と
なり、十分な有効磁界範囲が得られる。
Furthermore, if a magnetic member 8 made of a soft magnetic material is arranged near each core, the magnetic resistance on the magnetic member side decreases, thereby increasing the required magnetic field (Fa field distribution on the magnetic member 8 side increase) effect. As a result, the focal point 64
The perpendicular magnetic field applied to the recording medium 56 at the position xa corresponding to You get the range.

次に第4図を参照して、記録媒体に面している磁性部材
8の端面とコア4の磁極C3の端面との位置関係、及び
上記磁性部材8の垂直下点Pにおける磁界の強さを説明
する。上記磁性部材8の最下面と磁極ρの端面との水平
距離dとP点の磁界の強さには相当の関係が認められる
。即ち、上記P点の磁界の強さはd=oでは約120[
0゜]であるが、dがプラス側へ僅かに存在することで
、P点の磁界を急激に減少させる効果がある。
Next, with reference to FIG. 4, the positional relationship between the end surface of the magnetic member 8 facing the recording medium and the end surface of the magnetic pole C3 of the core 4, and the strength of the magnetic field at the vertical lower point P of the magnetic member 8 Explain. A considerable relationship is recognized between the horizontal distance d between the lowermost surface of the magnetic member 8 and the end surface of the magnetic pole ρ and the strength of the magnetic field at point P. That is, the strength of the magnetic field at the above point P is approximately 120 [at d=o].
0°], but the presence of d slightly on the positive side has the effect of rapidly reducing the magnetic field at point P.

従って、本発明による磁気ヘッドにおいてはd〉0とな
るような構成になる。この結果、第3図に示したように
2つのコアの発生磁界の干渉を完全に排除できる。
Therefore, the magnetic head according to the present invention has a configuration in which d>0. As a result, as shown in FIG. 3, interference between the magnetic fields generated by the two cores can be completely eliminated.

本発明の磁界発生機構を光磁気記録装置におけるマルチ
記録に採用した場合の記録信号及びパターンは第7図に
示されている。ここで、(a)は記録情報(A)であり
、(b)は記録情報(B)である。なお、この実施例で
はレーザビームを連続点燈する方式での磁界変調記録を
採用している。従って、レーザ光源(LD−A)、(L
D−B)は(C)、(d)に示すように記録動作中、記
録媒体の記録に必要なハイレベルに維持される。また、
焦点64.61の磁界強度は(e)、(f)に示される
。従って、記録磁区のパターンは(g)及び(h)のよ
うになる。ここで、斜線を施した領域は上向きの磁化領
域を示し、白抜きの領域は下向きの磁化領域を示す。そ
して、焦点61を通過する垂直磁界は焦点64のそれと
は異なる(h)で示す磁区パターンを形成し、これによ
って、マルチ記録が可能となる。
Recording signals and patterns when the magnetic field generation mechanism of the present invention is employed for multi-recording in a magneto-optical recording device are shown in FIG. Here, (a) is recorded information (A), and (b) is recorded information (B). Note that this embodiment employs magnetic field modulation recording in which a laser beam is turned on continuously. Therefore, the laser light source (LD-A), (L
D-B) is maintained at a high level necessary for recording on the recording medium during the recording operation, as shown in (C) and (d). Also,
The magnetic field strength at the focal point 64.61 is shown in (e) and (f). Therefore, the patterns of recording magnetic domains are as shown in (g) and (h). Here, the shaded area indicates an upwardly magnetized area, and the white area indicates a downwardly magnetized area. The perpendicular magnetic field passing through the focal point 61 forms a magnetic domain pattern (h) that is different from that at the focal point 64, thereby making multi-recording possible.

なお、上記磁性部材8を、金属材料を主成分とする軟磁
性材料、例えば、パーマロイやセンダストなどの金属の
高透磁率材料を用いてもよい。
Note that the magnetic member 8 may be made of a soft magnetic material whose main component is a metal material, for example, a high magnetic permeability metal material such as permalloy or sendust.

この場合には上記磁性部材中に高周波磁界が印加される
と、そこに発生した渦電流によって、外部からの印加磁
界とは逆の向きに磁界が発生し、その結果、隣接コア方
向に分布する磁界成分が抑えられる効果がある。また、
上記金属磁性部材はフェライト系軟磁性材料よりも高透
磁率が得やすく、また加工性も良い。
In this case, when a high-frequency magnetic field is applied to the magnetic member, the eddy current generated there generates a magnetic field in the opposite direction to the externally applied magnetic field, and as a result, the magnetic field is distributed in the direction of the adjacent core. This has the effect of suppressing magnetic field components. Also,
The metal magnetic member described above has higher magnetic permeability than a ferrite-based soft magnetic material, and also has good workability.

(発明の効果 ) 本発明は、以上詳述したようになり、光学ヘッドからの
光は上記記録媒体のトラック方向に複数分割して照射さ
れ、また、上記磁界発生部のためのコアを複数分割して
記録媒体のトラック方向と同じ方向1こ配設し、且つ各
コアに変調磁界発生用のコイルを捲回してなり、上記コ
ア間には磁性材料から成る部材が配設しであるので、隣
合うコアが発生する磁界の影響を排除することができ、
各コアを独立して駆動することが可能となり、マルチ記
録を実現でき、変調磁界による記録の高速化が可能とな
る。また、磁界を印加するコアを分割することで1つの
コアが発生する有効磁界範囲も従来にくらべて、小さく
でき、このため、高周波変調も容易に達成できる。
(Effects of the Invention) According to the present invention, as described above in detail, the light from the optical head is irradiated into multiple parts in the track direction of the recording medium, and the core for the magnetic field generating section is divided into multiple parts. A coil for generating a modulated magnetic field is wound around each core, and a member made of a magnetic material is disposed between the cores. Can eliminate the influence of magnetic fields generated by adjacent cores,
It becomes possible to drive each core independently, realizing multi-recording, and increasing the speed of recording using a modulated magnetic field. Furthermore, by dividing the core to which the magnetic field is applied, the range of the effective magnetic field generated by one core can be made smaller than in the past, and therefore high frequency modulation can be easily achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す磁気ヘッドの斜視図、
第2図(a)及び(b)は要部の平面図及び正面図、第
3図は2分割されたコアをその磁界分布と照らし合わせ
て示す正面図、第4図は磁性部材と磁極端面との距離の
関係を示す図、第5図は光磁気記録の状態を示す構成図
、第6図は焦点と磁気ヘッドとの相対位置関係を示す模
式図、第7図は配録信号、磁区及びそのパターンを示す
グラフ、第8図は従来例の斜視図、第9図は従来の光磁
気記録の状態を示す説明図、第10図は変調周波数と有
効磁界との関係を示すグラフ、第11図は従来の2分割
されたコアをその磁界分布と照らし合わせて示す正面図
である。 111.非磁性スライダー 2.311.滑面 4.501.コア 6.781.コイル 811.磁性材料 β、〜β5 磁極
FIG. 1 is a perspective view of a magnetic head showing one embodiment of the present invention;
Figures 2 (a) and (b) are a plan view and front view of the main parts, Figure 3 is a front view showing the divided core in comparison with its magnetic field distribution, and Figure 4 is the magnetic member and the pole end face. Fig. 5 is a configuration diagram showing the state of magneto-optical recording, Fig. 6 is a schematic diagram showing the relative positional relationship between the focal point and the magnetic head, and Fig. 7 shows the distribution signal and magnetic domain. FIG. 8 is a perspective view of a conventional example, FIG. 9 is an explanatory diagram showing the state of conventional magneto-optical recording, FIG. 10 is a graph showing the relationship between modulation frequency and effective magnetic field, and FIG. FIG. 11 is a front view showing a conventional two-divided core in comparison with its magnetic field distribution. 111. Non-magnetic slider 2.311. Smooth surface 4.501. Core 6.781. Coil 811. Magnetic material β, ~ β5 magnetic pole

Claims (1)

【特許請求の範囲】 1、光学ヘッドによって半導体レーザからの光を光磁気
記録媒体に照射するとともに、その反対側から複数の磁
界発生部で磁界を発生させ、情報の記録、消去を行うよ
うにした光磁気記録装置の磁界発生機構において、上記
光学ヘッドからの光は上記記録媒体の複数または同一ト
ラックに複数、照射され、また、上記磁界発生部のため
のコアを複数分割して記録媒体のトラック方向に配設し
、且つ各コアに変調磁界発生用のコイルを捲回してなり
、上記コア間には磁性材料から成る部材が配設してある
ことを特徴とする光磁気記録装置の磁界発生機構 2、上記磁性材料からなる部材と光磁気記録媒体との距
離よりも上記コアの磁極端面と上記記録媒体の記録層と
の距離がより大きくなるように位置設定されていること
を特徴とする請求項1に記載の光磁気記録装置の磁界発
生機構
[Claims] 1. A magneto-optical recording medium is irradiated with light from a semiconductor laser by an optical head, and a magnetic field is generated from a plurality of magnetic field generating sections from the opposite side to record and erase information. In the magnetic field generation mechanism of the magneto-optical recording device, the light from the optical head is irradiated onto multiple or the same track of the recording medium, and the core for the magnetic field generation section is divided into multiple parts to generate the magnetic field of the recording medium. A magnetic field of a magneto-optical recording device, which is arranged in the track direction, and has a coil wound around each core for generating a modulated magnetic field, and a member made of a magnetic material is arranged between the cores. The generating mechanism 2 is characterized by being positioned so that the distance between the magnetic pole end face of the core and the recording layer of the recording medium is greater than the distance between the member made of the magnetic material and the magneto-optical recording medium. The magnetic field generation mechanism of the magneto-optical recording device according to claim 1, wherein
JP22508390A 1990-03-20 1990-08-29 Magnetic field generating mechanism for magneto-optical recorder Pending JPH04109401A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22508390A JPH04109401A (en) 1990-08-29 1990-08-29 Magnetic field generating mechanism for magneto-optical recorder
US08/331,148 US5485435A (en) 1990-03-20 1994-10-28 Magnetic field generator in which an end face of a magnetic material member projects from man end face of magnetic field generating cores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22508390A JPH04109401A (en) 1990-08-29 1990-08-29 Magnetic field generating mechanism for magneto-optical recorder

Publications (1)

Publication Number Publication Date
JPH04109401A true JPH04109401A (en) 1992-04-10

Family

ID=16823747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22508390A Pending JPH04109401A (en) 1990-03-20 1990-08-29 Magnetic field generating mechanism for magneto-optical recorder

Country Status (1)

Country Link
JP (1) JPH04109401A (en)

Similar Documents

Publication Publication Date Title
US4340914A (en) Thermomagnetic recording and reproducing apparatus
JPH0633525Y2 (en) Magnetic field application mechanism of magneto-optical disk device
JPS62119762A (en) Photomagnetic disk device
JP2801338B2 (en) Magneto-optical recording device
JPS6262453A (en) Photomagnetic information device
JPH04109401A (en) Magnetic field generating mechanism for magneto-optical recorder
JPH0687323B2 (en) Magneto-optical recording / reproducing device
JP2718712B2 (en) Magneto-optical recording device
JPH04111203A (en) Magnetic field generation mechanism for magneto-optical recorder
JPS6010401A (en) Optical magnetic disc device
JP2791171B2 (en) Magneto-optical recording device
JPH0568763B2 (en)
JPS6260148A (en) Photomagnetic information recording and reproducing device
JP2790716B2 (en) Magneto-optical recording device
JPS62189654A (en) Photomagnetic recording device
JP2904575B2 (en) Magnetic field modulation magneto-optical recording device
JP2834879B2 (en) Magneto-optical recording device
JPH069082B2 (en) Magnetic field application device
JPH0312004A (en) Magneto-optical disk device
JPH0312003A (en) Magneto-optical disk device
JPS63209047A (en) Magneto-optical recorder
JPH0770005B2 (en) External magnetic field applying device for magneto-optical disk drive
JPS62112253A (en) Light magnetic head
JPH01118202A (en) Magnetic head for optical pickup device
JPS60150202A (en) Reproduction method and its device